Solutions Manual

1.1

1.2 Exercise Set 1 (page 10)

9, —1,2 1
1. -2,-1,2, %

2. (z + 1)3 sin(z + 1). Use the Box method.

8. z — 24 2sin(z — 2) — cos z.

4. —2cos(xz + ct).

5. f(x/2) = sin(cos(n/2)) = sin0 = 0.

6. 2@ + h. You get this by dividing by h since h # 0.
7. sin (¢ + 3)“’5}%1 4 cos (£ +3) di: .

8. (a) —m2, (b) am2.

9. (a) £(0) =1, (b) £(0.142857) = 0.857143, (c) Since 0 < @ < 1 we see that 2 < 3w + 2 < 5. So, f(3z + 2) =
3z + 2)2 = 922 + 122 + 4.

10. f(F(x)) = =, F(f(x)) =

11. The Boz method gives that g(z + 1) = (z 4+ 1)2 — 2(z 4+ 1) + 1 = 2.

12. Again we use the Box method with the quantity (z — 1) /(2 — x) inside the Boz. Since h(D) = (20 + 1) /(1 + O), we use
some simple algebra to see that the right-hand side becomes just .

13. 8. Observe that f(x + h) — 2f(z) + f(z — h) = 8h2, so that, for h % O the cancellation of the h2-terms gives the
stated result.

14. The definition of the funcion tells us that (using the Boz method), f(z +1) = (z +1) — 1 = & whenever 0 < x +1 < 2,
which is equivalent to saying that f(x + 1) = x whenever —1 < © < 1. We use the same idea for the other interval.
Thus, f(z +1) = 2(z + 1) = 2 + 2 whenever 2 < @ + 1 < 4, equivalently, f(x + 1) = 2@ + 2 whenever 1 < = < 3.
Since the interval {1 < x < 2} is contained inside the interval {1 < @ < 3} it follows that f(x + 1) = 2@ + 2 for such

1.3 Exercise Set 2 (page 19)

1.
2
z2 — 1, z>1lorxz < —1,
flz) = 2 - -
1— a2, -l <z <1
2.
B 3z +4, ifx>—4/3,
f(z) = { —3z — 4,  otherwise.
3.
2
z ifx >0
h(x) = ’ e
(x) { —22,  otherwise.
4.
L 1—t, ift >0,
f(L)—{ 14t if t < 0.
5.
sinw  for w in any interval of the form [2mwn, 2wn + w],
g(w) = —sinw  otherwise
where m is an integer.
6.
,oife>1
z
z) =
f(=) L ife < —1
z
7.
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1.4. EXERCISE SET 3 (PAGE 28)

1.4
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17.

Exercise Set 3 (page 28)

Correction: If A < 0, then —A < B implies —1/A > 1/B.

This is false. To see this, let A =1 and B = 0.

Correction: 0 < A < B implies A2 < B2,

Correction: A > B > 0 implies 1/A < 1/B.

Correction: A < B implies —A > —B.

Correction: If A2 < B2 and B > 0, then A < B.

This statement is correct. There is nothing wrong!

(0, ™). (Note: To complete our argument we need sin @ > 0, which is guaranteed by 0 < = < 7.)

It’s values are less than or equal to 6. Actually, its largest value occurs when @ = 2 in which case f(2) ~ 5.8186.

g is unbounded: This means that it can be greater than (resp. less than) any given number. The problem occurs at x = 0.

From @ > 1 we see that both @ and © — 1 are positive. Hence we can square both sides of the inequality © > © — 1 to arrive
—2z41=(z—1)2.)

at 22 > (x —1)2. (Alternately, since both x and = — 1 are positive, z2 > 22 —x — (x —1) = x

From p < 1 we sce that 1 — p > 0. Since > 1 (certainly this implies the positivity of ), we have 2P > 117P op
21=P > 1. Nowzl=P = o~ (P—1)

1 . 1

. So the last inequality can be rewritten as > 1. We can multipl
—p=T - S the last inequality can be rewritten as —Lp > e can multiply
both sides of this inequality by sin @ because 1 < @ < 7 guarantees that sin @ is positive.

-
Since both @ and 2 are > 0, we can apply the AG-inequality to get L= > Vo 22 = Va3, Since z + 22 > 0,

2
we have © + @2 > TEE S0z + 22 > Va3, Yes, we can square both sides since @ > 0, and so both terms in the
inequality are greater than or equal to 0.
Yes. Under no further conditions on the symbol, since it is true that (O — 1)2 > 0 for any symbol, O. Ezpanding the
square and separating terms we get that 02 > 20 — 1.
Since 1 — p > 0 and |@| > 1, we have |x|1=P > 117P = 1, or || || ™P > 1, which gives |x| > |z|P. Taking

reciprocals, we get TaT < . (The last step is legitimate because both |z|P and |z| are positive.)

|v| < c. This is because we need 1 — v2/c? > 0. Now solve this inequality for v.
If n = 2, the result is clear, because 2 < (1.5)2 < 3. So let’s assume that n > 2, now. We use (1.12) with the quantity
“1/n” inside the box symbol (or replacing the bow by 1/n, if you like). We’ll see that

n(n—1) 2

27

Sty 4 ROED (L2 4 a2 @A) (Lyn,

,1+n(%>+%(§1{)+m+%(%>_

Now, we regroup all the terms in the above display in the following way . ... Note that the following term is not apparent in
the display above, but it IS there! See Equation (1.12 ).

memge=t = (1) (571) (%)
(

A similar idea is used for the other terms. Okay, so using this rearrangement of terms we can rewrite (1 + % ) as
(43" =
SIEARICEEYE SRR ICE F
FE- BB 02

(where there are (n + 1) terms in the right hand side). Now, notice that for every integer n > 2, each term of the form
“l — (something)/n” is less than 1 and bigger than zero, because we’re subtracting something positive from 1. So,

where we have used Figure 9 with A = 1 — 2/n, 0 = 1 — 1/n (or with the symbols “L — 1/n” inside the box), and
A =1 (or with “1” inside the triangle). Using these es . see that we can replace every term inside the “large
brackets” by 1 so that

(1+%)” =...
R (RS T SR

< 1+1+ 4+ 4

(1.1)

+

1
.+m

We're almost done! Now we use the following inequalities ...
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1.5. CHAPTER EXERCISES (PAGE 30 ) 629

2x2x1=22

3l=3x2x1 >
4 =4x3x2x1 > 2x2x2x1=23
5l=5x4x3x2x1 > 2x2x2x2x1=2%
nt > on—l

Now since we must “reverse the inequality when we take reciprocals of positive numbers” (Table 1.2, Table 1.3) we get that
for every integer n > 2,

n—1 1 1

n! > 2 implies —< —
n! on—1

Combining this estimate with Equation (1.1) we get a new estimate, namely,

(1+%)" < 1414

[~
+

(1.2)

Now you can see that, when we combine this latest estimate with (1.2) we find

1\ 1 1
(1+3)" <1+1+3+5H++

< 1+2=3

which is what we wanted to show. Okay, this looks a bit long, but we did include all the details, right? Eventually, you’ll be
able to skip many of the details and do them in your head, so to speak, and the whole thing will get shorter and faster, you’ll
see.

It looks tough, but we’ll be using
this 200 yr old inequality later on,
in Chapter 4, when we define Euler’s
1.5 Chapter Exercises (page 30 ) number, 2.7182818284590.
1.6, 1, 2, 2% =%.
2. (22 4+ 1)3 cos(a? + 1).
3. z+ 3+ 2sin(z + 3) — cos(z + 5).

sin h cosh — 1
4. — sinx + ———— cos x.
3 h
5. From 3 > 6 we sce that @ must be positive; @ > 0. So we can rewrite it as 3 > 6, which gives © < %. Thus the
1

solution is 0 < x© < 3

6. x> —% since we an subtract 4 from both sides . ..

7. @ < 1. Note that 2z — 1 < 0 and s0 22 < 1.
8. |x| > /5. In other words, either & > /5 or x < —+/5.

9. |t] < ¥5. Thatis, — ¥5 <t < ¥5.

10. —oo < @ < +o0o. That is, © can be any real number. This is because the stated inequality implies that sin @ < 1 and this
is always true!

11. z > 21/P. (Note: For general p, 2P is defined only for z > 0.)

12. |z| < 3. Or =3 < = < 3.
13.
N @ +3,  forxz> -3,
f(m)f{ —z — 3, for @ < —3.
14.
_ t—0.5, ift>0.5,
g(z) = { —t 4 0.5, otherwise.
15.
_ 1—t, ift<1,
g(t) = { t—1, otherwise.
16. 1
2z —1, x> 3
f(*)_{172x, w<%
17.
ooy 1—6z, ifx<1/6
f(=) = { 6x — 1,  otherwise.
18.
Fa) = 22 — 4, ifecitherz > 2 ora < —2,
’ 4-22, if-2<az<2
19.

o 8- ifa< Y3,
f(L)_{:CS— ;:c>§/§.

20. f(z) = |(x — 1)2]| = (# — 1)2 = 22 — 20 + 1 for all . (Note that (z — 1)2 is always > O for any value of x.)
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1.5. CHAPTER EXERCISES (PAGE 30 )

21.

) = | N — z(2 — x), ifo<ax <2
f@)=le@—2)l = { z(z — 2), otherwise.

f(z) = |22 4+ 2| = 22 + 2 for all @, because f(z) = 22 + 2 > 2 > 0 to begin with.

Fromp < 1 we have 1 —p > 0. Sox > 1 > 0 gives 1 =P > 117P = 1. Now 21 =P = z—(P—1) = LT Thus
z

—LT > 1. On the other hand, from 0 < @ < /2 we have cos @ > 0. So we can maltiply —L > 1 throughout by
cos x to arrive at €25Z > cos x.
zp—1

2, 2.25, 2.370370, 2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 2.58117, 2.59374. Actually,
numbers approach the value 2.71828 . . ..

From0 < @ < & we have sinz > 0 and cosx > 0. Thus we may apply the AG-inequality to ger SRZLcoST >
Vsin @ cos @. Since sin 2w = 2sin cos x, we see that Veinwcos = (/SIL2T and 5o SiRZEcOST > [sin2e
Multiplying both sides by /2 we get the desired inequality.
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Solutions

2.1 Exercise Set 4 (page 39)

4
1

0

+oo, since t > 2 and t — 2.

0

—1, since |z| = —x for @ < 0.
0

A=

0
oo, since [x — 1| =1 —a >0 forxz < 1.

0
1

6

13. i) 0, ii) 1. Since the limits are different the graph must have a break at © = 1.

14. i) 1, i) 1, éii) 0, iv) 1; since the one-sided limits are equal at @ = 0 and g(0) = 1, the graph has no break at = = 0. But
since these limits are different at @ = 1, it must have a break at @ = 1.

15 0) 1, %) 2, i) 1, iv) 2.

IS T T S

~

~
e

o
b

Exercise Set 5 (page 45)

1. No, because the left and right-hand limits at & = O are different, (2 # 0).
2. Yes, the value is 4, because the two one-sided limits are equal (to 4).

3. Yes, the value is 0, because the two one-sided limits are equal (to 0).

4. Yes, the value is 0, because the two one-sided limits are equal (to 0).

5. Yes, the value is 0, because the two one-sided limits are equal; remove the absolute value, first, and note that sin 0 = 0.
6. No, because the left-hand limit at @ = 0 is — oo while the right-hand limit there is +oco.

7. No, because the left-hand limit at & = 0 is —oco and the right-hand limit there is +oc.

8. Yes, the answer is 1/2 because the two-one sided limits are equal (to % ).

9. Yes, because the two-one sided limits are equal (to 2).

10. No, because the left-hand limit at @ = 0 is +3 and the right-hand limit there is +2 (3 # 2).

11. a) Yes, the left and right-hand limits are equal (to 0) and f(0) = 0;

b) Yes, because g is a polynomial;
¢) Yes, because the left and right-limits are equal to 3 and h(0) = 3;

d) Yes, by Table 2.4d, the left and right-limits exist and are equal and f(0) = 2;

e) Yes, because f is the quotient of two continuous functions with a non-zero denominator at

12.  Follow the hints.

= 0. Use Table 2.4d again.

2.2 Exercise Set 6 (page 49)

1. @ = 0 only; this is because the right limit is 2 but the left-limit is 0. So, f cannot be continuous at @ = 0.

= 0 only; this is because the right limit is 1 but the left-limit is 0. So, f cannot be continuous at @ = 0.

3. @ = =1 because these are the roots of the denominator, so the function is infinite there, and so it cannot be continuous
there.

4. @ = 0 only. In this case the right limit is the same as the left-limit, 1, but the value of f(0) = 2 is not equal to this
common value, so it cannot be continuous there.

5. @ = 0 only. This is because the right-limit at © = 0 is 400, so even though f(0) is finite, it doesn’t matter, since one of
the limits is infinite. So, f cannot be continuous at @ = 0.
6. @ = 0 only, because the left-limit there is 1.62 while its right-limit there is 0. There are no other points of discontinuity.

631
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2.2. EXERCISE SET 7 (PAGE 56)

2.2

[

2.2

e

[N

o

Exercise Set 7 (page 56)

—1. Use the trigonometric identity, sin(0 + 7) = — sin 0.
—1. Use the hint.

2. Multiply the ezpression by 1 = 2 and rearrange terms.

2
0. Let O = 3z, rearrange terms and simplify.
B 2z | 4x
2. Multiply the whole expression by “1” or $% - 5%

1. LetO = /& — 1. As x — 1 we have O — 0 and $1B0 _, 1,

Exercise Set 8 (page 57)

0. Continuity of the quotient at & = 2.
0. Note that cos 0 = 1.

& Factor the denominator.

—1. Rewrite the secant function as the reciprocal of the cosine function and use the trig. identity cos 0 = — sin(0 — T).
—2. Factor out the 2 from the numerator and then use the idea of Ezercise 4, above.

0. The function is continuous at x = 2, and sin 27 = 0.

3. Multiply and divide the expression by 3 and rewrite it in a more familiar form.

—oo. Use your calculator for a test of this limit. The numerator approaches —1 and the denominator approaches O through
positive values. So the quotient must approach the stated value.

+oo. The denominator approaches O through negative values, while the numerator approaches —1. Thus, the quotient
approaches the stated value.

0. The function is continuous at & = 0.
@ = m. The denominator is 0 and the numerator isn’t.

@ = 0. Since limg,_,( f(z) = limgy_, o . = 1 # £(0), we know that f cannot be continuous there, by definition.

None. This is because f is a polynomial and so it is continuous everywhere.

z.= =41, the roots of the denominator.
© = £2. For @ = 2 the numerator is of the form 0/0 and f(2) is not defined at all, so the function is not continuous
here (by definition). Next, the denominator s zero for © = —2, but the numerator isn’t zero here. So the function is of the
form —4/0 = —oo and so once again, § is not continuous here because its value here is —oo.
S, Use the Hint. We know from the Hint (with A = z, B = 2a) that cos x — cos 2z = —2sin(3z/2) sin(—xz/2).
Then
cos x — cos 2z 2sin(3xz/2) sin(—xz/2)
z2 £ x '
2 (i) sin(3x/2) (;1) sin(—a/2)
-~ 2 2
T ® |
2
( 3) sin(3z/2) sin(—z/2)
- 2 3z —x :
) =)
Now use the hint with 0 = 3£ and 0 = , as @ — 0. Both limits approach 1 and so their product approaches 3/2.

0. Use the Hint. We can rewrite the expression as

tan x —

tan @ (1 — cos x)

x

tanz (1 — cosx
- (=)

sinx 1 1 —cosx
- (F)EE=E)

As @ — 0, the first term approaches 1, the second term approaches 1, while the last term approaches 0, by Table 2.12. So,
their product approaches 0.

+o0. The limit exists and is equal to +oc.

1. Rationalize the denominator. Note that the function is continuous at © = 0.
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2.3
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25.
26.

27.

28.

29.

30.

31.

32.

33.

Exercise Set 9 (page 65)

0. This is a limit as © — oo, not as @ — 0.
0. Divide the numerator and denominator by @ and simplify.

1. Divide the numerator and denominator by « and simplify.

%. Rationalize the numerator first, factor out \/T out of the quotient, simplify and then take the limit.
0. Use the Sandwich Theorem.

The graph of the function sin x isn’t going anywhere definite; it just keeps oscillating between 1 and —1 forever and so it
cannot have a limit. This is characteristic of periodic functions in general.

Chapter Exercises (page 76)

Since f is a polynomial, it is continuous everywhere and so also at © = 1.

g is the product of two continuous functions (continuous at 0) and so it is itself continuous at t = 0.
h is the sum of three continuous functions and so it is continuous at z = 0.

f is a constant multiple of a continuous function and so it is continuous too (at = ).

The graph of f is ‘V’-shaped at = = —1 but it is continuous there nevertheless.

The limit is 3 — 2 4+ 1 = 2 since f is continuous at x = 1.

The limit is 0 - 1 = 0 since g is continuous at t = 0.

The limit is 0 + (2)(0) — cos2 = — cos 2 & 0.416 since h is continuous at z = 0.

The limit is 2 - cos m = (2)(—1) = —2 since f is continuous at © = .

The limit is | — 1 4+ 1| = |0 = 0 since f is continuous at x = —1.

0. The function is continuous at t = 2.

%. Factor the denominator first, then take the limit.
+oo. Use extended real numbers.

1. Remove the absolute value first.

“+oo.

i) 1; i) 1; iii) O; iv) 1; v) Since (i) and (i) are equal we see that g is continuous at @ = 0 as g(0) = 1, by definition.
Since the left and right limits at = = 1 are different (by (i4i) and (iv)), we see that g is not continuous at x = 1 and so the
graph has a break there.

The limit from the left is 2 and the limit from the right is 1. So the limit cannot exist.

| — 2| = 2. The absolute value function is continuous there.

0/(—1) = 0. The quotient is continuous at © = —2.

0. The function is continuous at that point.

Does not eist. The left-hand limit as @ — 1 is 1, but the right-hand limit as @ — 1 is |1 — 1| = 0, so the limit cannot
ewist.
@ = 0. This is because the left-and right-hand limits there are not equal. For evample, the left limit is —2 while the

right-limit is 0. Use the definition of the absolute value, OK?
x = 0. The left-hand limit is —1 while the right-hand limit is 1.

None. The denominator is ©5 — 1 = (x — 1)(22 + @ + 1) with @ = 1 as its only real root. Why? By “completing the
2

square”, we have 2 + o + 1 = (x n %) + 2 > 2 > 0 and hence @2 + @ + 1 does not have real roots. The only

possible point of d inuity is © = 1. But both the left and right limits at = = 1 are —1/3, which is also the value of f

at x = 1. Hence f is continuous at @ = 1 and so everywhere.

0. Even though the values of the left and right limits here are ‘close’ they are not equal, since —0.99 # —1.
@ = 0. The left and right-hand limits there are both equal to +oo, so f cannot be continuous there.
a

bx ax
ax bx

. Multiply the expression by 1 = , simplify. Then take the lLimit.
b

+o00. This limit actually exists in the evtended reals. Observe that the numerator approaches 1 regardless of the direc
(left or right) because it is continuous there, while the denominator approaches 0 regardless of the direction, too, and for the
same reason. The quotient must then approach 1/0 = +oc in the estended reals.

on

0. Break up the expression into three parts, one involving only the term x, another with the term sin @/ and the remaining
one with the term x/ sin 2. The first term approaches 0, the next term term approaches 1 while the last term approaches
1/2, by Ezercise 27, with a = 2, b = 1 and Table 2.4, (d). So, the product of these three limits must be equal to zero.

1. LetO = /3 — . Asx — 37, we have 0 — 0 and so B0 1.

b

b See Bercise 27 in this Section: Multiply the expression by ax /aw, re-arrange terms and evaluate.

0. This limit actually ewists. This is because the numerator oscillates between the values of +1 as @ — oo, while the
denominator approaches oo. The quo must then approach (something)/co = 0 in the extended r

Does not ewist. There are many reasons that can be given for this answer. The easiest is found by studying its graph and
seeing that it’s not ‘going anywhere’. You can also see that this function is equal to zero infinitely often as @ — —oo (at
the zeros or roots of the sine function). But then it also becomes as large as you want it to when @ is ch to be anyone
of the values which makes sinx = —1. So, it oscillates like crazy as @ — —oo, and so its limit doesn’t
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2.6. CHAPTER EXERCISES (PAGE 76)

35.

37.

0. Hard to believe? Rationalize the numerator by multiplying and dividing by the expression \/@2 + 1 + @. The numerator

will look like (x2 + 1) — x2 = 1, while the denominator looks like \/ﬁ + 2. So, as * — oo, the numerator stays
at 1 while the denominator tends to oo. In the end you should get something like 1/00 = 0 in the extended reals.

Set a = —5,b = 1 in Bolzano’s Theorem and set your calculator to radians. Now, calculate the values of f(—5), f(1).
You should find something like f(—5) = —4.511 and f(1) = 1.382 so that their product f(—5) - f(1) < 0. Since the
function is a product of continuous functions, Bolzano’s Theorem guarantees that f(x) = O somewhere inside the interval

[=5,1]. So, there is a root there.

Set a = —3,b = 0. Now, calc e values of f(—3), £(0).Then f(—3) = —9 and f(0) = 2 so that their product
f(=3) - f(0) < 0. Since the function is a polynomial, it is a continuous function, so Bolzano’s Theorem guarantees that
f(x) = 0 somewhere inside the interval [—3, 0]. So, there is a oot there.

Let f(z) 2 _ sinz. Write f(a) - f(b). Now let a, b with a < b be any two numbers whatsoever. Check that your

calculator is in radian mode, and calculate the values f(a) - f(b) like crazy! As soon as you find values of a, b where
f(a) - f(b) < O, then STOP. You have an interval [a, b] where f(x) = O somewhere inside, by Bolzano’s Theorem. For
ezample, f(—0.3) - £(2.5) = 2.179, £(0.3) - f(1.5) = —0.257 < 0. STOP. So we know there is a root in the interval
[0.3,1.5].
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Solutions

3.1 Exercise Set 10 (page 88)

1. 4. Use the binomial theorem to expand and simplify.
2. —1. Note that f(x) = —ax for z < 0 and so for ¢ = —1, too.
3. +oo. The quotient is equal to 1/h% — 400 as h — 0.

4. a) +oo, b)1. Notethat f(1+ h) =1+h forh < 0 and f(1+ h) =2+ h for h > 0.

5. —— ~ 0.3536.
2v2
6. 4. Use the binomial theorem to ezpand and simplify.
7. 3.
8. —4.
9. 6.

10. 1. Note that f(x) = @ near z = 1.
11. 0. Note that f(z) = z2 for z > 0 and f(z) = —x2 for x < 0.
12. 0 for all & # 0, and the slope does not ewist when & = 0.

13. The derivative does not ewist since f is not continuous there.

14. The derivative does not eist because f(x) is undefined for any x slightly less than —1. However, its right-derivative at
z = —1is +oo.

15. Yes. The absolute value can be removed so that f(x) = 22, It turns out that f/(0) = o.

6. f/(1) =-1.

17. f'(1) = —2.

18. a) f'(1) does not exist since f is not continuous at & = 1. Alternately note that the left- and right-derivatives at @ = 1
are unequal: fjr(l) =1, fL (1) = co.
b) No. In this case f is continuous at © = 2 but the one-sided derwatives are unequal: fjr(Q) =—4, fl (2) =1.
c) Since 2 < 3 < 3, we see that f'(5) = —5.

3.2 Exercise Set 11 (page 93)

3 1 3
1. 222 =2z
2
2
2. —2t73 = - =
3
s 0
4.
5.
6. 0.
7. 43
8. —3z— % =
1
9. = -
22

10. ma™ 1,

11. 2t. Use the Power Difference Rules

12. 6x + 2. Use the Power, Sum and Difference Rules
13. 1(t2 + 4) + 2t(t — 1). Use the Product Rule

1 f@) =325/2 4 2t/ 0 /(@) = 1223/2 4 ﬁ Use the Power Rule

635
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636 3.3. EXERCISE SET 12 (PAGE 105)

(22 + 1) (0.5)z— 05 — 240.5

15. . Use the Quotient Rule
(2¢ +1)2
(x+1) — (z — 1) 2
16. = . Use the Quotient Rule
(z +1)2 (z+1)2
(2 42 —1) Ba?) — (2% —1) 2z +1)
17. . Use the Quotient Rule

(22 + = —1)2
(VE +323/%) (2/8)21/3) — @2/3) (/e 12 4 (9/0)2 "M/ )
(V@ + 323/4)2

. Use the Quotient Rule

3.3 Exercise Set 12 (page 105)

1. 0.
2. 3.

5 2

5 2.

4. %\/x a.
5. —8a2—7/2.

6. Fet+ 1)+t - 2)—2/3,

T
8 dx(z+1)3 + (@ 4+ D% = (2 + 1)3 (G + 1).
9. —%.

10. (t+2)2 +2(t — 1)(t + 2) = 3t2 + 6t.
1. 32(422 — 2)(w — 1)71/3 = 32 (42? — 32) (2 — 1)~ 1/3.

12. 210(2x + 3)104.

15, 1 1L = _1_
27 " am
14. 322 — 6z + 3, or 3(x — 1)2: Both are identical.
1 P
15, —— 4 .
z2 / 1
1 143V 14 3T
16. 3

1ovz(l+ va)3  4a3/2(1+ va)3
17. —10. Note that f'!(¢) = 6z — 10.
18. 3.077(x + 0.5)73:324,
19. Use the Chain Rule; For instance, let O = x2, from which we get ﬁf{u) = f/(0)DO. Put z2

DO = 2@ and simplify. Youll find 4k f(22) = 2z f/(2?).

in the Box, note that

= u1/3, we have w = ¥g(z) and

im: dw _dw du _ iu_2/3-g/(:c): o ()

de  du de 3 3 g()2

21. Lety(w) = f(22). By the Chain Rule, we have y' (z) = f'(22)-2x = 2z f/ (#2). Replacing = by x2 in f' (x)+ f(z) =

20. Use another form of the Chian Rule: Putting u = g(z) and w =

0, we have f'(z2) 4+ f(22) = 0, or f/(22) = —f(22) = —y(z). So v/ (x) = 2zf(x2) can be rewritten as
y'(z) = —2zy(x), that is, y' (z) + 2zy(z) = 0.

22. Use the Chain Rule once again on both sides of f(F(z)) = x. We find f'(F(x))F'(z) = 1, which gives F/(z) =

1

FI(F (@)

23. Use another form of the Chain Rule: % - %’ti cdt g2 ﬁ At w = 9 we have t = V3 + 6 = 9 and
dy _g3.92 . _1_ _ 81
du — 2V9 27

24 y=32(z —2)+ 1 (or32z —y — 63 =0).
25. Just use the Chain Rule. You don’t even have to know f, g explicitly, just their values: So, y' (2) = f/(g9(2)) - ¢’ (2) =
f10)-1=1.

26. (1 - m) (3 - ﬁ) Use the Chain Rule in the form: % = U dr gy

Now set 7 = 3t — 2:/T.

st

e = (1-2072) (3 -7 1/2).

1
14+
PN daf 2t+1
27. £1(9) = —TL—, since f'(x) = 2 ——2YT  On the other hand, since Vt2 = |t|, we see that = 2l g
243 2 otz ’ dt o124+t
tzl)wnd%=ﬂzft<0.
2
24/t —t

28. Lety = |z| = Va2. Now, set g(u) = V&, u = u(z) = x2. Then, y = g(u(x)). Using the Chain Rule we get

y/ (x) = ¢/ (u(z)) - u'(z) = 2\1& S (2x) = ﬁ = % whenever © # 0.

20. By definition, limy, _, o w = f'(x0). Look at the limit

f(zg + h) — f(z0)
h

Jim [f (20 + h) = f(w0)] = Jlim “h=f'(zg)-0=0.

We have shown that limp,_, o f(xg + h) — f(zg) = 0, which forces
lim f(z h) = f(zg)-
h:nof(wo + h) = f(zo)

This, however, is another way of writing
Llim @) = f@o).

Hence f is continuous at x( (by an equivalent definition of continuity).
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3.4 Exercise Set 13 (page 112)

1. —2. Implicit differentiation gives (2z + y) + y’ (@) (@ + 2y) = 0. Now set # = 1, y = 0 and solve for y’ (1).

o dy _ 322-2y2 gz _ dwy—ayd
de = 4py—4y3 dy T 322 242
3. - ng. Implicit differentiation gives an expression of the form

L@+ u)"20 +y') + 2y’ +y = 0. Now solve for y/ after setting = = 16 and y = 0.

4. ﬁ Implicit differentiation gives an expression of the form 1 — 2yy’ (z) = 0. Now solve for y'.

differentiation gives an ewpression of the form 2z + 2yy’ (xz) = 0. Now set @ = 0, y = 3. You sece that

0. Implic
y/(0) = 0.

[

6. y+1=1(x+1). Note that y/(z) = -

7. y—1=23(x—1), orx—3y+2=0. Note that y/(z) = 3_4:25/5
8. y=8(x—4), or 5z — 2y — 20 = 0. Note that y/ (x) = ?_'_;

9. y= —(z—1) —1, ore 4y = 0. Note that y/ (z) = 7%&1—2%

3.5 Exercise Set 14 (page 119)

cos 1
1. S0 The derivative is given by S25YE
> 2z

2. 2sec(2z) - tan(2z) - sin x + sec(2z) - cos z.

2 2

3. 1. The derivative is given by cos? & — sin? . Now evaluate this at @ = 0.

sin x

4. ————— . The derivative is given by . Now use an identity in the denominator and factdps
xT

1 —sinz

1
5. —. Note that y’ (t) = =—<95t__ Now set t = 0.
2

2y/1+sint
6. —2az sin(x2) cos(cos(z?2)).
7. 2z cos 3z — 3z2 sin 3x.

2 1
8 —g—1/3 tan(zl/s) + - secg(a;l/:s).
3 3

9. —(1 4 cosz)csc2(2 4 = + sinz). Don't forget the minus sign here!
10. —3cot 3x csc3xz. The original function is the same as csc 3x.

—sinax + x cosx + cos x

11. 1. In this case, the derivative is given by . Remember that cos(w/2) = 0, sin(w/2) = 1.

cos2z — 1
12. 4z cos(222).
13. 1. In this case, the derivative is given by 2 sin @ cos x. When ® = . we know that cos § = sin I = %
14. —3csc?(3z — 2).
15. 2cscax — (2x + 3) csc @ cot .
16. —(sinx 4 x cos x) sin(x sinx).
1 1

17. sec /T + — sec /T - tan

2z 2
18. 0, except when ©2 = 2 + 2nm, where n > 0 is an integer. This is because cscO - sinO = 1 for any symbol, O, by

definition, whenever the cosecant is defined.
19. —sin2(x — 6) — 2 csc 2x cot 2a. (Use the identity 2 sin u cos u = sin 2u to simplify.)

20. 4sec? 2z tan 2x. The given function is equal to secz(Zw).

21. Notice that, for  # 0, y(z) = sinaz/tan@ = sina - cot @ = cos @. On the other hand, at : , we have y(0) = 1,
which coincides with the value of the cosine function at @ = 0. Therefore, y(x) = cos @ for all ©. Now all three parts are
clear.

3.6 Exercise Set 15 (page 127)

1. y(x) = 3z — 2 is continuous on [0, 2] and y(0) = —2 < 0, y(2) =4 > 0.

2. y(z) = 2 — 1 is continuous, y(—2) = 3 > 0 and y(0) = —1 < 0.

3. y(x) = 222 — 3z — 2 is continuous, y(0) = —2 < 0 and y(3) =7 > 0.

4. y(x) = sinz + cos @ is continuous on [0, ], y(0) =1 > 0 and y(7) = —1 < O.

5. y(mw) = —7 < 0. But y(0) = 0; s0 0 is already a root. Try another point instead of 0, say % y(%) = % 041 =1>0.

So there is a root in [ 5, ] and hence in [0, 7] (besides the root 0.)

6. (This is hard.) In the proof we use several times the following basic fact in differential calculus: if the derivative of a function

is identically zero, then this function must be a constant. Let’s begin by applying this fact to the function y'’: its derivative
1

= 0 implies that y'’ is a constant, say vy’ = a. Let u = v/ — az. Then u’ = y’/ — a = 0 and hence u is a
constant, say u = b, thatis, y' —ax = b. Letv = y — %xQ — ba. Thenv' =y’ — & .22 — b =0 and hence v is
a constant, say v = c. Thus y — %mQ —bz=c ory = %xQ + ba + c. We can finish the proof by setting A = &,

B =1band C = c.
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3.6. EXERCISE SET 15 (PAGE 127)

From the assumption that L 4 y(x)4 1+ 2 = 0, we know that L exists on (a, b), and y(x) is continuous on [a, b].
Assume the contrary that there are two zeros in [a, b], say o1, v. Using the Mean Value Theorem, we sce that there cxists
some ¢ between w1 and @ (a fortiori, between a and b, such that $Y (c) = 0. Thus y(c)* +2 = 0. Impossible! So there
cannot be two zeros for y(a).

Consider the function y(z) = & — sinz. By the Mean Value Theorem we see that, for each @ > 0, there exists some
¢ between 0 and © such that y(z) — y(0) = y’(c)(x — 0), or & — sinaz = y'(c)z; (notice that y(0) = 0.) Now
y'(z) = 1 — cos @, which is always > 0. So, from > 0 and y’ (¢) > 0 we see that y’ (¢)a > 0. Thus © — sinx > 0,
orsinz < x.

Use Rolle’s Theorem on [0, 7] applied to the function f(x) = sinz. Since f(0) = f(w) = 0, we are guaranteed that
there exists a point ¢ inside the interval (0, ) such that f’(c) = cos ¢ = 0. This point c is the root we seck.

Note that (sin )’

cosxz < 1. For any x in [0, %], the function sin x sat
Theorem on [z, %]. So, there exists ¢ in (x, %) such that

ies all the conditions of the Mean Value

sin % — sinx
=cosc <1
5=
This stament is equivalent to the stated inequality, since sin(m/2) = 1.

(w £@=f©@ _ 5=

) g(lzzg(o) — 423

=3and f/(c) =2c+ 1 =3 givec = 1.

=1andg'(c) =2c=1giveec=1.
Let x(t) denote the distance travelled (in meters) by the electron in time t. We assume that z(0) = 0 and we are given
that (0.3 X 107 8) = 1. Now apply the MVT to the time interval [0, 0.3 X 10~ 8]. Then,

2(0.3 x 107 8) — x(0) ,
— ==z (o),
0.3 x 10=8 — 0

for some time t = c in between. But this means that the speed of the electron at this time t = c is m =3.3x108

m/sec, which is greater than 2.19 X 108 m/sec, or the speed of light in that medium!
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3.7 Exercise Set 16 (page 134)

You can use your Plotter program to sketch the graphs.

1 f(x)=4—22, 0<z<2 fl@)=vE==, 0<a < 4. See the margin.
2 ga)=(zr—1)"1 1<ae<oo g l@=s"141,0<a<oco.

3. f(x)=2-—a3, —co<ax<oo. fla)=Y¥2-z, —0< < oo

4 f@)=vEF2e, —§ <z <o @) =4@E%-5), 0w < oo

5 fw=+/3 —2<y <o Tl =13 -20<y< .

6. (i) F(0) = 2, since f(2) = 0 forces 2 = F(f(2)) = F(0).

(ii) f(—1) = 6, since F(6) = —1 means that 6 = f(F(6)) = f(—1).
(iii) Indeed, if f(z) = O then = = F(f(x)) = F(0) = 2, and so this is the only possibility.
() y = 8, because f(—2) = 8 means (by definition) that F(8) = —2 so y = 8 is a solution. No, there are no other
solutions since if we set F(y) = —2 theny = f(F(y)) = f(—2) = 8, so that y = 8 is the only such solution.
(v) No. The reasoning is the same as the preceding exercise. Given that f(—1) = 6, the solution = of f(x) = 6 must
satisfy @ = F(f(x)) = F(6) = —1, by definition of the inverse function, F.
, 1 1 1
7. We know that F' (—1) = —— = — = _|
FIF(=1) f(=21) 4
8. F(z) = =, Dom(f) = Ran(F) = (—oo,400) = {z : —occ < = < +oo}, and Dom(F) = Ran(f) =

(— 00, +00) too.

9. F(z) = i, Dom(f) = Ran(F) = {z : @ # 0}, and Dom(F) = Ran(f) = {z : @ # 0}.

10. F(z) = ¥z, Dom(f) = Ran(F) ={z: —co < & < +o0} = Dom(F) = Ran(f).

t— 4
11. F(t) = ——, Dom(f) = Ran(F) = {x: 0 < t < 1} while Dom(F) = Ran(f) = {z: -4 < t < 11}

22 — 1 1
12. G(z) = , Dom(g) = Ran(G) = {z: —— < @ < +00} while Dom(G) = Ran(g) = {z:0 < @ < oo}.

2 2
V1 —t2
13. Note that g is one-to-one on this domain. Its inverse is given by G(t) where G(t) = ~————, Dom(g) = Ran(G) =
2

1
{t:0<t< —} while Dom(G) = Ran(g) = {t:0 <t < 1}.
2

14. This f is also one-to-one on its domain. Its inverse is given by F(z) where F(z) = Dom(f) = Ran(F) =

2z 4+ 3
3 3
{x: 2 # —} while Dom(F) = Ran(f) = {z :x # ——}.
2 2
—1+VIFay
15. This g is one-to-one if y > —3% and so it has an inverse, G. Its form is G(y) where G(y) = ————————,
2
1 1
Dom(g) = Ran(G) = {y: —— < y < +oo} while Dom(G) = Ran(g) = {y: —— < y < +o0}.
2 4
.
3.8 Exercise Set 17 (page 139)
1. sin(Arccos(0.5)) = sin(E) = 3.
2. cos(Arcsin(0)) = cos 0 = 1.
3. sec(sinT1(d)) = sec( %) = %
4. —~/5. (This is hard!) Let tan_l(fé) = a. Then =% < o < 0; (see the graph of the Arctangent function in this
Section.) Also, tan a = —%. Thus

5
sec?a=1+tan?a =1+ (-1/2)2 = -
4

But 7g < a < 0 implies that sec « = 1/ cos o« > 0. Therefore

1 cos a 1 1 VB

csca = = . = sseca = (—2)— = —V5.
sin a sina cosa tan o 2
5. sec(:;in_l(lg)) = sec % = 2.
6. Arcsin(tan(—Z)) = Arcsin(—1) = — &

3.9 Exercise Set 18 (page 142)

d P T
1. — Arcsin(z?) = ———— whichis 0 at z = 0.
dax

2. 2xArccos & — —————.

TR T T T T

Set 16, # 1:
flx) =4—222in [0,2].

Set 16, # 1:
Y x)=VA—z,2in [0,4].

y=/5+12x

Set 16 # 4:
f(z) = V5 + 2z,

x in [-5/2,00).
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3.10. SPECIAL EXERCISE SET (PAGE 149)

@

1
2(1 + ) VT
sin @
_ . Remember the id 2
| sin x|

sine — sin” 1 a - cos xy/1
sin? @ - /1 — 22

1

2|z|\/ (22 — 1) sec™

2, because cos(2Arcsin z) - which is 2 at x = 0.

16z

V1 — 1622

1

" (Arctan 2)2(1 + 22)

3|z|3

322 Arcsec(z®) +

3.10 Special Exercise Set (page 149)

3200 7 &~ 10, 053.1 mm> /min. First, convert all centimeters to millimeters. Then use the volume formulae V = % x 3

3
and LY = 4z +2 . Set = 20 and v’ = 2.

0.5m/sec. Let @ be the length of ome of its walls. Use the volume formulae V. = =3 and % =322 % Solve for

dxz/dt and set © = 2 and V' = 6.

16.1cm? /sec. Let x be the length of one of its sides and y be the other. Use the area formula A = xy and @ = T y.
Then A = 7 y2 and dA/dt = 2 Ty dy/dt. Pinally, set y = 6.2, dy/dt = 2.1.

379.32 km /hr. Use Pythagoras with D, the distance between them, as the hypotenuse. Let x, y be the positions of the cars
at a given time. Now use the fact D2 = 22 + y2 from which we get

D w4z 4y 9y

dt D
Setw = 4, dz/dt = 281 and y = 6.7, dy/dt = 274. From this derive that D = 7.8 and then the answer.
807 ~ 2.34cm/sec. Let A =7 72 be the area and C = 27 r its circumference. Relate A to C to find
o2

A= —.
£

Differentiate this formula and solve for dC/dt. Set C = 67 and A’ = 25.

549, 988, 154.1 km3 /hr. Let V = %n a2 c. Differentiate this with respect to t and note that dc/dt = 0 by hypothesis.

This gives
dV  8ma da

dat 3 dt
Set a = 50,500 and da/dt = 1300.

Use the Cosine Law to find their mutual distance, D. Note that cos(27/3) = —1/2, so that D = 1351.04 mi. Now, let
A, B denote the distances of each one of the planes from the airport. Since the planes are approaching the airport it follows
that A’ = dA/dt < 0 and B’ = dB/dt < 0. Since, by the Cosine Law, D2 = A2 4 B2 — 2AB cos(27/3) it follows
by implicit differentiation that

D' =aA" +BB — (A’ B+ A B’) cos(2m/3).

Finally, set A’ = —790, B’ = —770, A = 30, B = 46, D = 1351.04 to get the answer.
3.5 dollars/wk. Find dC/dt using implicit differentiation and set © = 100, da/dt = 10.

Project: —254.78 km/sec. Let x be the length of one side. Show that the area of the triangle is given by A =
Find A’ and solve for dx/dt. N

find @ in terms of A and derive the formula

dx 1 1 dA

it Y3 VA at’

Finally, set A = 500, 000 and A’ = —237, 100, (note the minus sign).

3.11 Exercise Set 19 (page 160)

S

5

0.73909

1.5193. Newton’s Method will require 4 iterations.

1.259. This will require 3 iterations.

The “answer” may read —0.20005 < answer < —0.19995. This root is NOT equal to —0.2!

—1.57079 ~ — % But you only see this approzimation after 7 iterations! In fact, note that — % is the root in this interval
as one can check directly.

1.287 after 3 iterations if we start with xq = 1.5.

2.05 (actually, 2.055255...)
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3.12 Exercise Set 20 (page 172)

1
PR—
2
2. 1.
3. 0.
4. —2. Factor the numerator and simplify.
5. 2. Factor the numerator and simplify.
6. 2. Use L’Hospital’s Rule.
7. 0. Use L’Hospital’s Rule.
sin? t — sin(t2) sint\2  sin(t?)
8. 0. Indeed, lim ————~° = lim -l =1-1=0
t—0 +2 t—0 t t2

1
9. =. The quotient is continuous at = = 1. Use of L’Hospital’s Rule will give nonsense here.

2

10.  This limit does not exist. In fact, applying L’Hospital’s rule to the one-sided limits at @ = O shows that

z—0+

(14 22)~1 Arctan (14 22)~1
lim —— —4ocand lim — —— = lim —0~0
z—0+ 2z z—0— z2 z—0— 2z
(1 — 22)—1/2
11. 1. By L’Hospital’s rule, lim ——————ou =1
z—0 (14 22)—1
6 5x 3z
12, —. Multiply the expression by 1 = — - — , re-arrange terms and take the limit.
5 3z 5w
1
18, =. Use L’Hospital’s Rule.
3
1
14. —. In this ewercise we must apply L’Hospital’s rule “three” times before we can see the answer.
36

15. 2. Indeed,

sin(sin z) 4 @ cos(sin z) - cos x

= lim
r—0

1

sin

= lim
z—0 \ cos z

= 14 lim

r—0

= 1+ lim

z—0

<sin(sin )

<7

z

sin

(sinz) - cosx

x cos(sin x) )

sin(sin z)

sin x

sin(sin z)

- cos(sin :c))

- cos(sin Jz)) = 2

3.13 Chapter Exercises (page 173)

1. 27(z + 1)26.
2. —3cos? zsina.

8. csc2x — 2(x + 1) csc 2z cot 2x. Note that csc(2x) =

1
sin 2z °

4. 2(z + 5) cos((z + 5)2). You can easily do this one using the “Boz” form of the Chain Rule!

sinxz — cosx

5 —
(sin & + cos x)2
1
6. ————. Use the Generalized Power Rule.
V2x — 5
7. 2cos2x.

8. —4cosdx - sin(sin 4z).

9. 6tan 2z - sec3 2z. The two minus signs cancel out!
10. 2w sec 2z + 2(x2 + 1) tan 2x sec 2.

11. —3csc3w - cot 3w,

12. sec 2z + 2(x + 2) tan 2z sec 2x.

222 4 6z — 2

14 3cosdw - (@1/% + 1) + L2=1/5 . sin3a.

15. (2x + 6) cos(x? + 6z — 2).

16. 2.8.
2 Y
17— = —.
3V2 3
V3
18. — —————. Be careful with the square root terms.
3(2 +V3)

19. 210 x 5104 = 42 x 5105,
20. 0.
21. 4. The derivative is 4 cos(sin(4w)) cos(4x).

= —oo. So there is NO limit at x = 0.
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3.13. CHAPTER EXERCISES (PAGE 173)

25.

26.

31.

38.
39.
40.
41.
42.
43.

44
45.

2.
1. f(@) = @ 4 2 for @ > —2. In this case, v = —1 > —2 so this is our f.
1
2vZ
87,318 - (3z — 2)97, 87,318.
Putting w = 322 and y = f(u), we have
d dy dy du
Ly = P = T ) 6z = 62 - £ (322).
dx dx du dx
y—1=24(z — 2), or 24z — y — 47 = 0.
81 sin 9 ’
— = o Whenw = 9 we have t = 9 also. We know that du _ dy . db o, (342 _ sint) - ﬁ -
13- (81) —sin9).
dy dy dr 1 _ _
ay 7_7:(7T 1/2 4 3, 2)(3_t /2y
dt dr dt 2
1
= (—(St _2et/2y=1/2 334 — 2t1/2)_2) (3 — /2y
2
Notice that, for z > 0 we have y(z) = @2 and hence y is differentiable at  with y' (z) = 2x. Similarly, for © < 0 we
have y(z) = —x2 and hence y' (z) = —2z. Finally, for & = 0 we have
y(h) — y(0) hlh|
o S —|h >0 ash—0
h h
and hence y is also differentiable at @ = 0 with y’ (0) = 0. From the above argument we see that y’ (z) = 2|z| for all x.
It is well-known that the absolute value function |x| is not differentiable at @ = 0. Therefore the derivative of y' at 0 does
not exist. In other words, y'’ (0) does not ewist.
3 2 ’ ’ ’
— 2. The derivative is 3z2 + 2xy’ + 2y + 2yy’ = 0. Set x = 1, y = 0 and solve for y'.
2
dy  3z2 — 292 dz  dzy — 4y3
dz 4wy — 4y3  dy 322 — 242
1+y’ 2 2. /
Implicit differentiation gives ——=4— + 2zy2 + 2 = 0. So, at (0, 16), we have y' = —1.
il PWez= yy ( ) Y
dy 392 +y
dx 5y4 — 6y —x .
The tangent line to the curve at (4, 0) is vertical. Here 2@ + 2yy’ = 0 and we are dividing by 0 at © = 4.
y+1=2(@+1), or2z —y+1=0.
The vertical line through the origin: @ = 0 (or the y— auis itself.) In this case, (z 4+ 2y)y’ + (2 + y) = 0. The derivative
is undefined (or infinite) at © = 0.
y = %(w — 4), or 5z — 2y — 20 = 0.
y =@ At (1,1) we have y’ = 1. Soy — 1 = 1(x — 1) and the result follows.
y = @ — 7. The derivative is cos @ + y’ cosy — 6yy’ = 0. Set & = 7, y = 0 and solve for y’.
1
—. Use L’Hospital’s Rule.
2
1
0. Find a common denominator and use L’Hospital’s Rule.
0. Divide the numerator and denominator by x2 and let & — —oo.
By L’Hospital’s Rule, we have

DA
lim =« (7 + Arctan L) = lim
2

T — — 00

= lim
z——o00
23
= lim @ ——
z——00  2(1 + x2)
=  +oo.
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