
Chapter 1

A Quick Review of
Trigonometry

In this Appendix we give a review of those concepts from Trigonometry that
are essential for an understanding of the basics of Calculus. We assume that
the reader has some acquaintance with Trigonometry at the High-School level,
although the lack of such knowledge should not deter the student from reading
this. For basic notions regarding lines, their equations, distance formulae, etc.
we refer to the previous chapter on straight lines, Appendix B. You should also
use this chapter in conjunction with Chapter 1 and Chapter 3.8. We also assume
knowledge of the notions of an angle, and basic results from ordinary geometry
dealing with triangles. If you don’t remember any of this business just pick up
any book on geometry from a used bookstore (or the university library) and do
a few exercises to refresh your memory. We recall that plane trigonometry (or
just trigonometry) derives from the Greek and means something like the study
of the measure of triangles and this, on the plane, or in two dimensions, as
opposed to spherical trigonometry which deals with the same topic but where
triangles are drawn on a sphere (like the earth).

The quick way to review trigonometry is by relying on the unit circle whose
equation is given by x2 + y2 = 1 in plane (Cartesian) coordinates. This means
that any point (x, y) on the circle has the coordinates related by the funda-
mental relation x2 + y2 = 1. For example, (

√
2/2,−√

2/2) is such a point, as
is (

√
3/2, 1/2) or even (1, 0). However, (−1, 1) is not on this circle (why?). In

this chapter, as in Calculus, all angles will be measured in RADIANS (not
degrees).

Don’t forget that, in Calculus, we always assume that angles are described in
radians and not degrees. The conversion is given by

Radians =
(Degrees) × (π)

180

For example, 45 degrees = 45 π/180 = π/4 ≈ 0.7853981633974 radians.

So, for example, 360 degrees amounts to 2π radians, while 45 degrees is π/4

1



2 CHAPTER 1. A QUICK REVIEW OF TRIGONOMETRY

radians. Radian measure is so useful in trigonometry (and in Calculus) that we
basically have to forget that “degrees” ever existed! So, from now on we talk
about angular measure using radians only! (At first, if you find this confusing
go back to the box above and back substitute to get the measure in degrees).
Okay, now let’s review the properties of two really basic right-angled triangles,
the right-angled isosceles triangle (that we refer to as RT45–abbreviation
for a ”right triangle with a 45 degree angle”) because both its base angles must
be equal to π/4 radians, and the right angled triangle one of whose angles
measures π/6 radians (that we will refer to as RT30– why do you think we use
the “30”?).

1.1 The right-angled isosceles triangle (RT45)

An RT45 Isosceles Triangle

Figure 1

This triangle, reproduced in the margin as Fig. 1 has two equal angles at its base
(� OAP = � OBP) of measure equal to π/4 and another angle (namely � AOB)
of measure π/2 (the “right-angle”). Let’s find the measure x and y of the side
OA and the perpendicular OP in this triangle so that we can remember once
and for all the various relative measures of the sides of such a triangle. We note
that the line segment AB has length 1, and the segments AP and PB each have
length 1/2 (since OP must bisect AB for such a triangle). Using the theorem of
Pythagoras on �OAB we see that 12 = x2 + x2 (since the triangle is isosceles)
from which we get that 2x2 = 1 or x = ±√

2/2. But we choose x =
√

2/2 since
we are dealing with side-lengths. Okay, now have x, what about y?

To get at y we apply Pythagoras to the triangle �OPB with hypotenuse OB.
In this case we see that x2 = (1/2)2 + y2 But we know that x2 = 1/2, so we can
solve for y2, that is y2 = 1/2− 1/4 = 1/4 from which we derive that y = ±1/2.
Since we are dealing with side-lengths we get y = 1/2, that’s all. Summarizing
this we get Fig. 2, the RT45 triangle, as it will be called in later sections. Note
that it has two equal base angles equal to π/4 radians, two equal sides of length√

2/2 and the hypotenuse of length 1.

Summary of the RT45: Referring to Fig. 5, we see that our RT45 triangle

has a hypotenuse of length 1, two sides of length
√

2/2, an altitude equal to

1/2, and two equal base angles of measure π/4 radians.

The final measures of the RT45 tri-

angle

Figure 2 1.2 The RT30 triangle

Now, this triangle, reproduced in the margin (see Fig. 3) as �OCQ, derives
from the equilateral triangle �OCD all of whose sides have length 1. In this
triangle � OCQ = � ODQ) have radian measure equal to π/3 while angle � COQ
has measure π/6. Let’s find the length of the altitude h = OQ, given that we
know that OC has length 1, and CQ has length equal to 1/2. Using the theorem
of Pythagoras on �OCQ we see that 12 = (1/2)2 + h2 from which we get that
h2 = 3/4 or h = ±√

3/2. But we choose h =
√

3/2 since we are dealing with
side-lengths, just like before.

The right-angled triangle: RT30

Figure 3

Summarizing this we get Fig. 4, the RT30 triangle. Note that it has two equal
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base angles equal to π/4 radians, two equal sides of length
√

2/2 and the hy-
potenuse of length 1.

Summary of the RT30: Referring to Fig. 4, we see that our RT30 triangle

has a hypotenuse of length 1, one side of length
√

3/2, one side of length 1/2,

and a hypotenuse equal to 1 unit. Its angles are π/6, π/3, π/2 in radians (or

30-60-90 in degrees).

The final “mental images” should resemble Fig. 5 and Fig. 6.

1.3 The basic trigonometric functions

The final measures of the RT30 tri-

angle

Figure 4

Now we return to the unit circle whose equation that consists of all points
P (x, y) such that x2 + y2 = 1, see Fig. 7. The center (or origin) of our cartesian
coordinate system is denoted by O and a point on the circle is denoted by P.
The positive x-axis consists of the set of all points x such that x > 0. So, for
example, the points (1, 0), (0.342, 0), (6, 0) etc. are all on the positive x-axis.
We now proceed to define the trigonometric functions of a given angle θ (read
this as “thay-ta”) whose measure is given in radians. The angle is placed in
standard position as follows:

If θ > 0, its vertex is placed at O and one of the legs of θ is placed along the

positive x-axis. The other leg, the terminal side, is positioned counterclock-

wise along a ray OP until the desired measure is attained. For instance, the

angle π/2 (or 90 degrees) is obtained by placing a leg along the positive x-axis

and another along the y-axis. The angle is measured counterclockwise. The

point P on the unit circle corresponding to this angle has coordinates (0, 1).

The RT45 triangle

Figure 5

If θ < 0, its vertex is placed at O and one of the legs of θ is placed along the
positive x-axis. The other leg, the terminal side, is positioned clockwise along
a ray OP until the desired measure is attained. For instance, the angle −π/2 (or
-90 degrees) is obtained by placing a leg along the positive x-axis and another
along the negative y-axis. The angle is measured clockwise. The point P on the
unit circle corresponding to this angle has coordinates (0,−1).

Given a right-angled triangle � PQO, see Fig. 8, we recall the definitions of
“opposite” and ”adjacent” sides: Okay, we all remember that the hypotenuse
of � PQO is the side opposite to the right-angle, in this case, the side PO. The
other two definitions depend on which vertex (or angle) that we distinguish. In
the case of Fig. 8 the vertex O is distinguished. It coincides with the vertex
of the angle � QOP whose measure will be denoted by θ. The side OQ is
called the adjacent side or simply the adjacent because it is next to O. The
other remaining side is called the opposite because it is opposite to O (or not

The final measures of the RT30 tri-

angle

Figure 6

next to it anyhow). Now, in trigonometry these three sides each have
a length which, all except for the hypotenuse, can be either positive
or negative (or even zero, which occurs when the triangle collapses to a line
segment). The hypotenuse, however, always has a positive length.
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We are now in a position to define the basic trigonometric functions. Let’s
say we are given an angle (whose radian measure is) θ. We place this angle
in standard position as in Fig. 7 and denote by P the point on the terminal
side of this angle that intersects the unit circle (see Fig. 9). Referring to this
same figure, at P we produce an altitude (or perpendicular) to the x-axis which
meets this axis at Q, say. Then � PQO is a right-angled triangle with side
PQ being the opposite side, and OQ being the adjacent side (of course, OP is
the hypotenuse). The trigonometric functions of this angle θ are given as
follows:

The unit circle

Figure 7 sin θ =
opposite

hypotenuse
cos θ =

adjacent

hypotenuse
tan θ =

opposite

adjacent
(1.1)

csc θ =
1

sin θ
sec θ =

1
cos θ

cot θ =
1

tan θ
. (1.2)

Example 1 Calculate the following trigonometric functions for the various
given angles:

1. sin(π/4)

2. cos(2π/3)

3. tan(−π/6)

4. sec(−π/3)

5. csc(5π/4)

A typical right-angled triangle

Figure 8

Solution 1) For this one use the RT45 triangle, Fig. 5. According to (1.1),
sin(π/4) = (1/2)/(1/

√
2) =

√
2/2.

2) For the next angle, namely 2π/3 (or 120 degrees) it is best to draw a picture
such as the one in Fig. 10. Note that this angle gives the internal angle � POQ
the value of π − (2π/3) = π/3 radians. So � POQ = 2π/3. But � PQO is a
RT30 triangle (see Fig. 6). Comparing Fig. 6 with the present triangle PQO we
see that sin(2π/3) = adj./hyp. = (

√
3/2)/1 =

√
3/2.

3) In this case, we need to remember that the negative sign means that the angle
is measured in a clockwise direction, see Fig. 11. Note that the opposite side QP
has a negative value (since it is below the x-axis). The resulting triangle � PQO
is once again a RT30 triangle (see Fig. 6). As before we compare Fig. 6 with
the present triangle PQO. Since tan(−π/6) = opp./adj. = (−1/2)/(

√
3/2) =

−1/
√

3, since the opposite side has value −1/2.

The unit circle

Figure 9

4) First we note that sec(−π/3) = 1/ cos(−π/3) so we need only find cos(−π/3).
Proceeding as in 3) above, the angle is drawn in a clockwise direction, starting
from the positive x-axis, an amount equal to π/3 radians (or 60 degrees). This
produces � PQO whose central angle � POQ has a value π/3 radians (see
Fig. 13). Note that in this case the opposite side QP is negative, having a value
equal to −√

3/2. The adjacent side, however, has a positive value equal to 1/2.
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Degs 0 30 45 60 90 120 135 150 180
Rads 0 π

6
π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin 0 1/2
√

2/2
√

3/2 1
√

3/2
√

2/2 1/2 0
cos 0

√
3/2

√
2/2 1/2 0 −1/2 −√

2/2 −√
3/2 −1

tan 0
√

3/3 1
√

3 und. −√
3 −1 −√

3/3 0

Degs 210 225 240 270 300 315 330 360
Rads 7π

6
5π
4

4π
3

3π
2

5π
3

7π
4

11π
6 2π

sin −1/2 −√
2/2 −√

3/2 −1 −√
3/2 −√

2/2 −1/2 0
cos −√

3/2 −√
2/2 −1/2 0 1/2

√
2/2

√
3/2 1

tan
√

3/3 1
√

3 und. −√
3 −1 −√

3/3 0

Table 1.1: Basic trigonometric functions and their values

Since cos(−π/3) = adj./hyp. = (1/2)/1 = 1/2, we conclude that sec(−π/3) =
1/(1/2) = 2.

5) In this last example, we note that 5π/4 (or 225 degrees) falls in the 3rd
quadrant (see Fig. 12) where the point P (x, y) on the unit circle will have

A 120 degree angle in standard po-

sition

Figure 10

x < 0, y < 0. We just need to find out the sin(5π/4), since the cosecant is simply
the reciprocal of the sine value. Note that central angle � POQ = π/4 so that �
PQO is a RT45 triangle (cf., Fig. 5). But sin(5π/4) = opp./hyp. and since the
opposite side has a negative value, we see that sin(5π/4) = (−1/2)/(1/

√
2) =

−1/
√

2.

Remark: Angles whose radian measure exceeds 2π radians (or more than 360
degrees) are handled by reducing the problem to one where the angle is less
than 2π radians by removing an appropriate number of multiples of 2π. For
example, the angle whose measure is 13π/6 radians, when placed in standard
position, will look like 2π + π/6, or just like a π/6 angle (because we already
have gone around the unit circle once). So, sin(13π/6) = sin(π/6) = 1/2.

The charts in Table 1.1 should be memorized (it’s sort of like a “multi-
plication table” but for trigonometry). The first row gives the angular
measure in degrees while the second has the corresponding measure in
radians. In some cases the values are undefined, (for example, tan(π/2))
because the result involves division by zero (an invalid operation in the
real numbers). In this case we denote the result by und.

Figure 11

1.4 Identities

This section involves mostly algebraic manipulations of symbols and not much
geometry. We use the idea that the trigonometric functions are defined using
the unit circle in order to derive the basic identities of trigonometry.

For example, we know that if θ is an an angle with vertex at the origin O of the
plane, then the coordinates of the point P (x, y) at its terminal side (where it
meets the unit circle) must be given by (cos θ, sin θ). Why? By definition . . . .
Think about it!

Figure 12
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If you want to find the cos θ, you need to divide the adjacent by the hypotenuse,
but this means that the adjacent is divided by the number 1 (which is the radius
of the unit circle). But since this number is equal to cos θ this means that the
adjacent is equal to cos θ. But the “adjacent side length” is also equal to the
x-coordinate of the point P . So, cos θ = x. A similar argument applies to the
y-coordinate and so we get y = sin θ. So, the coordinates of P are given by
(cos θ, sin θ). But P is on the unit circle, and so x2 + y2 = 1. It follows that

sin2 θ + cos2 θ = 1. (1.3)

for any angle θ in radians (positive or negative, small or large). Okay, now we

Figure 13
divide both sides of equation (1.3) by the number cos2 θ, provided cos2 θ �= 0..
Using the definitions of the basic trigonometric functions we find that tan2 θ +
1 = sec2 θ. From this we get the second fundamental identity, namely that

sec2 θ − tan2 θ = 1. (1.4)

provided all the quantities are defined. The third fundamental identity is ob-
tained similarly. We divide both sides of equation (1.3) by the number sin2 θ,
provided sin2 θ �= 0.. Using the definitions of the basic trigonometric functions
again we find that 1+cot2 θ = csc2 θ. This gives the third fundamental identity,
i.e.,

csc2 θ − cot2 θ = 1. (1.5)

once again, provided all the quantities are defined.

Next, there are two basic “Laws” in this business of trigonometry, that is the
Law of Sines and the Law of Cosines, each of which is very useful in appli-
cations of trigonometry to the real world.

1.4.1 The Law of Sines

Before we proceed to recall this Law, remember that every angle in this book is
to be measured in radians (and not degrees). This is particularly important for
the Law of Sines where we will be relating the side length of a plane triangle
with the angle opposite the side (when measured in radians). In order to set the
scene for what follows we begin by referring to Fig. 15. Here we have a triangle
OPR in standard position (and we can assume that R, P are on the unit circle
with O at its center, since any other triangle would be similar to this one and
so the sides would be proportional). Denote � POR by A, � ORP by B and �
RPO by C, for brevity. Also, (cf., Fig. 15) denote the side lengths RP, PO, OR
by a, b, c (all assumed positive in this result).

Figure 14 Now comes the proof of the sine law, given by equation (1.6) below. Referring
to Fig. 15 once again and using the definition of the sine function, we see that

d

b
= sinA =⇒ d = b sinA.

In addition, since PQR is a right-angled triangle,

d

a
= sinB =⇒ d = a sinB.
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Combining these last two equations and eliminating d we find that b sinA =
a sinB and so provided that we can divide both sides by the product sinA sinB
we get

a

sinA
=

b

sinB
.

Proceeding in exactly the same way for the other two angles we can deduce that
b sinC = c sinB from which we get the Sine Law:

a

sinA
=

b

sinB
=

c

sinC
. (1.6)

Figure 15Example 2 Estimating the height of a building without asking an engineer:
Okay, but I’ll assume you have a protractor! So, you’re standing 10 m. away
from the base of a very tall building and you pull out your protractor and
measure the angle subtended by the point where you are standing (just pick
a point 10 m away from the door, say) and the highest point on the building
(of course, you will look absolutely nuts when you pull this thing out and start
measuring by holding this instrument before your eyes). So, you measure this
angle to be 72 degrees. Anyhow, given this simple scenario, how do you find
the height of the building?

Solution: See Fig. 16. You can guess that there is a right-angled triangle whose
vertices are at your eyeball, the top point on the door and the top of the building.
You also have two angles and one side of this triangle. So, the Sine Law tells you
that you can always find the exact shape of the triangle (and so all the sides,
including the height of the building). How? Well, first you need to convert 72
degrees to radians...so,

72 × π

180
= 1.2566rads.

Then, we need to find the “third” angle which is given by 180 − 72 − 90 = 18

Figure 16
degrees, one that we must also convert to radians ... In this case we get 0.314159
rads.We put all this info. together using the Sine Law to find that

height

sin 1.2566
=

10
sin 0.314159

and solving for the (approximate) height we get height ≈ 30.8 m. Of course,
you need to add your approximate height of, say, 1.8m to this to get that the
building height is approximately 30.8 + 1.8 = 32.6 meters.

1.4.2 The Law of Cosines

You can think of this Law as a generalization of the Theorem of Pythagoras,
the one you all know about, you know, about the square of the hypotenuse of
a right-angled triangle etc. Such a “generalization” means that this result of
Pythagoras is a special case of the Law of Cosines. So, once again a picture helps
to set the scene. Look at Fig. 17. It is similar to Fig. 15 but there is additional
information. Next, you will need the formula for the distance between two
points on a plane (see Chapter B).

Figure 17Referring to Fig. 17 we asume that our triangle has been placed in standard
position with its central angle at O (This simplifies the discussion). We want
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a relationship between the central angle θ = � POR and the sides
a, b, c of the triangle so that when θ = π/2 we get the classical Theorem of
Pythagoras.

Now, by definition of the trigonometric functions we see that the point P has
coordinates P (b cos θ, b sin θ). The coordinates of R are easily seen to be R(c, 0).
By the distance formula we see that the square of the length of PR (or equiva-
lently, the square of the distance between the points P and R) is given by

a2 = (b cos θ − c)2 + (b sin θ − 0)2,
= b2 cos2 θ − 2bc cos θ + c2 + b2 sin2 θ,

= b2(cos2 θ + sin2 θ) + c2 − 2bc cos θ,
= b2 + c2 − 2bc cosθ, by (1.3).

This last expression is the Cosine Law. That is, for any triangle with side
lengths a, b, c and contained angle θ, (i.e., θ is the angle at the vertex where the
sides of length b and c meet), we have

a2 = b2 + c2 − 2bc cos θ. (1.7)

Note that when θ = π/2, or the triangle is right-angled, then a2 is simply the
square of the hypotenuse (because cos(π/2) = 0) and so we recover Pythagoras’
theorem.

1.4.3 Identities for the sum and difference of angles

Now, we can use these two laws to derive some really neat identities that relate
the cosine of the sum or difference of two given angles with various trigonometric
functions of the individual angles. Let’s see how this is done. Consider Fig. 18
where ψ (pronounced “p-see”) and φ (pronounced “fee”) are the two given angles
and the points P and R are on the unit circle. Let’s say we want a formula
for cos(ψ− φ). First we find the coordinates of P and R in the figure and see
that, by definition, we must have P (cosψ, sinψ). Similarly, the coordinates of
R are given by R(cosφ, sin φ).

Figure 18 Now, look at � OPR in Fig. 18. By the Cosine Law (1.7), we have that
a2 = b2 + c2 − 2bc cos θ, where the central angle θ is related to the given angles
via θ + φ − ψ = 2π radians. Furthermore, b = c = 1 here because P and R are
on the unit circle. Solving for θ in the previous equation we get

θ = 2π − φ+ ψ.

But a2 is just the square of the distance between P and R, b2 is just the square
of the distance between O and P and finally, c2 is just the square of the distance
between O and R. Using the distance formula applied to each of the lengths
a, b, c above, we find that

(cosψ − cosφ)2 + (sinψ − sinφ)2 = (cos2 ψ + sin2 ψ) +
(cos2 φ+ sin2 φ) − 2 cos(θ),

2 − 2 cosψ cosφ− 2 sinψ sinφ = 2 − 2 cos(2π + ψ − φ),
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where we have used (1.3) repeatedly with the angle θ there replaced by ψ and
φ, respectively. Now note that cos(2π + ψ − φ) = cos(ψ − φ). Simplifying the
last display gives the identity,

cos(ψ − φ) = cosψ cosφ+ sinψ sinφ. (1.8)

valid for any angles ψ, φ whatsoever. As a consequence, we can replace ψ in
(1.8) by ψ = π/2, leaving φ as arbitrary. Since cos(π/2) = 0 and sin(π/2) = 1,
(1.8) gives us a new relation,

cos
(π

2
− φ

)
= sinφ. (1.9)

But φ is arbitrary, so we can replace φ in (1.9) by π/2−φ and get another new
identity, that is,

sin
(π

2
− φ

)
= cosφ. (1.10)

also valid for any angle φ whatsoever.

Now let φ, ψ be arbitrary angles once again. Replacing φ by ψ + φ in (1.9) we
get

sin(ψ + φ) = cos
(
(
π

2
− ψ) − φ)

)
.

Using the cos-difference-formula (1.8) and combining this with (1.9) and (1.10)
we obtain,

sin(ψ + φ) = cos
(
(
π

2
− ψ) − φ)

)

= cos
(π

2
− ψ

)
cosφ+ sin

(π
2
− ψ

)
sinφ

= sinψ cosφ+ cosψ sinφ.

We distinguish this formula for future use as the “sin-sum-formula” given by

sin(ψ + φ) = sinψ cosφ+ cosψ sinφ, (1.11)

and valid for any angles ψ, φ as usual. Now, in (1.9) we replace φ by −ψ and
rearrange terms to find:

sin(−ψ) = cos
(
ψ +

π

2

)

= cos
(
ψ −

(
−π

2

))

= cos(ψ) cos(−π/2) + sin(ψ) sin(−π/2)
= − sin(ψ),

since cos(−π/2) = 0 and sin(−π/2) = −1. This gives us the following identity,

sin(−ψ) = − sin(ψ) (1.12)
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valid for any angle ψ.

In addition, this identity (1.8) is really interesting because the angles φ, ψ can
really be anything at all! For example, if we set ψ = 0 and note that sin 0 = 0,
cos 0 = 1, we get another important identity, similar to the one above, namely
that

cos(−φ) = cos(φ) (1.13)

for any angle φ. We sometimes call (1.8) a “cos-angle-difference” identity. To
get a “‘cos-angle-sum” identity we write ψ + φ as ψ + φ = ψ − (−φ) and then
apply (1.8) once again with φ replaced by −φ. This gives

cos(ψ + φ) = cosψ cos(−φ) + sinψ sin(−φ).
= cosψ cosφ− sinψ sinφ.

where we used (1.13) and (1.12) respectively to eliminate the minus signs. We
display this last identity as

cos(ψ + φ) = cosψ cosφ− sinψ sinφ. (1.14)

The final “sin-angle-difference” identity should come as no surprise. We replace
φ by −φ in (1.11), then use (1.13) and (1.12) with ψ replaced by φ. This gives

sin(ψ − φ) = sinψ cosφ− cosψ sinφ, (1.15)

Now we can derive a whole bunch of other identities! For example, the identity

cos(2φ) = cos2 φ− sin2 φ, (1.16)

is obtained by setting φ = ψ in (1.14). Similarly, setting φ = ψ in (1.11) gives
the new identity

sin(2φ) = 2 sinφ cosφ, (1.17)

Returning to (1.16) and combining this with (1.3) we find that

cos(2φ) = cos2 φ− sin2 φ

= cos2 φ− (1 − cos2 φ)
= 2 cos2 φ− 1.

Isolating the square-term in the preceding formula we get a very important
identity, namely,
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cos2(φ) =
1 + cos(2φ)

2
. (1.18)

On the other hand, combining (1.16) with (1.3) we again find that

cos(2φ) = cos2 φ− sin2 φ

= (1 − sin2 φ) − sin2 φ

= 1 − 2 sin2 φ.

Isolating the square-term in the preceding formula just like before we get the
complementary identity to (1.17)

sin2(φ) =
1 − cos(2φ)

2
. (1.19)

The next example shows that you don’t really have to know the value of an
angle, but just the value of one of the trigonometric functions of that angle, in
order to determine the other trigonometric functions.

Example 3 Given that θ is an acute angle such that sin θ =
√

3/2, find cos θ
and cot θ.

Solution: With problems like this it is best to draw a picture, see Fig. 19. The
neat thing about trigonometry is you don’t always have to put your triangles
inside the unit circle, it helps, but you don’t have to. This is one example
where it is better if you don’t! For instance, note that sin θ =

√
3/2 means

we can choose the side PQ to have length
√

3 and the hypotenuse OP to have
length 2. So, using the Theorem of Pythagoras we get that the length of OQ
is 1 unit. We still don’t know what θ is, right? But we DO know all the
sides of this triangle, and so we can determine all the other trig. functions of
this angle, θ. For example, a glance at Fig. 19 shows that cos θ = 1/2 and so

Figure 19
cot θ = 1/(tan θ) = 1/

√
3.

N.B.: There is something curious here, isn’t there? We drew our picture,
Fig. 19 so that θ is an acute angle, because we were asked to do so! What if the
original angle were obtuse? Would we get the same answers?

Answer: No. For example, the obtuse angle θ = 2π/3 also has the property
that sin θ =

√
3/2 (Check this!) However, you can verify that cos θ = −1/2 and

cot θ = −1/
√

3. The moral is, the more information you have, the better. If we
weren’t given that θ was acute to begin with, we wouldn’t have been able to
calculate the other quantities uniquely.

Example 4 If θ is an obtuse angle such that cot θ = 0.2543, find cos θ and
csc θ.
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Solution: Once again we draw a picture, see Fig. 20. This time we make the
angle obtuse and put it in a quadrant where the cotangent is positive! Note
that cot θ = 0.2543 > 0 and θ obtuse means that θ is in Quadrant III (cf.,
Fig. 21). So, this means we can choose the side OQ to have length −0.2543
and the opposite side to have length −1. Using the Theorem of Pythagoras
once again we get that the length of the hypotenuse OP is 1.0318 units. Just as

Figure 20
before , we DO now know all the sides of this triangle, and so we can determine
all the other trig. functions of this angle, θ.

So, a glance at Fig. 20 shows that cos θ = −0.2543/1.0318 = −0.2465 and
csc θ = 1/(sin θ) = −1.0318.

Example 5 Given that θ is an angle in Quadrant II such that cos2 θ = cos θ+1,
find the value of sin θ.

Solution: No picture is required here, but it’s okay if you draw one. Note that
cos θ is not given explicitly at the outset so you have to find it buried in the
information provided. Observe that if we write x = cos θ then we are really
given that x2 = x + 1 which is a quadratic equation. Solving for x using the

Figure 21
quadratic formula we get cos θ = (1 ± √

5)/2. However, one of these roots is
greater than 1 and so it cannot be the cosine of an angle. It follows that the
other root, whose value is (1 −√

5)/2 = −0.618034, is the one we need to use.

Thus, we are actually given that cos θ = −0.618034, θ is in Quadrant II, and
we need to find sin θ. So, now we can proceed as in the examples above. Note
that in Quadrant II, sin θ > 0. In addition, if we do decide to draw a picture it
would look like Fig. 22.

Since cos θ = −0.618034, we can set the adjacent side to have the value −0.618034
and the hypotenuse the value 1. From Pythagoras, we get the opposite side with
a value of 0.78615. It follows that sin θ = 0.78615/1 = 0.78615.

Example 6 Prove the following identity by transforming the expression on
the left into the one on the right using the identities (1.3-1.5) above and the
definitions of the various trig. functions used:

sin2 x+
1 − tan2 x

sec2 x
= cos2 x.

Figure 22
Solution: We leave the first term alone and split the fraction in the middle so
that it looks like

sin2 x+
1 − tan2 x

sec2 x
= sin2 x+

1
sec2 x

− tan2 x

sec2 x
,

= sin2 x+ cos2 x− sin2 x

cos2 x
· cos

2x

1
, (by definition)

= sin2 x+ cos2 x− sin2 x,

= cos2 x,

which is what we needed to show.

All of the above identities (1.3-1.5) and (1.8-1.19) are used in this book (and
in Calculus, in general) and you should strive to remember all the boxed
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ones, at the very least. Remembering how to get from one to another is also
very useful, because it helps you to remember the actual identity by deriving it!

Exercise Set 1

Evaluate the following trigomometric functions at the indicated angles using
any of the methods or identities in this chapter (use your calculator only to
CHECK your answers). Convert degrees to radians where necessary.

1. cos
π

3
6. sin

5π
4

11. cos
3π
2

16. cos
−7π

4
21. cos 225o

2. sin
2π
3

7. cos
7π
6

12. sin
3π
2

17. cos
17π
4

22. cos 405o

3. tan
π

6
8. sin

−3π
4

13. tan
3π
2

18. cos
5π
2

23. cos 960o

4. cos
−5π

4
9. cos

3π
4

14. tan
7π
4

19. cos
11π
6

24. sin(−210o)

5. cos
7π
4

10. sin
5π
3

15. sin
7π
6

20. cos
−13π

6
25. tan(−1125o)

26. If cotφ = 3/4 and φ is an acute angle, find sinφ and secφ.

27. If cosu = −1/4 and u is in Quadrant II, find cscu and tanu.

28. If sinφ = 1/3 and φ is an acute angle, find cosφ and tanφ.

29. If tan v = −3/4 and v is in Quadrant IV, find sin v and cos v.

30. If secφ = 2 and φ is an acute angle, find sinφ and tanφ.

31. If cscw = −3 and w is in Quadrant III, find cosw and cotw.

Prove the following identities using the basic identities in the text by converting
the left hand side into the right hand side.

33. (tanx+ cotx)2 = sec2 x csc2 x.

34. sin θ + cot θ cos θ = csc θ.

35.
cosx

1 + sinx
+ tanx = secx.

36. tan2 y − sin2 y = tan2 y sin2 y.

37.
1 + cotx
1 + tanx

= cotx.

38.
1

tanφ+ cotφ
= sinφ cosφ.

39. sin2 x cot2 x+ cos2 x tan2 x = 1.
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40.
1

sin2 x
+

1
cos2 x

=
1

sin2 x− sin4 x
.

41. sin4 φ− cos4 φ = 2 sin2 φ − 1.

Prove the following relations using the angle-sum/difference formulae, (1.8-1.15)
and/or the others.

42. cos(
π

2
+ θ) = cos θ.

43. sin(π + x) = − sinx.

44. cos(
3π
2

+ θ) = sin θ.

45. sin(π − x) = sinx.

46. cos(π − x) = − cosx.

47. sin(
3π
2

+ θ) = − cos θ.

48. cos(
3π
2

− θ) = − sin θ.

49. tan(π + x) = tanx.

50. tan(π − x) = − tanx.
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