
 
 

1. −2, −1, 2, 1
4

.

2. (x + 1)3 sin(x + 1). Use the Box method.

3. z − 2 + 2 sin(z − 2) − cos z.

4. −2 cos(x + ct).

5. f(π/2) = sin(cos(π/2)) = sin 0 = 0.

6. 2x + h. You get this by dividing by h since h 6= 0.

7. sin (t + 3)
cos h − 1

h
+ cos (t + 3)

sin h

h
.

(a) −π2 , (b) 4π2.

(a) f(0) = 1, (b) f(0.142857) = 0.857143, (c) Since 0 < x < 1 we see that 2 < 3x + 2 < 5. So, f(3x + 2) =

(3x + 2)2 = 9x2 + 12x + 4.

f(F (x)) = x, F(f(x)) = |x|.

The Box method gives that g(x + 1) = (x + 1)2 − 2(x + 1) + 1 = x2 .

Again we use the Box method with the quantity (x − 1)/(2 − x) inside the Box. Since h(2) = (22 +1)/(1 + 2), we use
some simple algebra to see that the right-hand side becomes just x.

8. Observe that f(x + h) − 2f(x) + f(x − h) = 8h2 , so that, for h 6= 0 the cancellation of the h2 -terms gives the
stated result.

f(x) =

(

x2 − 1 x, ≥ 1 or x ≤ −1,

1 − x2, −1 < x < 1.

f(x) =



3x + 4, if x ≥ −4/3,
−3x − 4, otherwise.

h(x) =

(

x2, if x ≥ 0,

−x2 , otherwise.

f(x) =



1 − t, if t ≥ 0,
1 + t, if t < 0.

g(w) =



sin w for w in any interval of the form [2πn, 2πn + π],
− sin w otherwise,

where n is an integer.

f(x) =

8

>

>

>

<

>

>

>

:

1

x

q

x2−1
, if x > 1,

− 1

x

q

x2−1
, if x < −1.

7.

sgn(x) =



1, if x ≥ 0,
−1, if x < 0.

1
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8.

9.

10.

11.

12.

13.

14.

1.

2.

3.

4.

5.

6.

The  definition  of  the  funcion  tells  us  that  (using  the  Box  method),  f(x  +  1)  =  (x  +  1)  −  1  =  x  whenever  0  ≤  x  +  1  ≤  2,
which  is  equivalent  to  saying  that  f(x  +  1)  =  x  whenever  −1  ≤  x  ≤  1.  We  use  the  same  idea  for  the  other  interval.
Thus,  f(x  +  1)  =  2(x  +  1)  =  2x  +  2  whenever  2  <  x  +  1  ≤  4,  equivalently,  f(x  +  1)  =  2x  +  2  whenever  1  <  x  ≤  3.
Since  the  interval  {1  <  x  ≤  2}  is  contained  inside  the  interval  {1  <  x  ≤  3}  it  follows  that  f(x  +  1)  =  2x  +  2  for  such
x.

Exercise  Set  2  (page  23)
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8.

f(x) =



2x, if x ≥ 0,
0, if x < 0.

9.

f(x) =



0, if x ≥ 0,
2x, if x < 0.

x1−p ≥ 1. Now x1−p = x−(p−1) = 1
xp−1

. So the last inequality can be rewritten as 1
xp−1

≥ 1. We can multiply

both sides of this inequality by sin x because 1 ≤ x ≤ π guarantees that sin x is positive.

Since both13. x and x2 are ≥ 0, we can apply the AG-inequality to get x+x2

2
≥
p

x · x2 =
p

x3 . Since x + x2 ≥ 0,

we have x + x2 ≥ x+x2

2
. So x + x2 ≥

p

x3 . Yes, we can square both sides since x ≥ 0, and so both terms in the

inequality are greater than or equal to 0.

14. Yes. Under no further conditions on the symbol, since it is true that (2 − 1)2 ≥ 0 for any symbol, 2. Expanding the

square and separating terms we get that 2
2 ≥ 22 − 1.

15. Since 1 − p ≥ 0 and |x| ≥ 1, we have |x|1−p ≥ 11−p = 1, or |x| |x|−p ≥ 1, which gives |x| ≥ |x|p. Taking

reciprocals, we get 1
|x| ≤ 1

|x|p . (The last step is legitimate because both |x|p and |x| are positive.)

16. |v| < c. This is because we need 1 − v2/c2 > 0. Now solve this inequality for v.

If17. n = 2, the result is clear, because 2 < (1.5)2 < 3. So let’s assume that n > 2, now. We use (1.12) with the quantity
“1/n” inside the box symbol (or replacing the box by 1/n, if you like). We’ll see that

 

1 + 1
n

!n

= 1 + n 1
n

+
n(n−1)

2!
1
n

2
+ · · · +

n(n−1)···(2)(1)
n!

1
n

n

= 1 + n( 1
n

) +
n(n−1)

2!
( 1

n
)2 + · · · +

n(n−1)(n−2)···(2)(1)
n!

( 1
n

)n.

= 1 + n( 1
n

) +
n(n−1)

n2 ( 1
2!

) + · · · +
n(n−1)(n−2)···(2)(1)

nn ( 1
n!

).

Now, we regroup all the terms in the above display in the following way . . . . Note that the following term is not apparent in
the display above, but it IS there! See Equation (1.12 ).

n(n−1)(n−2)

n3 =
“

n
n

” “

n−1
n

” “

n−2
n

”

= (1)
“

n−1
n

” “

n−2
n

”

=
“

n−1
n

” “

n−2
n

”

,

=
“

1 − 1
n

” “

1 − 2
n

”

.

A similar idea is used for the other terms. Okay, so using this rearrangement of terms we can rewrite (1 + 1
n

)n as

“

1 + 1
n

”n
= . . .

= 1 + 1 +
“

1 − 1
n

”

1
2!

+
“

1 − 1
n

” “

1 − 2
n

”

1
3!

+ . . .

+
“

1 − 1
n

” “

1 − 2
n

” “

1 − 3
n

”

· · ·
“

1 − n−1
n

”

1
n!

.

(where there are (n + 1) terms in the right hand side). Now, notice that for every integer n > 2, each term of the form
“1 − (something)/n” is less than 1 and bigger than zero, because we’re subtracting something positive from 1. So,

„

1 −
1

n

«

< 1

„

1 −
1

n

« „

1 −
2

n

«

< (1)

„

1 −
2

n

«

< 1, . . .

where we have used Figure 9 with A = 1 − 2/n, 2 = 1 − 1/n (or with the symbols “1 − 1/n” inside the box), and
4 = 1 (or with “1” inside the triangle). Using these estimates we can see that we can replace every term inside the “large
brackets” by 1 so that

“

1 + 1
n

”n
= . . .

= 1 + 1 +
“

1 − 1
n

”

1
2!

+ · · · +
“

1 − 1
n

” “

1 − 2
n

” “

1 − 3
n

”

· · ·
“

1 − n−1
n

”

1
n!

< 1 + 1 + 1
2!

+ 1
3!

+ · · · + 1
n!

(1.1)

We’re almost done! Now we use the following inequalities ...
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 Exercise  Set  3  (page  24)

1.C orrection:  If  A  <  0,  then  −A  <  B  implies  −1/A  >  1/B.

2.T his  is  false.  To  see  this,  let  A  =  1  and  B  =  0.

3.C orrection:  0  ≤  A  <  B  implies  A2  <  B2.

4.C orrection:  A  >  B  >  0  implies  1/A  <  1/B.

5.C orrection:  A  <  B  implies  −A  >  −B.

6.C orrection:  If  A2  <  B2  and  B  >  0,  then  A  <  B.

7.T his  statement  is  correct.  There  is  nothing  wrong!

8.( 0,  π).  (Note:  To  complete  our  argument  we  need  sin  x  >  0,  which  is  guaranteed  by  0  <  x  <  π.)

9.I t’s  values  are  less  than  or  equal  to  6.  Actually,  its  largest  value  occurs  when  x  =  2  in  which  case  f(2)  ≈  5.8186.

10.gi s  unbounded:  This  means  that  it  can  be  greater  than  (resp.  less  than)  any  given  number.  The  problem  occurs  at  x  =  0.

11.Fr  om  x  >  1  we  see  that  both  x  and  x−  1  are  positive.  Hence  we  can  square  both  sides  of  the  inequality  x  >  x  −1  to  arrive

at  x2  >  (x−1)2 .  (Alternately,  since  both  x  and  x−1  are  positive,  x2  >  x2  −x−(x−1)  =  x2  −2x+1  =  (x−1)2 .)

12.Fr om  p  ≤  1  we  see  that  1  −  p  ≥  0.  Since  x  ≥  1  (certainly  this  implies  the  positivity  of  x),  we  have  x1−p  ≥  11−p ,  or
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3! = 3 × 2 × 1 > 2 × 2 × 1 = 22

4! = 4 × 3 × 2 × 1 > 2 × 2 × 2 × 1 = 23

5! = 5 × 4 × 3 × 2 × 1 > 2 × 2 × 2 × 2 × 1 = 24

. . .

n! > 2n−1

Now since we must “reverse the inequality when we take reciprocals of positive numbers” (Table 1.2, Table 1.3) we get that
for every integer n > 2,

n! > 2
n−1

implies
1

n!
<

1

2n−1

Combining this estimate with Equation (1.1) we get a new estimate, namely,

“

1 + 1
n

”n
< 1 + 1 + 1

2!
+ 1

3!
+ · · · + 1

n!

< 1 + 1 + 1
2

+ 1
22

+ · · · + 1
2n−1 .

(1.2)

Now, the sum on the right above is a finite geometric series and we know that, if n > 2,

1 + 1
21

+ 1
22

+ · · · + 1
2n =

1−( 1
2
)n+1

1− 1
2

< 1

1− 1
2

= 2.

Now you can see that, when we combine this latest estimate with (1.2) we find

“

1 + 1
n

”n
< 1 + 1 + 1

2
+ 1

22
+ · · · + 1

2n−1

< 1 + 2 = 3

which is what we wanted to show. Okay, this looks a bit long, but we did include all the details, right? Eventually, you’ll be
able to skip many of the details and do them in your head, so to speak, and the whole thing will get shorter and faster, you’ll
see.

It looks tough, but we’ll be using

this 200 yr old inequality later on,

in Chapter 4, when we define Euler’s

number, 2.7182818284590.

1. 6, 1, 2, 2 3
4

= 11
4

.

2. (x2 + 1)3 cos(x2 + 1).

3. z + 3 + 2 sin(z + 3) − cos(z + 5).

4. −
sin h

h
sin x +

cos h − 1

h
cos x.

5. From 3
x

> 6 we see that x must be positive: x > 0. So we can rewrite it as 3 > 6x, which gives x < 1
2

. Thus the

solution is 0 < x < 1
2

.

6. x ≥ − 4
3

, since we an subtract 4 from both sides . . .

7. x < 1
2

. Note that 2x − 1 < 0 and so 2x < 1.

8. |x| >
√

5. In other words, either x >
√

5 or x < −
√

5.

9. |t| < 4√5. That is, − 4√5 < t < 4√5.

10. −∞ < x < +∞. That is, x can be any real number. This is because the stated inequality implies that sin x ≤ 1 and this
is always true!

11. z ≥ 21/p . (Note: For general p, zp is defined only for z > 0.)

12. |x| ≤ 3. Or −3 ≤ x ≤ 3.

13.

f(x) =



x + 3, for x ≥ −3,
−x − 3, for x < −3.

14.

g(x) =



t − 0.5, if t ≥ 0.5,
−t + 0.5, otherwise.

15.

g(t) =



1 − t, if t ≤ 1,
t − 1, otherwise.

16.

f(x) =

(

2x − 1 x, ≥ 1
2

1 − 2x, x < 1
2

17.

f(x) =



1 − 6x, if x ≤ 1/6,
6x − 1, otherwise.

18.

f(x) =

(

x2 − 4, if either x ≥ 2 or x ≤ −2,

4 − x2 , if −2 < x < 2.

19.

f(x) =

(

3 − x3, if x ≤ 3√3,

x3 − 3, if x > 3√3.

20. f(x) = |(x − 1)2| = (x − 1)2 = x2 − 2x + 1 for all x. (Note that (x − 1)2 is always ≥ 0 for any value of x.)
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 Chapter  Exercises  (page  26  )
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21.

f(x) = |x(2 − x)| =



x(2 − x), if 0 ≤ x ≤ 2,
x(x − 2), otherwise.

22. f(x) = |x2 + 2| = x2 + 2 for all x, because f(x) = x2 + 2 ≥ 2 > 0 to begin with.

23. From p ≤ 1 we have 1 − p ≥ 0. So x ≥ 1 > 0 gives x1−p ≥ 11−p = 1. Now x1−p = x−(p−1) = 1
xp−1 . Thus

1
xp−1 ≥ 1. On the other hand, from 0 ≤ x ≤ π/2 we have cos x ≥ 0. So we can multiply 1

xp−1 ≥ 1 throughout by

cos x to arrive at cos x
xp−1 ≥ cos x.

24. 2, 2.25, 2.370370, 2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 2.58117, 2.59374. Actually, these
numbers approach the value 2.71828 . . ..

25. From 0 ≤ x ≤ π
2

we have sin x ≥ 0 and cos x ≥ 0. Thus we may apply the AG-inequality to get sin x+cos x
2

≥
√

sin x cos x. Since sin 2x = 2 sin x cos x, we see that
√

sin x cos x =
q

sin 2x
2

and so sin x+cos x
2

≥
q

sin 2x
2

.

Multiplying both sides by
√

2 we get the desired inequality.
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1. 4

2. 1

3. 0

4. +∞, since t > 2 and t → 2.

5. 0

6. −1, since |x| = −x for x < 0.

7. 0

8. − 1
π

9. 0

10. +∞, since |x − 1| = 1 − x > 0 for x < 1.

11. 0

12.
1

6

1. No, because the left and right-hand limits at x = 0 are different, (2 6= 0).

2. Yes, the value is 4, because the two one-sided limits are equal (to 4).

3. Yes, the value is 0, because the two one-sided limits are equal (to 0).

4. Yes, the value is 0, because the two one-sided limits are equal (to 0).

5. Yes, the value is 0, because the two one-sided limits are equal; remove the absolute value, first, and note that sin 0 = 0.

6. No, because the left-hand limit at x = 0 is −∞ while the right-hand limit there is +∞.

7. No, because the left-hand limit at x = 0 is −∞ and the right-hand limit there is +∞.

8. Yes, the answer is 1/2 because the two-one sided limits are equal (to 1
2

).

9. Yes, because the two-one sided limits are equal (to 2).

1. x = 0 only; this is because the right limit is 2 but the left-limit is 0. So, f cannot be continuous at x = 0.

2. x = 0 only; this is because the right limit is 1 but the left-limit is 0. So, f cannot be continuous at x = 0.

3. x = ±1 because these are the roots of the denominator, so the function is infinite there, and so it cannot be continuous
there.

4. x = 0 only. In this case the right limit is the same as the left-limit, 1, but the value of f(0) = 2 is not equal to this
common value, so it cannot be continuous there.

5. x = 0 only. This is because the right-limit at x = 0 is +∞, so even though f(0) is finite, it doesn’t matter, since one of
the limits is infinite. So, f cannot be continuous at x = 0.

6. x = 0 only, because the left-limit there is 1.62 while its right-limit there is 0. There are no other points of discontinuity.
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Solutions

 Exercise  Set  4  (page  38)

13. i)  0,  ii)  1.  Since  the  limits  are  different  the  graph  must  have  a  break  at  x  =  1.

14.i)  1,  ii)  1,  iii)  0,  iv)  1;  since  the  one-sided  limits  are  equal  at  x  =  0  and  g(0)  =  1,  the  graph  has  no  break  at  x  =  0.  But
since  these  limits  are  different  at  x  =  1,  it  must  have  a  break  at  x  =  1.

15.i) 1,  ii)  2,  iii)  1,  iv)  2.

 Exercise  Set  5  (page  48)

10.No ,  because  the  left-hand  limit  at  x  =  0  is  +3  and  the  right-hand  limit  there  is  +2  (3  =6  2).

11.a) Yes,  the  left  and  right-hand  limits  are  equal  (to  0)  and  f(0)  =  0;
b)Y es,  because  g  is  a  polynomial;
c)Y es,  because  the  left  and  right-limits  are  equal  to  3  and  h(0)  =  3;
d)Y es,  since  by  Table  2.4d,  the  left  and  right-limits  exist  and  are  equal  and  f(0)  =  2;
e)Y es,  because  f  is  the  quotient  of  two  continuous  functions  with  a  non-zero  denominator  at  x  =  0.  Use  Table  2.4d  again.

12.Fo llow  the  hints.

 Exercise  Set  6  (page  51)
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1. −1. Use the trigonometric identity, sin(2 + π) = − sin 2.

2. −1. Use the hint.

3. 2. Multiply the expression by 1 = 2
2

and rearrange terms.

4. 0. Let 2 = 3x, rearrange terms and simplify.

5. 2. Multiply the whole expression by “1” or 2x
4x

· 4x
2x

.

6. 1. Let 2 =
√

x − 1. As x → 1 we have 2 → 0 and sin 2

2
→ 1.

1. 0. Continuity of the quotient at x = 2.

2. 0. Note that cos 0 = 1.

3. 1
6

. Factor the denominator.

4. −1. Rewrite the secant function as the reciprocal of the cosine function and use the trig. identity cos 2 = − sin(2 − π
2

).

5. −2. Factor out the 2 from the numerator and then use the idea of Exercise 4, above.

6. 0. The function is continuous at x = 2, and sin 2π = 0.

7. 3. Multiply and divide the expression by 3 and rewrite it in a more familiar form.

8. −∞. Use your calculator for a test of this limit. The numerator approaches −1 and the denominator approaches 0 through
positive values. So the quotient must approach the stated value.

9. +∞. The denominator approaches 0 through negative values, while the numerator approaches −1. Thus, the quotient
approaches the stated value.

10. 0. The function is continuous at x = 0.

11. x = π. The denominator is 0 and the numerator isn’t.

12. x = 0. Since limx→0 f(x) = limx→0
sin x

x
= 1 6= f(0), we know that f cannot be continuous there, by definition.

13. None. This is because f is a polynomial and so it is continuous everywhere.

14. x = ±1, the roots of the denominator.

15. x = ±2. For x = 2 the numerator is of the form 0/0 and f(2) is not defined at all, so the function is not continuous
here (by definition). Next, the denominator is zero for x = −2, but the numerator isn’t zero here. So the function is of the
form −4/0 = −∞ and so once again, f is not continuous here because its value here is −∞.

16. 3
2

. Use the Hint. We know from the Hint (with A = x, B = 2x) that cos x − cos 2x = −2 sin(3x/2) sin(−x/2).

Then

cos x − cos 2x

x2
= −

2 sin(3x/2)

x

sin(−x/2)

x
,

= −
2
“

3
2

”

sin(3x/2)
“

3x
2

”

“−1
2

”

sin(−x/2)
“−x

2

” ,

= −
„

−
3

2

« sin(3x/2)
“

3x
2

”

sin(−x/2)
“−x

2

” .

Now use the hint with 2 = 3x
2

and 2 = − x
2

, as x → 0. Both limits approach 1 and so their product approaches 3/2.

17. 0. Use the Hint. We can rewrite the expression as

tan x − sin x

x2
=

tan x (1 − cos x)

x2
,

=
tan x

x

 

1 − cos x

x

!

,

=

 

sin x

x

!

„ 1

cos x

«

 

1 − cos x

x

!

.

As x → 0, the first term approaches 1, the second term approaches 1, while the last term approaches 0, by Table 2.12. So,
their product approaches 0.

18. +∞. The limit exists and is equal to +∞.

19. a = − π
2

, b = −πa = π2

2
.

20. 1. Rationalize the denominator. Note that the function is continuous at x = 0.
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Exercise  Set  8  (page  58)
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1. −∞. Since x → 0+ it’s necessary that x > 0. So, simplifying, we get (x−1)/x = 1−(1/x) and since x > 0 it must be

that the limit of 1/x as x → 0+ exists and is equal to plus infinity. Hence, as x → 0+ , (x−1)/x → 1−(+∞) = −∞.

2. +∞. As before, as x → 0+ , x must be positive and so, (2 + x)/x = (2/x) + 1. Since 2/x → +∞ as x → 0+ it
follows that (2 + x)/x → +∞ + 1 = +∞.

3. The limit does not exist. Note that this is a two-sided limit so we (usually) need to check each one of the one-sided limits

at 0. Since x → 0 we have x 6= 0, so (3 − x)/x = (3/x) − 1. Now for the one-sided limits. As x → 0+ , x > 0

so the right-hand limit is equal to 3/0 − 1 = +∞ − 1 = +∞. For x → 0− , x < 0 so the left-hand limit is equal to
−3/0 − 1 = −∞ − 1 = −∞. Since each of these one-sided limits are different, the required two-sided limit cannot exist.

4. +∞. As x → 0+ we must have x > 0 so, (2x+1)/x = 2+(1/x). So, as x → 0+ this quotient tends to 2+∞ = +∞.

5. −∞. Now x → 0− means that x < 0 and x approaches zero. Thus, (x2 + 1)/x = x + (1/x) and 1/x → −∞ (since
x < 0 in its approach to zero). It follows that the limit exists and is equal to 0 − ∞ = −∞.

6. +∞. This is a good question because it is a two-sided limit and it has an absolute value in it, so one doesn’t normally expect
such a limit to even exist. We remove the absolute value first. Simplifying the expression and then applying the definition of
the absolute value we get, since x 6= 0, (x + 1)/|x| = (x/|x|) + (1/|x|) so that,

x + 1

|x|
=



1 + 1/x, if x > 0,
−1 − 1/x, if x < 0.

Now letting x → 0+, we see that x > 0 so (x + 1)/|x| → 1+ 1/0 = 1+ ∞ = +∞. However, letting x → 0− means

that x < 0 so (x + 1)/|x| = −1 − 1/x. But as x → 0−, x < 0 and the expression −1/x → −(−∞) = +∞. So,
−1 − 1/x → −1 − (−∞) = −1 + ∞ = +∞. See? Both one-sided limits are actually equal, so the limit exists and is
equal to +∞.
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1.0 .  This  is  a  limit  as  x  →  ∞,  not  as  x  →  0.

2.0 .  Divide  the  numerator  and  denominator  by  x  and  simplify.

3.1 .  Divide  the  numerator  and  denominator  by  x  and  simplify.

4.1
2  .  Rationalize  the  numerator  first,  factor  out  

√
x  out  of  the  quotient,  simplify  and  then  take  the  limit.

5.  0.  Use  the  Sandwich  Theorem.

6.T  he  graph  of  the  function  sin  x  isn’t  going  anywhere  definite;  it  just  keeps  oscillating  between  1  and  −1  forever  and  so  it
cannot  have  a  limit.  This  is  characteristic  of  periodic  functions  in  general.

s

EXERCISE SET 9 (page 63)
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The limit does not exist. Again we have a two-sided limit and an absolute value inside the expression. Applying the definitions
we get

2x2 + x

|x|
=



2x + 1, if x > 0,
−2x − 1, if x < 0.

But as x → 0+ we have 2x + 1 → 1 and as x → 0− , −2x − 1 → −1. Since both limits are different at 0 the two sided
limit cannot exist.

Does not exist. This is because the two one sided limits are different. On the one hand, x → 1+ means that x−1 > 0 which implies 
that x/(x−1) → 1/0 = +∞. On the other hand, x → 1− means that x−1 < 0 which implies that x/(x−1) → −∞,

since the quotient is always negative and its denominator is approaching zero.

+∞. First observe that the numerator is continuous at x = 2 (x is always in radians, remember?). Thus, 1 + sin(x) →
1 + sin 2 ≈ 1.909. The limit’s existence is now a matter for the denominator to decide. But since the denominator

x − 2 > 0 as x → 2+ and it approaches zero, it follows that the quotient, (1 + sin x)/(x − 2) → (1.909)/0 = +∞.

+∞. This is simple because x → −3+ is equivalent to saying that x + 3 → 0+ (from the right too, basically by adding

3 to both sides of x → −3+ and thinking for a minute). Hence the quotient 1/(x + 3) → 1/0 = +∞ in this case.

−∞. The numerator tends to 1/2 as x → 1/2− , while x → 1/2− actually means that 2x − 1 → 0− (seen by

multiplying both sides of x → 1/2− by 2 and rearranging terms). So the denominator tends to zero from the left (that is,
through negative values) and so the quotient must tend to −∞.

The limit does not exist. The function defined by the numerator cos(x − 2) → cos0 = 1 as x → 2 by continuity. Being a
two-sided limit we see that the sign of the approach of the denominator x − 2 to 0 will depend on whether the limit is from
the right (in which case we get 0 through positive values) or from the left (in which case we get 0 through negative values).
It follows the right hand limit is +∞ while the left-hand limit is −∞. So the limit cannot exist.

+∞. (Similar to Exercises 6 and 7, above.) The point here is that the presence of the absolute value |x − 2| in the
denominator ensures that the quotient always approaches 0 from the right regardless of how x → 2. So now the limit does,
in fact, exist and is equal to +∞.

+∞. (See Example 60 (c) in this section.)

The limit does not exist. (See Example 60 (a) in this section with the same identity.)

The limit does not exist. (See Example 60 (b) in this section.) The oscillations of 2x sin x get larger and larger as x → ∞
so there can be no limit.

10−11 . As x → +∞ the quotient, 1/(1 + x2) → 0 through positive values of x. It follows that the sum 1/(1 + x2) +

10−11 → 0+10−11 = 10−11 . Note that if you did this problem on a hand-held conventional calculator you might think
the answer is 0 since the machine only gives 9 decimal places accuracy! But it isn’t equal to zero, is it!?

−10−8 . This is similar to the preceding one except that now x → −∞ means that x < 0, i.e., −1/x3 > 0 and so it
tends to zero anyhow as x → −∞.

+∞. The first term approaches 0 while the second term approaches −(−∞) = +∞. The result follows from this.

+∞. Same idea as the previous one ... The first term approaches 0 while the second term approaches +∞ as x → ∞.

−∞. The first term approaches zero as x → 0+, while the second term approaches − cos(0)/0 = −1/0 = −∞ through
positive values of x. The result follows.

0. Recall that
p

x2 = |x| by definition, so since x → +∞ it follows that x > 0 for all large values of x. So, it must be

the case that the denominator 2x −
p

x2 = 2x − x = x approaches plus infinity, through positive values of x. In other
words, the quotient approaches 1/∞ = 0.

1. The reason for this is the classic trig identity, sin2 x + cos2 x = 1 valid for any real numbver x. So, we are basically
taking the limit as x → ∞ of the constant function 1 which, of course, gives 1. Although each term in this expression is
oscillating and has no limit, their sum does have a limit. (It doesn’t generally happen, but it does happen here!)

    

1. Since f is a polynomial, it is continuous everywhere and so also at x = 1.

2. g is the product of two continuous functions (continuous at 0) and so it is itself continuous at t = 0.

3. h is the sum of three continuous functions and so it is continuous at z = 0.

4. f is a constant multiple of a continuous function and so it is continuous too (at x = π).

5. The graph of f is ‘V’-shaped at x = −1 but it is continuous there nevertheless.

6. The limit is 3 − 2 + 1 = 2 since f is continuous at x = 1.

7. The limit is 0 · 1 = 0 since g is continuous at t = 0.

8. The limit is 0 + (2)(0) − cos 2 = − cos 2 ≈ 0.416 since h is continuous at z = 0.

9. The limit is 2 · cos π = (2)(−1) = −2 since f is continuous at x = π.

10. The limit is | − 1 + 1| = |0| = 0 since f is continuous at x = −1.

11. 0. The function is continuous at t = 2.

12. 1
8

. Factor the denominator first, then take the limit.

13. +∞. Use extended real numbers.

14. 1. Remove the absolute value first.

15. +∞.
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7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

The  limit  does  not  exist.  We  know  from  trig  that  the  tan  function  is  infinite  at  π/2,  because  cos(π/2)  =  0  and  the 

numerator  is  1.  But  what  is  the  approach  like?  Well,  as  x  →  π/2+,  the  expression  3  tan  x  →  +∞  while  as  as

x  →  π/2− ,  the  expression  3  tan  x  →  −∞  (check  the  graph  of  the  tan  function  if  you’re  not  sure).  It  follows  that  the
required  two-sided  limit  cannot  exist  because  both  one-sided  limits  will  give  different  ”infinities”.

−∞.  This  is  similar  to  the  preceding  one.  We  know  from  trig  that  the  cot  function  is  infinite  at  π,  because  sin  π  =  0

and  cos  π  =  −1.  Again,  what  is  the  approach  like?  As  x  →  π−  we  know  that  for  x  close  to  π  and  just  less  than  π,  the
expression  cos  x  <  0.  On  the  other  hand,  for  such  x  the  expression  sin  x  >  0.  Their  quotient  is  therefore  negative  and  so

the  quantity  3x  +  cot  x  →  −∞  as  x  →  π− .  This  means  that  3x  +  cot  x  →  −∞  as  x  →  π−.

Chapter  Exercises  (page  79)
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16. i) 1; ii) 1; iii) 0; iv) 1; v) Since (i) and (ii) are equal we see that g is continuous at x = 0 as g(0) = 1, by definition.
Since the left and right limits at x = 1 are different (by (iii) and (iv)), we see that g is not continuous at x = 1 and so the
graph has a break there.

17. The limit from the left is 2 and the limit from the right is 1. So the limit cannot exist.

18. | − 2| = 2. The absolute value function is continuous there.

19. 0/(−1) = 0. The quotient is continuous at x = −2.

20. 0. The function is continuous at that point.

21. Does not exist. The left-hand limit as x → 1 is 1, but the right-hand limit as x → 1 is |1 − 1| = 0, so the limit cannot
exist.

22. x = 0. This is because the left-and right-hand limits there are not equal. For example, the left limit is −2 while the
right-limit is 0. Use the definition of the absolute value, OK?

23. x = 0. The left-hand limit is −1 while the right-hand limit is 1.

24. None. The denominator is x3 − 1 = (x − 1)(x2 + x + 1) with x = 1 as its only real root. Why? By “completing the

square”, we have x2 + x + 1 =
“

x + 1
2

”2
+ 3

4
≥ 3

4
> 0 and hence x2 + x + 1 does not have real roots. The only

possible point of discontinuity is x = 1. But both the left and right limits at x = 1 are −1/3, which is also the value of f
at x = 1. Hence f is continuous at x = 1 and so everywhere.

25. x = 0. Even though the values of the left and right limits here are ‘close’ they are not equal, since −0.99 6= −1.

26. x = 0. The left and right-hand limits there are both equal to +∞, so f cannot be continuous there.

27.
a

b
. Multiply the expression by 1 = bx

ax
ax
bx

, simplify. Then take the limit.

28. +∞. This limit actually exists in the extended reals. Observe that the numerator approaches 1 regardless of the direction
(left or right) because it is continuous there, while the denominator approaches 0 regardless of the direction, too, and for the
same reason. The quotient must then approach 1/0 = +∞ in the extended reals.

29. 0. Break up the expression into three parts, one involving only the term x, another with the term sin x/x and the remaining
one with the term x/ sin 2x. The first term approaches 0, the next term term approaches 1 while the last term approaches
1/2, by Exercise 27, with a = 2, b = 1 and Table 2.4, (d). So, the product of these three limits must be equal to zero.

30. 1. Let 2 =
√

3 − x. As x → 3− , we have 2 → 0+ and so sin 2

2
→ 1.

31. b
a

. See Exercise 27 in this Section: Multiply the expression by ax/ax, re-arrange terms and evaluate.

32. 0. This limit actually exists. This is because the numerator oscillates between the values of ±1 as x → ∞, while the
denominator approaches ∞. The quotient must then approach (something)/∞ = 0 in the extended reals.

33. Does not exist. There are many reasons that can be given for this answer. The easiest is found by studying its graph and
seeing that it’s not ‘going anywhere’. You can also see that this function is equal to zero infinitely often as x → −∞ (at
the zeros or roots of the sine function). But then it also becomes as large as you want it to when x is chosen to be anyone
of the values which makes sin x = −1. So, it oscillates like crazy as x → −∞, and so its limit doesn’t exist.

34. 0. Hard to believe? Rationalize the numerator by multiplying and dividing by the expression

q

x2 + 1 + x. The numerator

will look like (x2 + 1) − x2 = 1, while the denominator looks like

q

x2 + 1 + x. So, as x → +∞, the numerator stays

at 1 while the denominator tends to ∞. In the end you should get something like 1/∞ = 0 in the extended reals.

35. Set a = −5, b = 1 in Bolzano’s Theorem and set your calculator to radians. Now, calculate the values of f(−5), f(1).
You should find something like f(−5) = −4.511 and f(1) = 1.382 so that their product f(−5) · f(1) < 0. Since the
function is a product of continuous functions, Bolzano’s Theorem guarantees that f(x) = 0 somewhere inside the interval
[−5, 1]. So, there is a root there.

36. Set a = −3, b = 0. Now, calculate the values of f(−3), f(0).Then f(−3) = −9 and f(0) = 2 so that their product
f(−3) · f(0) < 0. Since the function is a polynomial, it is a continuous function, so Bolzano’s Theorem guarantees that
f(x) = 0 somewhere inside the interval [−3, 0]. So, there is a root there.

37. Let f(x) = x2 − sin x. Write f(a) · f(b). Now let a, b with a < b be any two numbers whatsoever. Check that your
calculator is in radian mode, and calculate the values f(a) · f(b) like crazy! As soon as you find values of a, b where
f(a) · f(b) < 0, then STOP. You have an interval [a, b] where f(x) = 0 somewhere inside, by Bolzano’s Theorem. For
example, f(−0.3) · f(2.5) = 2.179, f(0.3) · f(1.5) = −0.257 < 0. STOP. So we know there is a root in the interval
[0.3, 1.5].
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1. 4. Use the binomial theorem to expand and simplify.

2. −1. Note that f(x) = −x for x < 0 and so for x = −1, too.

3. +∞. The quotient is equal to 1/h2 → +∞ as h → 0.

4. a) +∞, b) 1. Note that f(1 + h) = 1 + h for h < 0 and f(1 + h) = 2 + h for h > 0.

5.
1

2
√

2
≈ 0.3536.

6. 4. Use the binomial theorem to expand and simplify.

7. 3.

8. −4.

9. 6.

10. 1. Note that f(x) = x near x = 1.

11. 0. Note that f(x) = x2 for x > 0 and f(x) = −x2 for x < 0.

12. 0 for all x 6= 0, and the slope does not exist when x = 0.

13. The derivative does not exist since f is not continuous there.

14. The derivative does not exist because f(x) is undefined for any x slightly less than −1. However, its right-derivative at
x = −1 is +∞.

15. Yes. The absolute value can be removed so that f(x) = x2 . It turns out that f′(0) = 0.

16. f′(1) = − 1
2

.

17. f′(1) = −2.

18. a) f′(1) does not exist since f is not continuous at x = 1. Alternately note that the left- and right-derivatives at x = 1

are unequal: f′
+(1) = 1, f′

−(1) = ∞.

1.
3

2
x

1
2 =

3

2

√
x.

2. −2t
−3

= −
2

t3
.

3. 0.

4.
2

3
x−1/3 =

2

3 3√x
.

5.
t−4/5

5
=

1

5
5p

t4
.

6. 0.

7. 4t3.

8. −3x
−4

= −
3

x4
.

9. −x
−2

= −
1

x2
.

10. πxπ−1 .

11. 2t. Use the Power Difference Rules

12. 6x + 2. Use the Power, Sum and Difference Rules

13. 1(t2 + 4) + 2t(t − 1). Use the Product Rule

14. f(x) = 3x
5/2

+ x
1/2

so f′(x) = 15
2

x3/2 + 1
2
√

x
, Use the Power Rule

10
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b)N o.  In  this  case  f  is  continuous  at  x  =  2  but  the  one-sided  derivatives  are  unequal:  f′
+(2)  =  −4,  f′

−(2)  =  1.

c)S ince  2  <  5
2  <  3,  we  see  that  f′(  5

2  )  =  −5.

     

Solutions

Exercise  Set  11  (page  91)

Exercise  Set  12  (page  99)
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15.
(2x + 1) (0.5)x−0.5 − 2x0.5

(2x + 1)2
. Use the Quotient Rule

16.
(x + 1) − (x − 1)

(x + 1)2
=

2

(x + 1)2
. Use the Quotient Rule

17.
(x2 + x − 1) (3x2) − (x3 − 1) (2x + 1)

(x2 + x − 1)2
. Use the Quotient Rule

18.
(
√

x + 3x3/4) ((2/3)x−1/3 ) − (x2/3 )
“

(1/2)x−1/2 + (9/4)x−1/4 )
”

(
√

x + 3x3/4)2
. Use the Quotient Rule

7.
d2f

dx2 = 6.

8. 4x(x + 1)3 + (x + 1)4 = (x + 1)3(5x + 1).

9. − 1
2

.

10. (t + 2)2 + 2(t − 1)(t + 2) = 3t2 + 6t.

11. 32( 4
3

x2 − x)(x − 1)−1/3 = 32
3

(4x2 − 3x)(x − 1)−1/3 .

12. 210(2x + 3)104 .

13. 1
2

1√
x

= 1
2
√

x
.

14. 3x2 − 6x + 3, or 3(x − 1)2 : Both are identical.

15. −
1

x2
+

x
q

x2 − 1

.

16.
1

4

1 + 3
√

x

x
√

x(1 +
√

x)3
=

1 + 3
√

x

4x3/2(1 +
√

x)3
.

17. −10. Note that f′′(x) = 6x − 10.

18. 3.077(x + 0.5)−3.324 .

19. Use the Chain Rule; For instance, let 2 = x2 , from which we get d
dx

f(2) = f′(2)D2. Put x2 in the Box, note that

D2 = 2x and simplify. You’ll find d
dx

f(x2) = 2x f′(x2).

20. Use another form of the Chian Rule: Putting u = g(x) and w = 3√u ≡ u1/3, we have w = 3pg(x) and

d

dx

3
q

g(x) =
dw

dx
=

dw

du
·

du

dx
=

1

3
u−2/3 · g′(x) =

g′(x)

3
3
q

g(x)2
.

21. Let y(x) = f(x2 ). By the Chain Rule, we have y′(x) = f′(x2)·2x = 2xf′(x2). Replacing x by x2 in f′(x)+f(x) =

0, we have f′(x2) + f(x2) = 0, or f′(x2) = −f(x2 ) = −y(x). So y′(x) = 2xf(x2 ) can be rewritten as

y′(x) = −2xy(x), that is, y′(x) + 2xy(x) = 0.

22. Use the Chain Rule once again on both sides of f(F (x)) = x. We find f′(F (x))F ′(x) = 1, which gives F ′(x) =
1

f′(F(x))
.

2 Use another form of the Chain Rule:3.
dy
du

=
dy
dt

· dt
du

= 3t2 · 1
2
√

u
. At u = 9 we have t =

√
9 + 6 = 9 and

dy
du

= 3 · 92 · 1
2
√

9
= 81

2
.

24. y = 32(x − 2) + 1 (or 32x − y − 63 = 0).

25. Just use the Chain Rule. You don’t even have to know f, g explicitly, just their values: So, y′(2) = f′(g(2)) · g′(2) =

f′(0) · 1 = 1.

26.

„

1 − 2
(3t−2

√
t)2

« „

3 − 1√
t

«

. Use the Chain Rule in the form:
dy
dt

=
dy
dr

dr
dt

. But
dy
dr

dr
dt

=
“

1 − 2r−2
” “

3 − t−1/2
”

.

Now set r = 3t − 2
√

t.

27. f′(9) = 7
24

√
3

, since f′(x) = 1
2

1+ 1
2
√

x
p

x+
√

x
. On the other hand, since

p

t2 = |t|, we see that
df
dt

=
2t+1

2

q

t2+t
, if

t ≥ 0 and
df
dt

=
2t−1

2

q

t2−t
if t < 0.

28. Let y = |x| =
p

x2 . Now, set g(u) =
√

u, u = u(x) = x2 . Then, y = g(u(x)). Using the Chain Rule we get

y′(x) = g′(u(x)) · u′(x) = 1
2
√

u
· (2x) = x

p

x2
= x

|x| , whenever x 6= 0.

29. By definition, limh→0
f(x0+h)−f(x0 )

h
= f′(x0). Look at the limit

lim
h→0

[f(x0 + h) − f(x0 )] = lim
h→0

f(x0 + h) − f(x0 )

h
· h = f

′
(x0) · 0 = 0.

We have shown that limh→0 f(x0 + h) − f(x0) = 0, which forces

lim
h→0

f(x0 + h) = f(x0).

This, however, is another way of writing
lim

x→x0
f(x) = f(x0 ).

Hence f is continuous at x0 (by an equivalent definition of continuity).
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3.2
3  .

4.  3
2  
√

x  −  4.

5.  −  5
2  x

−7/2 .

6.  1
3  (2t  +  1)(t2  +  t  −  2)−2/3 .

Exercise  Set  13  (page  112)

1.0  .

2.3  .
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1. −2. Implicit differentiation gives (2x + y) + y′(x)(x + 2y) = 0. Now set x = 1, y = 0 and solve for y′(1).

2.
dy
dx

=
3x2−2y2

4xy−4y3 . dx
dy

=
4xy−4y3

3x2−2y2 .

3. − 1
129

. Implicit differentiation gives an expression of the form

1
2
(x + y)−1/2 (1 + y′) + xy′ + y = 0. Now solve for y′ after setting x = 16 and y = 0.

4. 1
2y

. Implicit differentiation gives an expression of the form 1 − 2yy′(x) = 0. Now solve for y′ .

5. 0. Implicit differentiation gives an expression of the form 2x + 2yy′(x) = 0. Now set x = 0, y = 3. You see that

y′(0) = 0.

6. y + 1 = 1
2
(x + 1). Note that y′(x) = x

2y
.

7. y − 1 = 1
3
(x − 1), or x − 3y + 2 = 0. Note that y′(x) =

2−y
x+2y

.

8. y = 5
2
(x − 4), or 5x − 2y − 20 = 0. Note that y′(x) = x+1

2−y
.

9. y = −(x − 1) − 1, or x + y = 0. Note that y′(x) = − y(2x+y)
x(x+2y)

cos 1

2
. The derivative is given by

cos
√

x
2
√

x
.

2. 2 sec(2x) · tan(2x) · sin x + sec(2x) · cos x.

3. 1. The derivative is given by cos2 x − sin2 x. Now evaluate this at x = 0.

4.
1

1 − sin x
. The derivative is given by 1+sin x

cos2 x
. Now use an identity in the denominator and factor.

5.
1

2
. Note that y′(t) = cos t

2
√

1+sin t
. Now set t = 0.

6. −2x sin(x2) cos(cos(x2)).

7. 2x cos 3x − 3x2 sin 3x.

8.
2

3
x−1/3 tan(x1/3 ) +

1

3
sec2(x1/3).

9. −(1 + cos x) csc2(2 + x + sin x). Don’t forget the minus sign here!

10. −3 cot 3x csc 3x. The original function is the same as csc 3x.

11. 1. In this case, the derivative is given by
− sin x + x cos x + cos x

cos2 x − 1
. Remember that cos(π/2) = 0, sin(π/2) = 1.

12. 4x cos(2x2).

13. 1. In this case, the derivative is given by 2 sin x cos x. When x = π
4

we know that cos π
4

= sin π
4

=

√
2

2
.

14. −3 csc2(3x − 2).

15. 2 csc x − (2x + 3) csc x cot x.

16. −(sin x + x cos x) sin(x sin x).

17.
1

2
√

x
sec

√
x +

1

2
sec

√
x · tan

√
x.

18. 0, except when x2 = 2 + 2nπ, where n ≥ 0 is an integer. This is because csc 2 · sin 2 = 1 for any symbol, 2, by
definition, whenever the cosecant is defined.

19. − sin 2(x − 6) − 2 csc 2x cot 2x. (Use the identity 2 sin u cos u = sin 2u to simplify.)

20. 4 sec2 2x tan 2x. The given function is equal to sec2(2x).

21. Notice that, for x 6= 0, y(x) = sin x/ tan x = sin x · cot x = cos x. On the other hand, at x = 0, we have y(0) = 1,
which coincides with the value of the cosine function at x = 0. Therefore, y(x) = cos x for all x. Now all three parts are
clear.

a
2

a
2

a
2

,
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1. f(x) = 4 − x2, 0 ≤ x ≤ 2. f−1(x) =
√

4 − x, 0 ≤ x ≤ 4. See the margin.

2. g(x) = (x − 1)−1 , 1 < x < ∞. g−1(x) = x−1 + 1, 0 < x < ∞.

3. f(x) = 2 − x3, −∞ < x < ∞. f−1 (x) = 3√2 − x, −∞ < x < ∞.

4. f(x) =
√

5 + 2x, − 5
2

≤ x < ∞. f−1(x) = 1
2
(x2 − 5), 0 ≤ x < ∞.

5. f(y) = (2 + y)1/3 , −2 < y < ∞. f−1 (y) = y3 − 2, 0 < y < ∞.

Set 16, # 1:
f(x) = 4− x2, x in [0, 2].

Set 16, # 1:
f−1(x) =

√
4− x, x in [0, 4].

6. (i) F (0) = 2, since f(2) = 0 forces 2 = F (f(2)) = F(0).
(ii) f(−1) = 6, since F (6) = −1 means that 6 = f(F (6)) = f(−1).
(iii) Indeed, if f(x) = 0 then x = F (f(x)) = F (0) = 2, and so this is the only possibility.
(iv) y = 8, because f(−2) = 8 means (by definition) that F(8) = −2 so y = 8 is a solution. No, there are no other
solutions since if we set F(y) = −2 then y = f(F (y)) = f(−2) = 8, so that y = 8 is the only such solution.
(v) No. The reasoning is the same as the preceding exercise. Given that f(−1) = 6, the solution x of f(x) = 6 must
satisfy x = F(f(x)) = F (6) = −1, by definition of the inverse function, F .

7. We know that F ′(−1) =
1

f′(F (−1))
=

1

f′(−2.1)
=

1

4
.

8. F(x) = x, Dom(f) = Ran(F ) = (−∞, +∞) = {x : −∞ < x < +∞}, and Dom(F ) = Ran(f) =
(−∞, +∞) too.

9. F(x) =
1

x
, Dom(f) = Ran(F ) = {x : x 6= 0}, and Dom(F ) = Ran(f) = {x : x 6= 0}.

10. F(x) = 3√x, Dom(f) = Ran(F ) = {x : −∞ < x < +∞} = Dom(F ) = Ran(f).

11. F(t) =
t − 4

7
, Dom(f) = Ran(F ) = {x : 0 ≤ t ≤ 1} while Dom(F ) = Ran(f) = {x : −4 ≤ t ≤ 11}

12. G(x) =
x2 − 1

2
, Dom(g) = Ran(G) = {x : −

1

2
≤ x < +∞} while Dom(G) = Ran(g) = {x : 0 ≤ x < ∞}.

13. Note that g is one-to-one on this domain. Its inverse is given by G(t) where G(t) =

q

1 − t2

2
, Dom(g) = Ran(G) =

{t : 0 ≤ t ≤
1

2
} while Dom(G) = Ran(g) = {t : 0 ≤ t ≤ 1}.

14. This f is also one-to-one on its domain. Its inverse is given by F(x) where F(x) =
3x − 2

2x + 3
, Dom(f) = Ran(F ) =

{x : x 6=
3

2
} while Dom(F) = Ran(f) = {x : x 6= −

3

2
}.

15. This g is one-to-one if y ≥ − 1
2

and so it has an inverse, G Its form is. G(y) where G(y) =
−1 +

√
1 + 4y

2
,

Dom(g) = Ran(G) = {y : −
1

2
≤ y < +∞} while Dom(G) = Ran(g) = {y : −

1

4
≤ y < +∞}.

Set 16 # 4:
f(x) =

√
5 + 2x,

x in [−5/2,∞).

Set 16 # 4:

f−1(x) = x2−5
2 , x in [0,∞).

1. sin(Arccos(0.5)) = sin( π
3

) =

√
3

2
.

2. cos(Arcsin(0)) = cos 0 = 1.

3. sec(sin−1( 1
2
)) = sec( π

6
) = 2√

3
.

4. −
√

5. (This is hard!) Let tan−1(− 1
2
) = α. Then − π

2
< α < 0; (see the graph of the Arctangent function in this

Section.) Also, tan α = − 1
2

. Thus

sec2 α = 1 + tan2α = 1 + (−1/2)2 =
5

4
.

But − π
2

< α < 0 implies that sec α = 1/ cos α > 0. Therefore

csc α =
1

sin α
=

cos α

sin α
·

1

cos α
=

1

tan α
· sec α = (−2)

√
5

2
= −

√
5.

5. sec(sin−1(

√
3

2
)) = sec π

3
= 2.

6. Arcsin(tan(− π
4

)) = Arcsin(−1) = − π
2

.

7. π/4, as we are dealing with the principal branch here.

8. 1, since this is true regardless of the branch.

9.
√

2/2, since this is true regardless of the branch.

10. −1.

11. 0, since sin π = 0 and Arcsin (0) = 0.

12. π/2, since we are dealing with the principal branch of arccos.

13. −π/3, since sin(−2π/3) = −
√

3/2 and Arcsin (−
√

3/2) = −π/3.

14. 3π/4, since cos(5π/4) = −
√

2/2 and so Arccos (−
√

2/2) = 3π/4.

15. −π/4, since tan(3π/4) = −1 and so Arctan (−1) = −π/4.

16. −π/2+2nπ, −π/2-2nπ, since sin(−π/2+2nπ) = −1 and Arcsin (−1) = −π/2. Here n=0, 1,2,3, ...
17. −π/4.

18. π+2nπ, π-2nπ, where n=0,1,2,3, ...

19. π/4, since tan(π) = 0, and Arctan (1) = π/4.

20. −0.8082, (use your calculator here).

21. π/3, since tan π = 0 and Arctan (
√

3) = π/3.
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You  can  use  your  Plotter  program  to  sketch  the  graphs.

Exercise  Set  17  (page  144)
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d

dx
Arcsin(x2) =

2x
q

1 − x4
which is 0 at x = 0.

2. 2xArccos x −
x2

q

1 − x2
.

3.
1

2(1 + x)
√

x
.

4. −
sin x

| sin x|
. Remember the identity?

5.
sin x − sin−1 x · cos x

q

1 − x2

sin2 x ·
q

1 − x2
.

6.
1

2|x|
q

(x2 − 1) sec−1 x

.

7. 2, because cos(2Arcsin x) ·
2

q

1 − x2
which is 2 at x = 0.

8. −
16x

q

1 − 16x2
.

9. −
1

(Arctan x)2(1 + x2)
.

10. 3x2Arc sec(x3) +
3|x|3

x

q

x6 − 1

.
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1

2

2. 1.

3. 0.

4. −2. Factor the numerator and simplify.

5. 2. Factor the numerator and simplify.

6. 2. Use L’Hospital’s Rule.

7. 0. Use L’Hospital’s Rule.

8. 0. Indeed, lim
t→0

sin2 t − sin(t2)

t2
= lim

t→0

2

4

 

sin t

t

!2

−
sin(t2)

t2

3

5 = 1 − 1 = 0.

9.
1

2
. The quotient is continuous at x = 1. Use of L’Hospital’s Rule will give nonsense here.

This limit does not exist. In fact, applying L’Hospital’s rule to the one-sided limits at10. x = 0 shows that lim
x→0+

Arctan x

x2
=

lim
x→0+

(1 + x2)−1

2x
= +∞ and lim

x→0−
Arctan x

x2
lim=

x→0−
(1 + x2)−1

2x
= −∞. So there is NO limit at x = 0.

11. 1. By L’Hospital’s rule, lim
x→0

(1 − x2)−1/2

(1 + x2)−1
= 1.

12.
6

5
. Multiply the expression by 1 =

5x

3x
·

3x

5x
, re-arrange terms and take the limit.

13.
1

3
. Use L’Hospital’s Rule.

14.
1

36
. In this exercise we must apply L’Hospital’s rule “three” times before we can see the answer.

15. 2. Indeed,

lim
x→0

x sin(sin x)

1 − cos(sin x)
li= m

x→0

sin(sin x) + x cos(sin x) · cos x

sin(sin x) · cos x

= lim
x→0

 

1

cos x
+

x cos(sin x)

sin(sin x)

!

= 1 + lim
x→0

 

x

sin(sin x)
· cos(sin x)

!

= 1 + lim
x→0

 

x

sin x
·

sin x

sin(sin x)
· cos(sin x)

!

= 2.

   

2. −3 cos2 x sin x.

3. csc 2x − 2(x + 1) csc 2x cot 2x. Note that csc(2x) = 1
sin 2x

.

4. 2(x + 5) cos((x + 5)2). You can easily do this one using the “Box” form of the Chain Rule!

5.
sin x − cos x

(sin x + cos x)2
.

6.
1

√
2x − 5

. Use the Generalized Power Rule.

7. 2 cos 2x.

8. −4 cos 4x · sin(sin 4x).

9. 6 tan 2x · sec3 2x. The two minus signs cancel out!

10. 2x sec 2x + 2(x2 + 1) tan 2x sec 2x.

11. −3 csc 3x · cot 3x.

12. sec 2x + 2(x + 2) tan 2x sec 2x.
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Chapter  Exercises  (page  163)
1.  27(x  +  1)26.
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13.
2x2 + 6x − 2

(2x + 3)2
.

14. 3 cos 3x · (x1/5 + 1) + 1
5

x−4/5 · sin 3x.

15. (2x + 6) cos(x2 + 6x − 2).

16. 2.8.

17.
2

3
3√

2
=

3√
4

3
.

18. −
√

3

3(2 +
√

3)
. Be careful with the square root terms.

19. 210 × 5104 = 42 × 5105.

20. 0.

21. 4. The derivative is 4 cos(sin(4x)) cos(4x).

22. 2.

23. 1. f(x) = x + 2 for x > −2. In this case, x = −1 > −2 so this is our f.

24.
1

2
√

2
.

25. 87, 318 · (3x − 2)97 , 87, 318.

26. Putting u = 3x2 and y = f(u), we have

d

dx
f(3x2 ) =

dy

dx
=

dy

du
·

du

dx
= f′(u) · 6x = 6x · f′(3x2).

27. y − 1 = 24(x − 2), or 24x − y − 47 = 0.

28.
81

2
−

sin 9

6
. When u = 9 we have t = 9 also. We know that dy

du
= dy

dt
· dt

du
or, (3t2 − sin t) · 1

2
√

u
=

1
6

(3 · (81) − sin 9) .

29.

dy

dt
=

dy

dr
·

dr

dt
=

„ 1

2
r
−1/2

+ 3r
−2

«

(3 − t
−1/2

),

=

„ 1

2
(3t − 2t1/2)−1/2 + 3(3t − 2t1/2)−2

«

(3 − t1/2).

30. Notice that, for x > 0 we have y(x) = x2 and hence y is differentiable at x with y′(x) = 2x. Similarly, for x < 0 we

have y(x) = −x2 and hence y′(x) = −2x. Finally, for x = 0 we have

y(h) − y(0)

h
=

h|h|

h
= |h| → 0 as h → 0

and hence y is also differentiable at x = 0 with y′(0) = 0. From the above argument we see that y′(x) = 2|x| for all x.

It is well-known that the absolute value function |x| is not differentiable at x = 0. Therefore the derivative of y′ at 0 does

not exist. In other words, y′′(0) does not exist.

31. −
3

2
. The derivative is 3x2 + 2xy′ + 2y + 2yy′ = 0. Set x = 1, y = 0 and solve for y′ .

32.
dy

dx
=

3x2 − 2y2

4xy − 4y3
,

dx

dy
=

4xy − 4y3

3x2 − 2y2
.

33. Implicit differentiation gives
1+y′

2
√

x+y
+ 2xy2 + 2x2yy′ = 0. So, at (0, 16), we have y′ = −1.

34.
dy

dx
=

3y2 + y

5y4 − 6xy − x
.

35. The tangent line to the curve at (4, 0) is vertical. Here 2x + 2yy′ = 0 and we are dividing by 0 at x = 4.

36. y + 1 = 2(x + 1), or 2x − y + 1 = 0.

37. The vertical line through the origin: x = 0 (or the y−axis itself.) In this case, (x +2y)y′ + (2+ y) = 0. The derivative
is undefined (or infinite) at x = 0.

38. y = 5
2
(x − 4), or 5x − 2y − 20 = 0.

39. y = x. At (1, 1) we have y′ = 1. So y − 1 = 1(x − 1) and the result follows.

40. y = x − π. The derivative is cos x + y′ cos y − 6yy′ = 0. Set x = π, y = 0 and solve for y′.

41.
1

2
. Use L’Hospital’s Rule.

42. 1

43. 0. Find a common denominator and use L’Hospital’s Rule.

44. 0. Divide the numerator and denominator by x2 and let x → −∞.

45. By L’Hospital’s Rule, we have

lim
x→−∞

x2
„π

2
+ Arctan x

«

= lim
x→−∞

π
2

+ Arctan x

x−2

= lim
x→−∞

(1 + x2)−1

−2x−3

= lim
x→−∞

−
x3

2(1 + x2)

= +∞.
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x

2
− 2x

2
) = x log4(2) − x2log4(16)

=
x

2
− 2x2 .

4. 1 − log3(4)

5. 0, since 2x 2−x = 1 for any x.

6. The graph looks like Figure 76. Its values are:
−2 −1 0 1 2
1
16

1
4

1 4 16

7. The graph looks like Figure 77. Its values are:
−2 −1 0 21

16 14 1
4

1
16

8. The graph is similar to y =
√

2x in Figure 80. Its values are:
−2 −1 0 21

0.3 033 .5 1177 . 373

9. log√
2
(1.6325) =

√
2

10. log2

„ 1

16

«

= −4

11. log3

„ 1

9

«

= −2

12. f(x) = 2x

13. 34 = 81

14.

„ 1

2

«−2
= 4

15.

„ 1

3

«−3
= 27

16. a0 = 1

17.
√

2

√
2

= 1.6325

18. x =
16

3
, since log2(3x) = 4 means that 24 = 3x.

19. x = −
3

2
, since 3 = x

x+1
forces 3x + 3 = x, etc.

20. x = ±
√

2, since
√

20 = x2 − 1, or x2 = 2, etc.

21. x = 2, since 1
2
−1

= x is equivalent to x = 2.

22. y = x2 , since y = log2(2x2
) = x2 log2(2) = x2 · 1 = 2.

    

1
e

Let3. x = a
n

, so that n = a
x

and as n → ∞ we get x → 0, then

lim
n→∞

„

1 +
a

n

«n
= lim

x→0
(1 + x)

a
x

=

"

lim
x→0

(1 + x)
1
x

#a

= e
a

by Known Fact#5

18
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3.2 .  Note  that  log4(2x)  +  log4(16−x

     

                        

     

2.e −1  =  ≈  0.3679.  See  the  following  exercise.

    

   

Solutions

Exercise  Set  20  (page  173)
1.     x2  +  1

2.     x

Exercise  Set  21  (page  179)
1.b1  =  0,  b2  =  0.25,  b3  =  0.29630,  b4  =  0.31641,  b5  =  0.32768,  b6  =  0.33490,  b7  =  0.33992,  b8  =  0.34361,

  b9  =  0.34644,  b10  =  0.34868,
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1.
3

4
, since y′ = 3x2

x3+3
. Evaluate this at x = 1.

2. 3 · e3x log x + e3x ·
1

x

3.
ex(x log x − 1)

x(log x)2
.

4.
13

6
, since y = 2x + ln(x + 6) and so y

′
= 2 +

1

x + 6
. Evaluate this at x = 0.

5.
1

x +

q

x2 + 3

0

B

@
1 +

x
q

x2 + 3

1

C

A
.

6.
4

x + 2
.

7.
x

x2 + 4
, since ln(

q

x2 + 4) = 1
2

ln(x2 + 4).

    

n

n + 1
−

n − 1

n
=

n2 − (n − 1)(n + 1)

n(n + 1)

=
n2 − (n2 − 1)

n(n + 1)

=
1

n(n + 1)
> 0 for all n ≥ 1.

Therefore an+1 > an and the series increases.

lim
n→∞ an = lim

n→∞

„

1 −
1

n

«

= 1.

3. an =
n(n − 2)

n2
=

n − 2

n
and an+1 =

(n + 1)((n + 1) − 2)

(n + 1)2
=

n − 1

n + 1

an+1 − an =
n − 1

n + 1
−

(n − 2)

n
=

n(n − 1) − (n + 1)(n − 2)

n(n + 1)

=
n2 − n − (n2 − n − 2)

n(n + 1)

=
2

n(n + 1)
> 0 for all n ≥ 1.

Therefore an+1 > an and the series increases. Furthermore,

lim
n→∞ an = lim

n→∞

„

1 −
2

n

«

= 1.

4. an =
n

n + 3
and an+1 =

(n + 1)

(n + 1) + 3
=

n + 1

n + 4
.

an+1 − an =
n + 1

n + 4
−

n

n + 3
=

(n + 1)(n + 3) − n(n + 4)

(n + 3)(n + 4)

=
n2 + 4n + 3 − (n2 + 4n)

(n + 3)(n + 4)

=
3

(n + 3)(n + 4)
> 0 for all n ≥ 1

Thus {an} is increasing and lim
n→∞ an = lim

n→∞

 

1 −
3

n + 3

!

= 1.

5. an =
(n − 1)

(n + 1)
and an+1 =

(n + 1) − 1

(n + 1) + 1
=

n

n + 2
.

an+1 − an =
n

n + 2
−

n − 1

n + 1
=

n(n + 1) − (n + 2)(n − 1)

(n + 2)(n + 1)

=
n2 + n − (n2 + n − 2)

(n + 2)(n + 1)

=
2

(n + 2)(n + 1)
> 0 for all n ≥ 1.

So {an} is increasing and lim
n→∞ an = lim

n→∞

 

1 −
2

n + 1

!

= 1.
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  n  −  1  (n  +  1)  −  1  n
2.a n  =  and  an+1  =  =  .  Consider  an+1  −  an:

  n  (n  +  1)  n  +  1

Exercise  Set  22  (page  189)

Exercise  Set  23  (page  192)
1.an  =  n+2  and  an+1  =  (n  +1)+2  =  n+3.  Clearly  n+3  >  n+2  and  so  {an}  is  increasing  and  l

n  
im→∞  an  =  ∞.
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6. For n from 1 to 15, an runs like 0, 0.70711, 0.81650, 0.86603, 0.89443, 0.91287, 0.92582, 0.93541, 0.94281,
0.94868, 0.95346, 0.95743, 0.96077, 0.96362, 0.96609. You can guess that the limit must be 1. For the graph, see
Figure 81.

7. lim
n→∞

„

1 −
2

n

«n
= e−2

8. Apply the Box method to Fact # 5:

lim
x→0

(1 + x)
1
x = e ⇒ lim

2→0
(1 + 2)

1
2 = e.

Now let 2 = x2 . Note that x2 → 0 as x → 0 and we are done.

9. Use n = 2000 in the expression

„

1 +
1

n

«n
≈ 2.7176. You don’t want to write down the rational number, though! The

numerator alone has about 11, 300 digits!!

10. The graph of y(x) = e2(x−1) has the same shape as the graph of y = ex except for three minor differences: first, it is

steeper, second, it ‘shoots’ through (1, 1) instead of (0, 1), and third, it is a translate of the graph y = e2x by one unit to
the right.

11. a) 1, since e3 ln x = x3.

b) 0

c) 5

d) 1

e) 0, since sin2x + cos2 x = 1.

f) 0, since ln 1 = 0.

g) 22x = 4x

h) ln(x − 1)

i) x − 1

j) 0, since ln

0

@eex2
1

A = ex2
ln e = ex2

.

12. 0. Use L’Hospital’s Rule twice.

a)13. e0.38288 = 1.46650.

b) e−1.38629 = 0.250000.

c) e4.33217 = 76.1093.

d) e−2.86738 = 0.05685.

e) e2.42793 = 11.33543.

14. f(x) = e(sin x) ln x .

a)15. 4e2x .

b) −3.4e2 .

c) 3cos x ln 3 · (− sin x) = − ln 3 · sin x · 3cos x.

d) −
6

e6
. Be careful, (e3x)−2 = e−6x !

e) 1. The derivative is ex2
cos x + 2xex2

sin x.

    

a)1.
1

ln a
·

3x2 + 1

x3 + x + 1
.

b) log3 x +
1

ln 3
=

ln x

ln 3
+

1

ln 3
.

c) xx(ln x + 1), since xx = ex ln x .

d)
1

ln 3
·

1

4x − 3
· 4 =

4

ln 3 · (4x − 3)
.

e) −
4

ln 3
.

f) (3x ln 3) log2(x2 + 1) + 3x ·
1

ln 2
·

2x

x2 + 1
.

g) 1 + ln x.

h)
ex

ln 2
(1 + x), since ln2(e

x
) =

ln(ex)

ln 2
=

x

ln 2
.

i)
1

ln 2
·

1

3x + 1
· 3 =

3

ln 2 · (3x + 1)
.

j)
1

2

 

1

ln 2
·

1

x + 1

!

=
1

2 ln 2 · (x + 1)
.
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f)e  x(cos  x  −  sin  x).

g)(  x2  −  2x)e−x .

h)2  x  e2x  (1  +  x).

  i)−  2(1  +  x)x−3e−2x .

  j)(  1.2)x  ln(1.2).

k)x  0.6e−x(1.6  −  x).
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2. an =
n − 3

n
and an+1 =

(n + 1) − 3

(n + 1)
=

n − 2

n + 1
.

an+1 − an =
n − 2

n + 1
−

n − 3

n
=

n(n − 2) − (n − 3)(n + 1)

n(n + 1)

=
n2 − 2n − (n2 − 2n − 3)

n(n + 1)

=
3

n(n + 1)
> 0 for all n ≥ 1.

Therefore an+1 > an and the series increases. Furthermore,

lim
n→∞ an = lim

n→∞

„

1 −
3

n

«

= 1.

3. an =
n(n − 1)

n2
=

(n − 1)

n
and an+1 =

(n + 1)((n + 1) − 1)

(n + 1)2
=

n

(n + 1)

an+1 − an =
n

n + 1
−

(n − 1)

n
=

n2 − (n + 1)(n − 1)

n(n + 1)

=
n2 − (n2 − 1)

n(n + 1)

=
1

n(n + 1)
> 0 for all n ≥ 1.

Therefore an+1 > an and the series increases. Furthermore,

lim
n→∞ an = lim

n→∞

„

1 −
1

n

«

= 1.

4. an =
n

n + 4
and an+1 =

(n + 1)

(n + 1) + 4
=

n + 1

n + 5
.

an+1 − an =
n + 1

n + 5
−

n

n + 4
=

(n + 1)(n + 4) − n(n + 5)

(n + 5)(n + 4)

=
n2 + 5n + 4 − (n2 + 5n)

(n + 5)(n + 4)

=
4

(n + 5)(n + 4)
> 0 for all n ≥ 1.

Thus {an} is increasing. Furthermore,

lim
n→∞ an = lim

n→∞

 

1 −
4

n + 4

!

= 1.

5 Sketch this as in Figure 81. Note that.

lim
n→∞

s

n − 1

2n
= lim

n→∞

s

n

2n
−

1

2n
= lim

n→∞

s

1

2
−

1

2n
=

1
√

2
.

6. a) xx

b)
√

x

7. a) e0.89032 = 2.43592

b) e−1.5314 = 0.21623

c) e0.17328 = 1.18920

a)8. 15e5x

b) 6e2

c) − sin(xex) · ex(1 + x)

d) −8e−8 , since (e4x)−2 = e−8x .

e) 0

f) ex(ln(sin x) + cot x)

g) 1

h) 2x(1 − x)e−2x

i) e
−2x

 

−2Arctan x +
1

1 + x2

!

.

j) 2. Note that (x2)x = x2x = e2x ln x.

k)
1

2
√

x
(ln

√
x + 1).

l) 2x · ln 2 · log1.6(x3) + 2x ·
1

ln 1.6
·

3

x

m) −3−x · ln 3 · log0.5(sec x) + 3−x ·
1

ln 0.5
· tan x

DO NOT COPYDO NOT COPYDO NOT COPYDO NOT COPYDO NOT COPYDO NOT COPYDO NOT COPYDO NOT COPYPROTECTED BY COPYRIGHTPROTECTED BY COPYRIGHTPROTECTED BY COPYRIGHTPROTECTED BY COPYRIGHT

    
                          

 

Chapter  Exercises  (page  199)
1.  an  =  n+3  and  an+1  =  (n  +1)+3  =  n+4.  Clearly  n+4  >  n+3  and  so  {an}  is  increasing  and  l

n  
im

  →∞  an  =  ∞.



22

9. Amount after t years is: A(t) = Pert , where P = $500 and r = 0.10, so A(t) = 500e0.1t

(a) Thus after 5 years the amount in the account will be A(5) = 500e0.1×5 = $824.36

(b) Want t such that A = 3P = 1500 = 500e0.1t , so 3 = e0.1t giving ln(3) = 0.1t, therefore, t = 10.986 ≈ 11
years.

10. A = Pert , where A = $2400 if r = 0.12, t = 8. So 2400 = Pe0.12×8 = 2.6117P . Thus P = 2400
2.6117

= $918.94

11. Sales after t months: y(t) = y(0)ekt = 10, 000ekt . At t = 4, 8, 000 = 10, 000e4k , so 0.8 = e4k, ln(.8) = 4k,

and k = −0.0558. Thus, y(t) = 10, 000e−0.0558t , and when t = 6 (2 more months), sales = 10, 000e−0.0558×6 =
$7154.81

12. (a) Revenue at time t is : y(t) = y(0)ekt = 486.8ekt , taking 1990 as t = 0. In 1999, t = 9, so y(9) =

1005.8 = 486.8e9k. Thus 1005.8
486.8

= e9k , so ln 1005.8
486.8

= 9k, giving k = 1
9

ln(2.066) ≈ 0.08, so

y(t) = 486.8e0.08t. In 2001, t = 11, so revenue = 486.8e0.08×11 = $1173.62 million.

(b) Want t such that 1400 = 486.8e0.08t , so ln 1400
486.8

= 0.08t, and t = 13.2 years.

13. (a) limt→∞ S = 30, 000 = limt→∞ Cek/t = C. Thus, S = 30, 000ek/t . When t = 1 S = 5000, therefore,

5000 = 30, 000ek, so 1
6

= ek, and k = ln 1
6

= −1.79. Thus, S = 30, 000e−1.79/t .

(b) When t = 5, number of units sold is S(5) = 30, 000e−1.79/5 = 30, 000 × 0.699 = 20, 972.19 ≈ 20, 972
units
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Solutions

Use your Plotter Software available on the author’s web site to obtain the missing graphs of the functions in the Chapter
Exercises, at the end.

    
1. (x − 1)(x + 1), all Type I.

2. (x − 1)(x2 + 1). One Type I and one Type II factor.

3. (x + 3)(x − 2), all Type I.

4. (x − 1)2(x + 1), all Type I.

5. (x − 2)(x + 2)(x2 + 4). Two Type I factors and one Type II factor.

6. (2x − 1)(x + 1), all Type I.

7. (x + 1)2(x − 1)2, all Type I.

8. (x + 1)(x2 + 1). One Type I and one Type II factor.

    

(x − (1/3)) (x + (1/3)) (x + 1) Sign of p(x)

(−∞, −1) − − − −
(−1, −1/3) − − + +

(−1/3, 1/3) − + + −
(1/3, ∞) + + + +

b) Note that x2 + 1 > 0 so it need not be included in the SDT.

(x − 1) (x + 1) (x + 3) Sign of q(x)

(−∞, −3) − − − −
(−3, −1) − − + +

(−1, 1) − + + −
(1, ∞) + + + +

c) Note that x2 + x + 1 is a Type II factor. You may leave it out of the SDT if you want.

(x − 1) (x + 2) (x2 + x + 1) Sign of r(x)

(−∞, −2) − − + +

(−2, 1) − + + −
(1, ∞) + + + +

d) Note that t3 − 1 = (t − 1)(t2 + t + 1) and the quadratic is a Type II factor.

(t − 1) (t2 + t + 1) Sign of p(t)

(−∞, 1) − + −
(1, ∞) + + +

e) Note that

w6 − 1 = (w3 − 1)(w3 + 1) = (w − 1)(w2 + w + 1)(w + 1)(w2 − w + 1).

23
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1.a ).  +  1
3  ,  −1.  b).  +1,  −3.  c).  −2,  1.  d).  1.  e).  +1.

2.  a)
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w − 1 w + 1 w2 + w + 1 w2 − w + 1 Sign q(w)

(−∞, −1) − − + + +

(−1, −1) − + + + −
(1, ∞) + + + + +

3. p(x) = −(x − 3)(x + 3)(x − 4)(x + 4). Note the minus sign here, since 16 − x2 = −(x2 − 16)!

x + 4 x + 3 x − 3 x − 4 Sign of “−p(x)”

(−∞, −4) − − − − +

(−4, −3) + − − − −
(−3, 3) + + − − +

(3, 4) + + + − −
(4, ∞) + + + + +

4. 2. This is because 2 + sin x > 0 so it doesn’t contribute any break-points.

5. Note that 3+ cos x ≥ 3 − 1 = 2 > 0, since cos x ≥ −1 for any real x. So it doesn’t contribute any break-points. On the

other hand, x4 − 1 = (x2 − 1)(x2 +1) and so x2 +1 (being a Type II factor) doesn’t have any break-points either. Thus

the only break points are those of x2 − 1 = (x − 1)(x + 1) and so the SDT is equivalent to the SDT of x2 − 1 which is
easy to build.

6. First, we find the SDT of this polynomial, p(x). The only break-points are at x = −1, 0, 1 since the quadratic is a Type II
factor. So the SDT looks like,

(x − 1) (x + 1) x Sign of p(x)

(−∞, −1) − − − −
(−1, 0) − + − +

(0, 1) − + + −
(1, ∞) + + + +

We can now read-off the answer: p(x) < 0 whenever −∞ < x < −1 or 0 < x < 1.

7. −3 < x < −1, or x > 1. Add an extra row and column to the SDT of Table 5.1.

8. All factors are Type I, so the SDT looks like,

x + 1 x − 2 x − 3 x + 4 Sign p(x)

(−∞, −4) − − − − +

(−4, −1) − − − + −
(−1, 2) + − − + +

(2, 3) + + − + −
(3, ∞) + + + + +

The solution of the inequality p(x) ≤ 0 is given by: −4 ≤ x ≤ −1, or 2 ≤ x ≤ 3.

9. Let p(x) = (x − 1)3(4 − x2)(x2 + 1). The SDT of p(x) is the same as the SDT of the polynomial r(x) =

(x − 1)3(4 − x2). This factors as (x − 1)3(2 − x)(x + 2). Its SDT is given by:

    

1. a). 2. b). 1, 2
3

. c). 1, − 1+
√

13
2

, − 1−
√

13
2

. d). +1. e). +1. f). +1, +2.

2. a) t = 2 is the only break-point. Its SDT looks like:

(t − 2) (t2 + 1) Sign of r(t)

(−∞, 2) − + −
(2, ∞) + + +

b) t = 2
3

, t = 1 are the only break-points. Note that we factored out the 3 out of the numerator so as to make its

leading coefficient equal to a 1. Its SDT now looks like:

(t − 2
3
) (t − 1) Sign of r(t)

(−∞, 2
3
) − − +

( 2
3

, 1) + − −
(1, ∞) + + +

c) Write this as a rational function, first. Taking a common denominator we get that

t + 2 −
1

t − 1
=

t2 + t − 3

t − 1
.

Its break-points are given by t = 1 and, using the quadratic formula,

t =
−1 ±

√
13

2
.
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(x  −  1)3  x  +  2  2  −  x  Sign  of  r(x)

(−∞,  −2)  −  −  +  +
  (−

(1

2

,

,

2

1

)

)  −
+  

+

+  
+

+  
−
+

(2,  ∞)  +  +  −  −

It  follows  that  the  solution  of  the  inequality  p(x)  ≥  0  is  given  by  solving  r(x)  ≥  0  since  the  exra  factor  in  p(x)  is  positive.
Thus,  p(x)  ≥  0  whenever  −∞  <  x  ≤  2,  or  1  ≤  x  ≤  2.

10.x≥ 1
3  ,  or  ,  −1  ≤  x  ≤  −  1

3  .  See  Exercise  2  a),  above.
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The SDT looks like:

(t −
„

−1−
√

13
2

)

«

(t −
„

−1+
√

13
2

)

«

(t − 1) Sign r(t)

(−∞, −2.303) − − − −
(−2.303, 1) + − − +

(1, 1.303) + − + −
(1.303, ∞) + + + +

where we have used the approximations:
−1 −

√
13

2
≈ −2.303, and

−1 +
√

13

2
≈ +1.303.

d) Write the rational function as

r(t) =
t3 + 1

t3 − 1
.

The factors of the numerator and denominator in this quotient are given by: t3 + 1 = (t + 1)(t2 − t + 1) and

t3 − 1 = (t − 1)(t2 + t + 1), where each quadratic is Type II, and so does not contribute any new sign to its SDT. The
SDT looks like the SDT for a polynomial having only the factors t − 1 and t + 1, that is:

(t + 1) (t − 1) Sign of r(t)

(−∞, −1) − − +

(−1, 1) + − −
(1, ∞) + + +

e) This rational function may be rewritten as

t2 − 2t + 1

t2 − 1
=

(t − 1)2

(t − 1)(t + 1)
=

t − 1

t + 1
.

Its SDT is basically the same as the one for a polynomial having only the factors t − 1 and t +1. See Exercise 2 d), in this
Set.

f) The break-points are easily found to be: −2, −1, 1, 2. The corresponding SDT is then

t + 2 t + 1 t − 1 t − 2 Sign r(t)

(−∞, −2) − − − − +

(−2, −1) + − − − −
(−1, 1) + + − − +

(1, 2) + + + − −
(2, ∞) + + + + +

3. Use the SDT’s found in Exercise 2 in this Set. From these we see that

a)
1 + t2

t − 2
≤ 0 only when −∞ < t < 2.

b)
3t − 2

t3 − 1
≥ 0 only when −∞ < t ≤ 2

3
, or 1 ≤ t < ∞.

c) t + 2 −
1

t + 1
> 0 only when −1−

√
13

2
< t < 1, or −1+

√
13

2
< t < ∞.

d)
t3 + 1

t3 − 1
< 0 only when −1 < t < 1.

e)
t2 − 2t + 1

t2 − 1
≥ 0 only when −∞ < t < −1, or 1 < t < ∞. You may also allow t = 1 in the reduced form of

r(t).

f)
4 − t2

1 − t2
< 0 only when −2 < t < −1, or 1 < t < 2.

4. a) Break-points: −4 only. This is because the numerator factors as x2 − 16 = (x − 4)(x + 4) and one of these
cancels out the corresponding one in the denominator. So, its SDT looks like the SDT of the polynomial x + 4 only, and
this is an easy one to describe.

x + 4
x2 − 16

x − 4
= x + 4

(−∞, −4) − −
(−4, +4) + +

(+4, +∞) + +

The solution of the inequality
x2 − 16

x − 4
> 0 is given by x > −4.

b) The only break-point is at x = 0, since the other term is a Type II factor. Its SDT looks like:

x 3x + 5
x

(−∞, 0) − −
(0, +∞) + +

so the solution of the inequality 3x +
5

x
< 0 is given by x < 0.

c) The break-points are at x = 5, ±
√

5; Its SDT looks like:

x − 5 x −
√

5 x +
√

5 x2−5
x−5

(−∞, −
√

5) − − − −
(−

√
5, +

√
5) − − + +

(+
√

5, 5) − + + −
(5, +∞) + + + +
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So, the solution of the inequality
x2 − 5

x − 5
> 0 is given by x > 5 or −

√
5 < x <

√
5.

d) The break-points are at −10, 2, since the numerator is a Type II factor. Its SDT is the same as the one for

x + 10 x − 2 3x2 + 4x + 5 3x2+4x+5

x2+8x−20
(−∞, −10) − − + +
(−10, 2) + − + −
(2, +∞) + + + +

So, the solution of the inequality
3x2 + 4x + 5

x2 + 8x − 20
< 0 is given by

−10 < x < 2.

e) The break-points are at x = 0, 1 only, since

x3 + x2

x4 − 1
=

x2(x + 1)

(x2 + 1)(x + 1)(x − 1)
=

x2

(x − 1)(x2 + 1)
,

and the only non-Type II factor is x2 + 1. Its SDT is basically the same as the one below:

x − 1 x2 x2 + 1 x2

(x2+1)(x−1)
(−∞, 0) − + + −
(0, 1) − + + −

(1, +∞) + + + +

So, the solution of the inequality
x3 + x2

x4 − 1
≥ 0 is given by

x > 1 along with the single point, x = 0.

f) The break-points are at 0, 2.

interval x2 x − 2 | cos x| x2 | cos x|
x−2

(−∞, 0) + − + −
(0, 2) + − + −

(2, +∞) + + + +

The solution of the inequality
x2 | cos x|

x−2
< 0 is given by x < 2.

5. a) The only break-points are at x = −1, 1 and so the SDT is basically like the one in Exercise 2 d), above. Since x2+4 > 0

we see that the solution of the inequality
x2 − 1

x2 + 4
> 0, is given by the set x < −1 or x > 1. This can also be written as

|x| > 1.

b) There are no break-points here since x4 + 1 > 0 and x2 + 1 > 0 as well, for any value of x. So, no SDT is needed.

We see that the solution of the inequality
x2 + 1

x4 + 1
> 0, is given by the set of all real numbers, namely, −∞ < x < ∞.

c) The only break-points are at x = −3, 3 and so the SDT is basically like the one in Exercise 2 d), above, with 1’s
replaced by 3’s. Since

x2 + x + 1 > 0 we see that the solution of the inequality
x2 − 9

x2 + x + 1
< 0, is given by the set −3 < x < 3. This can

also be written as |x| < 3.

d) There are 2 break-points here, namely, at x = 3
2

, 4. Since (x − 4)2 ≥ 0 for any value of x, this term will not

contribute anything to the signs in the SDT. So, the only contributions come from the term 2x − 3 = 2(x − 3
2
). It’s now

a simple matter to see that the solution of the inequality 2x−3

(x−4)2
< 0 is given by the set x < 3

2
.

e) The break-points here are at x = −3, −2, −1, as this is easy to see. The SDT looks like:

(x + 3) (x + 2) (x + 1) Sign of
x + 1

(x + 2)(x + 3)

(−∞, −3) − − − −
(−3, −2) + − − +

(−2, −1) + + − −
(−1, ∞) + + + +

So, the solution of the inequality
x + 1

(x + 2)(x + 3)
> 0 is given by

−3 < x < −2, or −1 < x < ∞.

f) The only break-points here are at x = −1, 1. This is because the rational function factors as
x3 − 1

x + 1
=

(x − 1)(x2 + x + 1)

x + 1
where the quadratic expression is Type II. So, the SDT looks like the one in Exercise 2 d), above. It follows that the solution

of the inequality
x3 − 1

x + 1
< 0 is given by −1 < x < 1, or, written more compactly, as |x| < 1.
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5.4      

Exercise # 1

Exercise # 4

Exercise # 7

Exercise # 10

Exercise # 13

Exercise # 16

Exercise # 19

Exercise # 22
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Chapter Exercises: (cont’d.)

Exercise # 25

Exercise # 28

16. y = x+1

x2+1
, y′ = − x2+2x−1

(x2+1)2
, y′′ =

2(x−1)3

(x2+1)3
.

interval x + 1 x + 1 −
√

2 x + 1 +
√

2 (x − 1)3 y y′ y′′
(−∞, −1 −

√
2) − − − − − − −

(−1 −
√

2, −1) − − + − − + −
(−1, −1 +

√
2) + − + + + + +

(−1 +
√

2, +∞) + + + + + − +

19. y = x2−1

(x−1)(x+2)2
, y′ = − x

(x+2)3
, y′′ =

2(x−1)

(x+2)4
,

SDT:

interval x + 1 (x + 2)3 x y y′ y′′
(−∞, −2) − − − − − −
(−2, −1) − + − − + −
(−1, 0) + + − + + −
(0, 1) + + + + − −

(1, +∞) + + + + − +

32. Profit P (x) = R(x) − C(x) = 32x − (5 + 35x − 1.65x2 + 0.1x3) = −5 − 3x + 1.65x2 − 0.1x3, 0 ≤ x ≤ 20.

For a local extremum, dP
dx

= −3 + 3.3x − 0.3x2 = 0 , so x2 − 11x + 10 = 0 , and (x − 10)(x − 1) = 0. Thus

x = 1 or x = 10. Now d2R
dx2 = 3.3 − 0.6x . This is ¡ 0 when x = 10 and ¿ 0 when x = 1. So x = 10 gives a local

maximum of P(10) = −5−30+165−100 = 30. Check end points: P (0) = −5, P (20) = −5−60+660−800 < 0 .
A production level of x = 10 stereos per day yields the maximum profit of $30 per day.

33. (a) Revenue R(x) = xp = 4x − 0.002x2 . For a local maximum, dR
dx

= 4 − 0.004x = 0, so x = 1000. Checks:

d2R
dx2 = −0.004, so x = 1000 is a local maximum. Endpoints: R(0) = 0, R(1200) = $1920, R(1000) =

$2000. So a production of x = 1000, and hence price of p = 4 − 0.002(1000) = $2 will maximize revenue.

(b) Profit P = R − C = 2.5x − 0.002x2 − 200. dP
dx

= 2.5 − 0.004x = 0 when x = 625. (625, P (625)) ,

where P (625) = 2.5(625) − .002(625)2 − 200 = 581.25 , is a local maximum since d2P
dx2 < 0. Now

P (0) = −200, P (1200) = 2.5(1200) − .002(1200)2 − 200 = −80, so a production level of x = 625
maximizes daily profit.

(c) $581.25 from (b)

(d) marginal cost MC = dC
dx

= 1.5. marginal revenue MR = dR
dx

= 4 − 0.004x

(e) 4 − .004x = 1.5, therefore x = 2.5
0.004

= 625 as in (c).

34. Average cost AC = (800 + .04x + .0002x2)/x = 800
x

+ .04 + .0002x, x ≥ 0. For a local minimum,
d(AC)

dx
=

−800

x2 + .0002 = 0, so 0.0002x2 = 800. Thus x = 2000 cabinets. (Check:
d2(AC)

dx2 = 1600
x3 > 0 for x > 0, so

x = 2000 gives a local minimum.)

35. (a) 45 = Ce1000k and 40 = Ce1200k . Dividing gives 45
40

= e−200k , so ln 9
8

= −200k, and k =

−.0005889 ≈ −.0006. Thus, 45 = Ce−.0006×1000 = Ce−.6. Thus, C = 45e.6 ≈ 82.

(b) Revenue, R = xp, where p = 82e−.0006x from (a). Thus, R = 82xe−.0006x , and dR
dx

= 82e−.0006x −
.0006(82)xe−.0006x = 82e−.0006x [1 − .0006x]. dR

dx
= 0 for 1 − .0006x = 0, so x = 1666.7.

e−.0006x 1 − .0006x R′(x)

(−∞, 1666.7) + + +

(1666.7, ∞) + - -

So maximum revenue occurs when x ≈ 1667, and hence p = 82e−.0006(1667) = $30.16.
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1. −5x + C. Use Table 6.2 with r = 1, 2 = x, c = −5.

2. x + C.

3. C. Use Table 6.2 with r = 1, 2 = 0.

4. 1
1.6

x1.6 + C. Use Table 6.2 with r = 0.6, 2 = x.

5. 3
2

x2 + C.

6. 1
2

x2 − x + C.

7. 1
3

x3 + x + C. See Example 266.

8. 2
3

x3 + 1
2

x2 − x + C.

9. 3
2

x2 + C. (Actually, this is the same as Exercise 5 above.)

10. x4 + x2 − 1.314 x + C. See Example 266.

11. 1
3

(2x − 2)3/2 + C.

12. 2
9

(3x + 4)3/2 + C.

13. − 2
3
(1 − x)3/2 + C. See Example 267.

14. 1
12

(4x2 + 1)3/2 + C.

15. − 1
6
(1 − 2x2)3/2 + C.

16. 1
3.5

(1 + x2)1.75 + C.

17. 1
5

(2 + x3)5/3 + C.

18. − 1
54

(4 + 9x4)3/2 + C. See Example 271.

19. 1
3.6

(1 + x2.4)3/2 + C.

20. F(x) = 1
4

sin4 x − 1.

21. F(x) = 1
3
(1 − cos3 x).

22. F(x) = 1
2
(e−2 − e−2x).

23.
y4(x)

4
=

x3

3
+

1

4
. See Example 272.

    

1.
3

2
.

Z 1

0
3x dx =

3x2

2

˛

˛

˛

˛

˛

˛

1

0

=
3(12)

2
− 0 =

3

2
.

2. −
1

2
.

Z 0

−1
x dx =

x2

2

˛

˛

˛

˛

˛

˛

0

−1

= −
1

2
.

3. 0.

Z 1

−1
x3 dx =

x4

4

˛

˛

˛

˛

˛

˛

0

−1

= 0; (note: x3 is an odd function.)

4. −
4

3
.

Z 2

0
(x2 − 2x) dx =

x3

3
− x2

˛

˛

˛

˛

˛

˛

2

0

= (
23

3
− 22) − 0 = −

4

3
.

29
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24.y= x4  −  1.

25.y( x)  =  x4  −  1.  See  Example  275.

     

Solutions

Exercise  Set  28  (page  268)

Exercise  Set  29  (page  276)



30

5. 16.

Z 2

−2
(4 − 4x3)dx = 4x − x4

˛

˛

˛

˛

˛

2

−2

= 16.

6. 1
2

.

Z π/2

0
sin x cos x dx =

Z π/2

0
sin x

 

d

dx
sin x

!

dx =
sin2 x

2

˛

˛

˛

˛

˛

˛

π/2

0

=
1

2
.

7. 2
3

. Let 2 = cos x. Then D2 = − sin x. So, F(x) = − 1
3

cos3 x + C and, by definition,

Z π

0
cos2 x sin x dx =

−
cos3 x

3

˛

˛

˛

˛

˛

˛

π

0

=
1

3
−
„

−
1

3

«

=
2

3
.

8.
1

4
.

Z π/2

−π
sin3 x cos x dx =

sin4 x

4

˛

˛

˛

˛

˛

˛

π/2

−π

=
1

4
.

9. −0.26. (Notice that the upper limit 1.2 of the integral is less than the lower one, namely 1.5; nevertheless we can proceed

in the usual way.)

Z 1.2

1.5
(2x − x2) dx = x2 −

x3

3

˛

˛

˛

˛

˛

˛

1.2

1.5

= −0.26.

10.
π

2
.

Z

1

0

1
q

1 − x2
dx = Arcsin x

˛

˛

˛

˛

˛

˛

˛

1

0

=
π

2
− 0 =

π

2
.

11.
1

2
(e − 1).

Z 1

0
xex2

dx =

Z 1

0
ex2 d

dx

0

@

x2

2

1

A dx =
1

2
ex2

˛

˛

˛

˛

1

0
=

1

2
(e − 1).

12. 2(1 − e−4).

Z 2

0
4xe−x2

dx =

Z 4

0
2e−x2

 

d

dx
x2
!

dx

= −2e−x2
˛

˛

˛

˛

2

0
= 2(1 − e−4).

13.
2

ln 3
. If we set f(x) = 3x then f′(x) = 3x ln 3. So

Z

3
x

dx =
3x

ln 3
+ C. Thus

Z 1

0
3

x
dx =

3x

ln 3

˛

˛

˛

˛

˛

1

0

=

3

ln 3
−

1

ln 3
=

2

ln 3
.

14. 1
3

“

e34 − e32
”

.

15. 0.1340.

Z 0.5

0

x
q

1 − x2
dx = −(1 − x2)1/2

˛

˛

˛

˛

0.5

0
= 1 −

√
0.75 ≈ 0.1340.

16.
1

ln 2
. We know that D(a2) = a2D(2) ln a, where D as usual denotes the operator of taking derivative. It follows

Z

a2
d2

dx
dx =

a2

ln a
+ C. Now, setting a = 2, 2 = x2 + 1, and D2 = 2x, we see that

Z 1

0
x 2x2+1 dx =

1

2

2x2+1

ln 2

˛

˛

˛

˛

˛

˛

˛

1

0

=
2

ln 2
−

1

ln 2
=

1

ln 2
.

17.

√
2 − 1

2
.

I ≡
Z

√
π/2

0
x sec(x

2
) tan(x

2
) dx

=

Z

√
π/2

0

1

2

d

dx
sec(x

2
) dx

=
1

2
sec(x2)

˛

˛

˛

˛

√
π/2

0
=

1

2

„

sec
π

4
− sec 0

«

=
1

2
(
√

2 − 1).

18. 0. Let 2 = x2 So D2 = 2x and the antiderivative looks like

1

2

Z 1

1 + 22

d2

dx
dx,

which reminds one of the derivative of the Arctangent function. In fact,

Z

1

−1

x

1 + x4
dx =

1

2
tan

−1
x
2
˛

˛

˛

˛

1

−1
=

1

2
(tan

−1
1 − tan

−1
1) = 0.

(Notice that 0 is the expected answer because the integrand is an odd function.)

19. Following the hint, we have
d

dx

Z x2

0
et dt = ex2 d

dx
x2 = 2xex2

.

20. These identities can be seen from the respective symmetry in the graph of f. Here is an analytic argument. Assume that f

is even: f(−x) = f(x). Let F(x) =
Rx
0 f(t)dt, (−∞ < x < ∞). Then d

dx
F(x) = f(x) and

Z x

−x
f(t)dt =

Z 0

−x
f(t)dt +

Z x

0
f(t)dt

= −
Z −x

0
f(t)dt +

Z x

0
f(t)dt = −F(−x) + F(x).

Thus we will have
Rx
−x f(t)dt = 2

Rx
0 f(t)dt if we can show −F(−x) = F(x). Let G(x) = −F(−x). We are going

to show G = F . Now

d

dx
G(x) =

d

dx
(−F(−x)) = −

 

d

dx
F(−x)

!

= −
“

F′(−x) · (−1)
”

= F′(−x) = f(−x) = f(x).

Thus, by the Fundamental Theorem of Calculus, G(x) =
Rx
0 f(t) dt + C for some constant C, or G(x) = F(x) + C.

Now G(0) = −F(−0) = −F(0) = −0 = 0, which is the same as F(0) (= 0). So C must be zero. Thus G = F .
Done! (The second part of the exercise which involves an even function f can be dealt with in the same manner.)
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1.

10
X

i=1

i.

2.

9
X

i=1

(−1)i−1 or,

9
X

i=1

(−1)i+1 or,

8
X

i=0

(−1)i .

3.

5
X

i=1

sin iπ.

4.

n
X

i=1

i

n

5. −0.83861

6. 0.19029.

7. 0. Note that sin nπ = 0 for any integer n.

8. 1 + 2 + 3 + · · · + 50 =
50 × 51

2
= 1275.

9. 1
2

+ 2
2

+ · · · + 100
2

=
100 × 101 × 201

6
= 338350.

10.

n
X

i=1

i

n
=

1

n

n
X

i=1

i =
1

n
·

n(n + 1)

2
=

n + 1

2
.

11.

n
X

i=1

6

 

i

n

!2

=
6

n2

n
X

i=1

i
2

=
6

n2
·

n(n + 1)(2n + 1)

6
=

(n + 1)(2n + 1)

n
.

12. This is a telescoping sum:

6
X

i=1

(ai − ai−1) = (a1 − a0) + (a2 − a1) + · · · + (a6 − a5) = a6 − a0.

The final expression stands for what is left after many cancellations.

13. We prove this identity by induction. For n = 1, we have

LHS =

1
X

i=1

(ai − ai−1) = a1 − a0 = RHS.

Now we assume
Pk

i=1(ai − ai−1) = ak − a0, that is, the identity holds for n = k. Then, for n = k + 1, we have

k+1
X

i=1

(ai − ai−1) =

k
X

i=1

(ai − ai−1) + (ak+1 − ak)

(= ak − a0) − (ak+1 − ak) = ak+1 − a0.

So the identity is also valid for n = k + 1. Done.

14. Indeed,

n
X

i=1

1

n

 

i

n

!2

=

„ 1

n

«3 n
X

i=1

i2 =

„ 1

n

«3 n(n + 1)(2n + 1)

6

=
n

n

(n + 1)

n

(2n + 1)

n

1

6
=

„

1 +
1

n

« „

2 +
1

n

« 1

6
.

It follows that

lim
n→∞

n
X

i=1

1

n

 

i

n

!2

= 1 · 2 ·
1

6
=

1

3
.

15. For convenience, we write

An =

n−1
X

i=1

n3

n4 + in3 + pn
.

We have to show that limn→∞ An = ln 2. We know that
R 2
1

1
x

dx = ln 2. Divide the interval [1, 2] into n subintervals

of the same length 1/n by means of subdivision points xi = 1 + i
n

(i = 0, 1, 2, . . . , n − 1) and form the corresponding

Riemann sum Sn for the function f(x) = 1/x:

Sn =

n−1
X

i=0

f(xi ) · ∆xi =

n−1
X

i=0

1

xi

· ∆xi =

n−1
X

i=0

n

n + i
·

1

n
=

n−1
X

i=0

1

n + i
.

Since f is continuous on [1, 2], from the theory of Riemann integration we know that limn→∞ Sn = ln 2. It suffices to
show that limn→∞(Sn − An) = 0. Now

Sn − An =

n−1
X

i=0

0

@

1

n + i
−

n3

n4 + in3 + pn

1

A

=

n−1
X

i=0

(n4 + in3 + pn) − n3(n + i)

(n4 + in3 + pn)(n + i)
=

n−1
X

i=0

pn

(n4 + in3 + pn)(n + i)
.

Thus

0 ≤ Sn − An ≤
n−1
X

i=0

pn

n4 · n
= pn/n4;

(dropping something positive from the denominator of a positive expression would diminish the denominator and hence would
increase the size of this expression.) By the Hint, we have pn < 36n ln n. It is well-known that ln x ≤ x for all x > 0.

So pn < 36n2 for all n ≥ 2. Thus 0 < Sn − An ≤ pn/n4 < 36n2/n4 = 36/n2 for n ≥ 2. Now it is clear that
Sn − An tends to 0 as n → ∞, by the Sandwich Theorem of Chapter 2.
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1.
1

27
(x + 1)27 + C. Use Table 6.5, 2 = x + 1, r = 26.

2. 1
2

sin 2x + C.

3. 1
3
(2x + 1)3/2 + C.

4. −
1

12
(1 − 4 x2)3/2 + C. Use Table 6.5, 2 = 1 − 4x2 , r = 1/2.

5. − cos x + sin x + C.

6. − 1
3
(5 − 2x)3/2 + C.

7. −
1

2
cos(2 x) + C. Use Table 6.6, 2 = 2x.

8. 0.4 x2.5 + 0.625 cos(1.6x) + C.

9. 3 tan x + C.

10.
1

200
(x2 + 1)100 + C. Use Table 6.5, 2 = x2 + 1, r = 99.

11. − 1
3

csc 3x + C.

12. −
1

6
e−3 x2

+ C. Use Table 6.5, 2 = −3x2 .

13. −
1

k
e−kx + C.

14.
sin k x

k
+ C. Use Table 6.6, 2 = kx.

15. −
cos k x

k
+ C.

16. 2.

Z 1

0
(2x + 1) dx = x2 + x

˛

˛

˛

˛

1

0
= 2.

17. 0. Note that f(x) = x3 is an odd function.

18. 10. I =

Z 2

0
(3x2 + 2x − 1) dx = x3 + x2 − x

˛

˛

˛

˛

2

0
= 10.

19.
1

5
.

Z π/2

0
sin

4
x cos x dx =

sin5 x

5

˛

˛

˛

˛

˛

˛

π/2

0

=
1

5
.

20.
1

ln 3
.

Z 1

0
x · 3x2

dx =
1

2

3x2

ln 3

˛

˛

˛

˛

˛

˛

˛

1

0

=
1

ln 3
. Use Table 6.5, 2 = x2 , a = 3.

21.
1

ln 4
.

Z 1

0
2−xdx = −

1

ln 2
2−x

˛

˛

˛

˛

1

0
= −

1

ln 2

„ 1

2
− 1

«

=
1

2 ln 2
=

1

ln 4
.

22.
2

3
.

Z π

0
cos2 x · sin x dx = −

cos3 x

3

˛

˛

˛

˛

˛

˛

π

0

=

0

@−
(−1)3

3

1

A−
„

−
1

3

«

=
2

3
.

23.
28

3
. Note that f(x) = x2 + 1 is an even function.

24.
π

6
.

Z

0.5

0

1
q

1 − x2
dx = Arcsin x

˛

˛

˛

˛

˛

˛

˛

0.5

0

=
π

6
.

25.
1

2
e4 −

1

2
. Use Table 6.5, 2 = x2 .

26.

n
X

i=1

12

 

i

n

!2

=
12

n2

n
X

i=1

i2 =
12

n2
·

n(n + 1)(2n + 1)

6
=

2(n + 1)(2n + 1)

n
.

27. Consider the partition

0 = x0 < x1 < x2 < · · · < xn = 1

with xi = i
n

, which divides [0, 1] into n subintervals [ i
n

, i+1
n

] of the same length 1/n, (i = 0, 1, 2, . . . , n − 1). In

each subinterval [ i
n

, i+1
n

] we take ci to be the left end point i
n

. Then the corresponding Riemann sum for the function

f(x) = ex is

n−1
X

i=0

f(ci )(xi+1 − xi) =

n−1
X

i=0

ei/n
 

i + 1

n
−

i

n

!

=

n−1
X

i=0

ei/n ·
1

n
.

But we know from the definition of Riemann integration that

lim
n→∞

n
X

k=1

f(ck)(xk − xk−1) =

Z 1

0
f(x)dx =

Z 1

0
exdx = e − 1.

Now the assertion is clear.
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28. Indeed,

 

n

n2 + 02
+

n

n2 + 12
+

n

n2 + 22
+ ... +

n

n2 + (n − 1)2

!

=

0

B

@

n

n2(1 +
“

0
n

”2
)

+
n

n2(1 +
“

1
n

”2
)

+
n

n2(1 +
“

2
n

”2
)

+ ... +
n

n2(1 +
“

n−1
n

”2
)

1

C

A
=

0

B

@

1

n (1 +
“

0
n

”2
)

+
1

n (1 +
“

1
n

”2
)

+
1

n (1 +
“

2
n

”2
)

+ ... +
1

n (1 +
“

n−1
n

”2
)

1

C

A
=

1

n

0

B

@

1

(1 +
“

0
n

”2
)

+
1

(1 +
“

1
n

”2
)

+
1

(1 +
“

2
n

”2
)

+ ... +
1

(1 +
“

n−1
n

”2
)

1

C

A
=

n−1
X

i=0

1

(1 +
“

i
n

”2
)

„ 1

n

«

=

n−1
X

i=0

f(ci )
`

∆xi
´

,

once we choose the ci as ci = xi = i/n and f as in the Hint. Next, we let n → ∞ so that the norm of this subdivision
approaches 0 and, by the results of this Chapter, the Riemann Sum approaches the definite integral

lim
n→∞

n−1
X

i=0

f(ci)∆xi =

Z 1

0

1

1 + x2
dx,

= Arctan 1 − Arctan 0 =
π

4
.

29. Method 1 First we interpret the integral
R 1
0

1
q

1−x2
dx (whose value is π

2
) as the limit of a sequence of Riemann sums

Sn defined as follows. For fixed n, we divide [0, 1] into n subintervals of length 1/n by xi ≡ i/n (0 ≤ i ≤ n) and we

take ci to be xi . Then the corresponding Riemann sum for f(x) ≡ 1
q

1−x2
is

Sn =

n−1
X

i=0

f(ci )(xi+1 − xi) =

n−1
X

i=0

1
q

1 − (i/n)2
·

1

n
=

n−1
X

i=0

1
q

n2 − i2
.

For convenience, let us put An,i = n8 − i2n6 + 2ipn − p2
n . It is enough to show that Sn −Pn−1

i=0
n3

q

An,i
→ 0 as

n → ∞. Now, for each n and each i,

1
q

n2 − i2
−

n3

q

An,i

=

q

An,i − n3
q

n2 − i2

q

n2 − i2
q

An,i

=
An,i − n6(n2 − i2)

(n2 − i2)
q

An,i + An,i

q

n2 − i2
.

The denominator is too bulky here and we have to sacrifice some terms to tidy it up. But we have to wait until the numerator
is simplified:

An,i − n6(n2 − i2) = (n8 − i2n6 + 2ipn − p2
n) − (n8 − i2n6) = 2ipn − p2

n.

Now we drop every thing save An,i in the denominator. Then within

An,i ≡ n8 − in6 + 2ipn − p2
n = n6(n2 − i2) + 2ipn − p2

n

we drop the positive term 2ipn and the factor n2 − i2 which is ≥ 1. (We still have to keep the burdensome −p2
n because

it is negative.) Ultimately, the denominator is replaced by a smaller expression, namely n6 − p2
n . Recall that pn < 36n2

for n ≥ 2; (see Exercise 15 in the previous Exercise Set.) Using this we see that

n6 − p2
n ≥ n6 − 36n2 = n2(n4 − 36).

Thus, for n ≥ 2, n2(n4 − 36) is a lower bound of the denominator. Next we get an upper bound for the numerator:

|2ipn − p2
n| ≤ 2ipn + p2

n ≤ 2npn + p2
n ≤ 2n(36n2) + (36n2)2 = 72n3 + 1296n4 .

Now we can put all things together:

˛

˛

˛

˛

Sn −
n−1
X

i=0

n3

q

An,i

˛

˛

˛

˛

≤
n−1
X

i=1

˛

˛

˛

˛

˛

˛

˛

1
q

n2 − i2
−

n3

q

An,i

˛

˛

˛

˛

˛

˛

˛

≤ n ·
72n3 + 1296n4

n2(n4 − 36)
.

The last expression approaches to 0 as n tends to infinity. Done!

Method 2 Let f(x) =
1

q

1 − x2
, on [0, 1). Let P denote the partition with x0 = 0, and xi = i

n
, i = 1, 2, . . . , n.

It is clear that, as n → ∞, the norm of this partition approaches 0. Next, by Sierpinski’s estimate we know that

pn < 36n ln n.

But by L’Hospital’s Rule, lim
n→∞

ln n

n3
= 0. This means that

lim
n→∞

pn

n4
≤ lim

n→∞
36 ln n

n3
= 0.
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So

lim
n→∞

pn

n4
= 0

by the Sandwich Theorem of Chapter 2. Okay, now choose our interior points ti in the interval (xi, xi+1), as follows:
Let

ti =
i

n
+

pn

n4
.

By what has been said, note that if n is sufficiently large, then ti lies indeed in this interval. By definition of the Riemann
integral it follows that this specific Riemann sum given by

lim
n→∞

n−1
X

i=0

f(ti) ∆xi

tends to, as n → ∞, the Riemann integral of f over [0, 1). But

lim
n→∞

n−1
X

i=0

f(ti) ∆xi = lim
n→∞

n−1
X

i=0

1
q

1 − ti
2

·
1

n

= lim
n→∞

n−1
X

i=0

1
s

1 −
„

i
n

+
pn
n4

«2
·

1

n

= lim
n→∞

n−1
X

i=0

n3

q

n8 − i2n6 − 2ipn − pn2
.

The conclusion follows since the Riemann integral of this function f exists on [0, 1) and

Z 1

0

1
q

1 − x2
= Arcsin 1 − Arcsin 0 = Arcsin 1 =

π

2
.

30. 2.

Z π

0
sin x dx = − cos x

˛

˛

˛

˛

π

0
= 2.

31. 2
√

2 − 2. Notice that when x runs from 0 to π/2, the cosine curve drops from 1 to 0 and the sine curve elevates from 0
to 1. Between 0 and π/2, the sine curve and the cosine curve meet at x = π

4
. Hence

| cos x − sin x| =



cos x − sin x if 0 ≤ x ≤ π/4,
sin x − cos x if π/4 ≤ x ≤ π/2.

Thus the required integral is equal to

Z π/4

0
(cos x − sin x) dx +

Z π/2

π/4
(sin x − cos x) dx

= (sin x + cos x)|π/4
0 + (− cos x − sin x)|π/2

π/4
= 2

√
2 − 2.

32. 1 −
√

2

2
.

Z π/8

π/12

cos 2x

sin2 2x
dx =

Z π/4

π/6
csc 2x cot 2x dx

= −
1

2
csc 2x

˛

˛

˛

˛

π/8

π/12
= 1 −

√
2

2
.

33.
4

9

√
2 −

2

9
.

Z 1

0
t2
q

1 + t3 dt =
1

3
·

(1 + t3)3/2

3/2

˛

˛

˛

˛

˛

˛

1

0

=
4

9

√
2 −

2

9
. Use Table 6.5, 2 = 1 + t3, r = 1/2.

34.

Z 1

0

x

1 + x4
dx =

1

2
Arctan x

2
˛

˛

˛

˛

˛

1

0

=
1

2
(Arctan 1 − Arctan 0) =

π

8
.

35.
d

dx

Z x2

1

sin t

t3/2
dt =

sin(x2)

x3
· 2x =

2 sin(x2)

x2
−→ 2 as x → 0+.

36. As x → ∞, we have

d

dx

Z

√
x

√
3

r

(r + 1)(r − 1)
dr =

x3/2

(x1/2 + 1)(x1/2 − 1)
·

1

2
√

x
=

x

2(x − 1)
−→

1

2
.

37.
d

dx

Z x2

x
e
−t2

dt = 2xe
−x4

− e
−x2

= 2
x

ex4
− e

−x2
the first of which has the indefinite form ∞

∞ when x → ∞,

while the second term tends to zero. By L’Hospital’s rule and the fact that ex → +∞ as x → +∞ we see that 2 x

ex4 → 0

as x → ∞ as well.

38.
d

dx

Z

√
x

1

sin(y2)

2y
dy =

sin(
√

x2)

2
√

x
·

1

2
√

x
=

sin x

4x
−→

1

4
as x → 0.

39.

lim
x→0+

d

dx

Z sin x

1

ln t

ln(Arcsin t)
dt

= lim
x→0+

 

ln(sin x)

ln(Arcsin (sin x))
· cos x − 0

!

,

= lim
x→0+

 

ln(sin x)

ln x
· cos x

!

= lim
x→0+

 

ln(sin x)

ln x

!

· cos 0

= lim
x→0+

 

cot x

1/x

!

= lim
x→0+

x cot x = lim
x→0+

x

sin x
cos x = (1)(1) = 1.
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40. Indeed, as t → 0,

d

dt

Z

2π+ct

2π−ct

sin x

cx
dx =

sin(2π + ct)

c(2π + ct)
· c −

sin(2π − ct)

c(2π − ct)
(−c) −→

sin 2π

π
= 0.

41.

lim
h→0+

d

dx

 

1

h

Z x+h

x−h

√
t dt

!

= lim
h→0+

√
x + h (1) − √

x − h (1)

h
,

= lim
h→0+

√
x + h − √

x − h

h
= lim

h→0+

2h

h(
√

x + h +
√

x − h)
,

= lim
h→0+

2
√

x + h +
√

x − h
=

1

√
x

.

42. lim
x→0

1

2x

Z

x

−x
cos t dt lim=

x→0

1

2x
(sin x − sin(−x lim)) =

x→0

2 sin x

2x
= 1. [Remark: Actually, for every continuous

function f defined on the real line, we have

lim
x→0+

1

2x

Z

x

−x
f(t) dt = f(0).

Do you know why?]

43.
y5

5
=

x4

4
+

1

5
.

44. sin(y(x))+cos x = C is the most general antiderivative. But y = π/2 when x = 0. This means that sin(π/2)+cos 0 =
C, or C = 2. So, the solution in implicit form is given by sin(y(x)) + cos x = 2.

45. y = tan

» 1

2
(e2x − 1) +

π

4

–

.

46. y = 2x4 + 4
3

x3 + x.

47. y(x) = C1 + C2 x + C3 x2 − x4 is the most general antiderivative. Now, the initial conditions y(0) = 0, y′(0) =

0, y′′(0) = −1 imply that C1 = 0, C2 = 0, C3 = −1/2. The required solution is given by

y(x) = −
1

2
x2 − x4.

48. y = ex − x − 1.

49. y =
x4

12
+

x3

3
.

50 Since marginal cost =. dC
dx

= 60 + 40
x+10

,

(a) total increase in cost as x goes from 20 to 40 is

Z 40

20

"

60 +
40

x + 10

#

dx = [60x + 40ln|x + 40| ]4020

= 60×40+40 ln(50)− [60×20+40ln(30)] = 1200+40(ln 50−ln 30) = 1200+40ln(5/3) = $1220.43

dt

I(t) =

Z 500e

√
t

√
t

dt = 500e

√
t

+ C.

When t = 0, I = 1000, so 1000 = 500 + C, and C = 500. Therefore, at t = 4, I = 500e2 + 500 =
$4194.53.
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51. Let  I(t)  be  value  of  investment  at  time  t,  t  in  years.  dI  =  (500e

√
t)/

√
t,  thus



Solutions

    
1. 1

200
(2x − 1)100 + C.

2. 3 ·
(x + 1)6.1

6.1
+ C.

3. I =

Z

1

0
(3x + 1)

−5
dx =

1

3
·

(3x + 1)−4

−4

˛

˛

˛

˛

˛

˛

1

0

≈ 0.0830.

4. I =

Z

(x − 1)−2dx = −(x − 1)−1 + C =
1

1 − x
+ C.

5. −
1

202
(1 − x2)101 + C =

1

202
(x2 − 1)101 + C.

6.
1

ln 2
2

x2−1
+ C. Let u = x2, du = 2x dx, etc.

7.

Z π/4

0
tan x dx = − ln | cos x| = ln | sec x|

˛

˛

˛

˛

˛

π/4

0

= ln
√

2 − ln 1 =
ln 2

2
.

8.
1

3
ez3

+ C.

9. −
3

4
(2 − x)4/3 + C.

10. 1
2

sin 8 ≈ 0.49468.

11. I =

Z 1

1 + sin t
·

d(1 + sin t)

dt
dt = ln |1 + sin t| + C.

12. −
q

1 − x2 + C.

13. 1
2

ln |y2 + 2y| + C. Let u = y2 + 2y, du = 2(y + 1) dy, etc.

14. I =

Z sec2 x dx
√

1 + tan x
=

Z

“

d
dx

tan x
”

dx

√
1 + tan x

= 2
p

1 + tan x + C.

15. I = −
Z

π/4

0

1

cos2 x
·

d cos x

dx
dx =

1

cos x

˛

˛

˛

˛

π/4

0
=

√
2 − 1. Alternatively,

I =

Z π/4

0
tan x sec x dx = sec x

˛

˛

˛

˛

˛

π/4

0

=
√

2 − 1.

16. Hard! Very hard! The function sec x + tan x in the hint seems to be extremely tricky and unthinkable; see Example
364 in §8.5.2 for manipulating this integral according to the hint. Here is a slightly more natural way (although just as
unthinkable): Try to put everything in terms of sines or cosines. Let’s begin. Don’t feel bad if you find this still too slick for

36
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you.

Z

sec x dx =

Z 1

cos x
dx =

Z cos x

cos2 x
dx =

Z 1

cos2 x
·

d sin x

dx
dx

=

Z 1

1 − sin2 x
·

d sin x

dx
dx =

Z 1

1 − u2
du (u = sin x)

=

Z 1

(1 − u)(1 + u)
du =

Z 1

2

"

1

1 − u
+

1

1 + u

#

du

=
1

2
[− ln |1 − u| + ln |1 + u|] + C =

1

2
ln

˛

˛

˛

˛

˛

1 + u

1 − u

˛

˛

˛

˛

˛

+ C

=
1

2
ln

˛

˛

˛

˛

˛

1 + sin x

1 − sin x

˛

˛

˛

˛

˛

+ C

=
1

2
ln

˛

˛

˛

˛

˛

˛

(1 + sin x)2

(1 − sin x)(1 + sin x)

˛

˛

˛

˛

˛

˛

+ C

=
1

2
ln

˛

˛

˛

˛

˛

˛

(1 + sin x)2

cos2 x

˛

˛

˛

˛

˛

˛

+ C

= ln

˛

˛

˛

˛

˛

1 + sin x

cos x

˛

˛

˛

˛

˛

+ C = ln | sec x + tan x| + C.

17. One way to do this is to multiply out everything and then integrate term by term. But this way is very messy! Observe that

4z3 + 1 is nothing but the derivative of z4 + z. So we have an easy way out:

I =

Z

(z
4

+ z)
4 ·

d

dz
(z

4
+ z) dz =

1

5
(z

4
+ z)

5
+ C.

18. −Arctan(cos x) + C. Let u = cos x, du = − sin x dx, etc.

19. I =
1

2
Arctan(t2)

˛

˛

˛

˛

1

0
=

π

8
.

20. 1
8

sin4(x2 + 1) + C. Let u = x2 + 1 first, then v = sin u as the next substitution.

21. 3
2

ln(x2 +1)−Arctan x + C. (Since x2 +1 is always positive, there is no need to put an absolute value sign around it.)

22. I =

Z e2

e

1

ln x
·

d ln x

dx
dx = ln(ln x)

˛

˛

˛

˛

˛

e2

e

= ln 2 − ln 1 = ln 2.

23. 1
3
(Arctan x)3 + C.

24. I =
R

cosh(et) · et dt = sinh(et) + C. (Recall that D sinh2 = cosh2 D2 and D cosh2 = sinh 2 D2.)

25. 1
5
Arcsin 5s + C.

26. I =

Z 4π2

π2
cos

√
x · 2

d
√

x

dx
dx = 2 sin

√
x

˛

˛

˛

˛

˛

4π2

π2
= 2(sin 2π − sin π) = 0.

27.
1

2
ex2

+ C.

28. −
q

1 − y2 + Arcsin y + C. Split this integral up into two pieces and let u = 1 − y2, etc.

29. sec(ln x) + C. Let u = ln x, etc.

30. I =

Z

sin−2/3 x ·
d

dx
sin x dx = 3 sin1/3 x + C.

31. I =

Z

1

0
e

et
·

det

dt
dt = e

et
˛

˛

˛

˛

˛

˛

1

0

= e
e − e.

32.
1

2 ln(1.5)
1.5x2+1 + C = 1.23316 1.5x2+1 + C.

    
Using the normal method, we have:1.

I =

Z

x
d

dx
sin x dx = x sin x −

Z

sin x dx = x sin x + cos x + C.

2. −x cos x + sin x + C.

3. −1/2.

4. Using the normal method, we have:

Z

x2 sin x dx =

Z

x2 d

dx
(− cos x)dx

= −x2 cos x +

Z

2x · cos x dx

= −x
2

cos x +

Z

2x
d

dx
sin x dx

= −x
2

cos x + 2x sin x −
Z

2 sin x dx

= −x2 cos x + 2x sin x + 2 cos x + C.

Now you can see the advantage of the Table method over the above normal method: you don’t have to copy down some
expressions several times and the minus signs are no longer a worry!
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5. x tan x + ln | cos x| + C.

6. x sec x − ln | sec x + tan x|+ C. (Here you have to recall the answer to a very tricky integral:
R

sec x dx = ln | sec x +
tan x|. See Exercise Set 32, Number 16.)

7. (x2 − 2x + 2)ex + C.

8. I = −
1

3
x
2

e
−3x

+
2

9
xe

−3x −
2

27
e
−3x

˛

˛

˛

˛

∞

0
=

2

27
. Notice that here we have used the fact p(x)e−3x −→ 0 as

x → +∞, where p(x) is any polynomial, that is, the exponential growth is faster than the polynomial growth. Alternately,
use L’Hospital’s Rule for each limit except for the last one.

9.
1

5
x5 ln x −

1

25
x5 + C.

10. −
1

3

„

x3 + x2 +
2

3
x +

2

9

«

e−3x + C.

11. x sin−1 x +

q

1 − x2 + C.

12. x tan−1 x − 1
2

ln(1 + x2) + C.

Let13. u = ln x. Then x = eu and dx = eudu. Thus the integral can be converted to
R

u5e2ueu du =
R

u5e3u du.
Using the Table method to evaluate the last integral, we have

Z

u
5

e
3u

du = e
3u

„ 1

3
u
5 −

5

9
u
4

+
20

27
u
3 −

20

27
u
2

+
40

81
u −

40

243

«

+ C.

Substituting u = ln x back, we get the answer to the original integral
R

x2(ln x)5 dx:

x3
„ 1

3
(ln x)5 −

5

9
(ln x)4 +

20

27
(ln x)3 −

20

27
(ln x)2 +

40

81
ln x −

40

243

«

+ C.

14.
x2

2
sec

−1
x −

1

2

q

x2 − 1 + C, if x > 0.

Use the Table method for this problem.15.

Z

(x − 1)
2

sin x dx = −(x − 1)
2

cos x + 2(x − 1) sin x + 2 cos x + C.

16. −
1

13
(2 sin 3x + 3 cos 3x)e−2x + C.

17.
1

17
(cos 4x + 4 sin 4x)ex + C.

18. −
1

10
cos 5x −

1

2
cos x + C, or −

1

5
(2 sin 3x sin 2x + 3 cos 3x cos 2x) + C.

Use the identity sin A cos B =
1

2
(sin(A + B) + sin(A − B)) with A = 3x and B = 2x and integrate. Alternately,

this is also a three-row problem: This gives the second equivalent answer.

19. −
1

12
cos 6x +

1

4
cos 2x + C, or −

1

3
cos

3
2x +

1

2
cos 2x + C, or

1

12
(4 sin 2x sin 4x + 2 cos 2x cos 4x) + C. This is a three-row problem as well. See the preceding exercise.

20.
1

14
sin 7x +

1

2
sin x + C, or

1

7
(4 cos 3x sin 4x − 3 sin 3x cos 4x) + C. Use the identity

cos A cos B =
1

2
(cos(A + B) + cos(A − B)) with A = 4x and B = 3x and integrate. Alternately, this is also a

three-row problem: This gives the second equivalent answer.

21. e2x
„ 1

2
x5 −

5

4
x4 +

5

2
x3 −

15

4
x2 +

15

4
x −

15

8

«

+ C. For this exercise you really should use the Table method, oth-

erwise you will find the amount of work overwhelming!

22.
x

2
(cos ln x + sin ln x) + C. See Example 331.

    
4

x + 1

2. 2 −
3x2 + x + 3

x3 + 2x + 1

3.
1

3

 

x
2 −

2

3
+

7/3

3x2 − 1

!

4. x2 − 1 +
2

x2 + 1

5. x
4

+ x
3

+ 2x
2

+ 2x + 2 +
3

x − 1

6.
3

2

 

x − 1 +
13x + 15

6x2 + 6x + 3

!
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x

x − 1

1

2.

Z x + 1

x
dx =

Z „

1 +
1

x

«

dx = x + ln |x| + C.

3.

Z x2 dx

x + 2
=

Z

 

x − 2 +
4

x + 2

!

dx =
x2

2
− 2x + 4 ln |x + 2| + C.

4.

Z x2 dx

x2 + 1
=

Z

 

1 −
1

x2 + 1

!

dx = x − Arctan x + C.

5. Since the denominator and the numerator have the same degree, we have to perform the long division first

I ≡
Z x2

(x − 1)(x + 1)
dx =

Z x2

x2 − 1
dx =

Z

 

1 +
1

x2 − 1

!

dx

=

Z

 

1 +
1

(x + 1)(x − 1)

!

dx =

Z

 

1 +
1

2
·

1

x − 1
−

1

2
·

1

x + 1

!

dx

= x +
1

2
ln |x − 1| −

1

2
ln |x + 1| + C.

Put6.
2x

(x − 1)(x − 3)
=

A

x − 1
+

B

x − 3
. Then 2x = A(x − 3) + B(x − 1). Setting x = 1 we have A = −1 and

setting x = 3 we have B = 3. Thus the required integral is

Z

 

−1

x − 1
+

3

x − 3

!

dx = 3 ln |x − 3| − ln |x − 1| + C.

7. Put
3x2

(x − 1)(x − 2)(x − 3)
=

A

x − 1
+

B

x − 2
+

C

x − 3
. Then

3x2 = A(x − 2)(x − 3) + B(x − 1)(x − 3) + C(x − 1)(x − 2).

Setting x = 1, 2, 3 respectively, we have A = 3/2, B = −12 and C = 27/2. Thus

Z 3x2 dx

(x − 1)(x − 2)(x − 3)
=

3

2
ln |x − 1| − 12 ln |x − 2| +

27

2
ln |x − 3| + C.

8 We start with long division:.

I ≡
Z 1

0

x3 − 1

x + 1
dx =

Z 1

0

 

x2 − x + 1 −
2

x + 1

!

dx

=
x3

3
−

x2

2
+ x − 2 ln |x + 1|

˛

˛

˛

˛

˛

˛

1

0

=
1

3
−

1

2
+ 1 − 2 ln 2 − 0 =

5

6
− ln 4.

9. Here we perform a small trick on the numerator of the integrand:

Z 3x

(x − 1)2
dx =

Z 3(x − 1) + 3

(x − 1)2
dx

=

Z 3

(x − 1)2
dx +

Z 3

x − 1
dx

= 3(1 − x)−1 + 3 ln |x − 1| + C.

Put10.
2x − 1

(x − 2)2(x + 1)
=

A

x + 1
+

B

x − 2
+

C

(x − 2)2
.

Then 2x − 1 = A(x − 2)
2

+ B(x − 2)(x + 1) + C(x + 1). Setting x = −1, we have −3 = A(−3)2 and hence

A = −1/3. Setting x = 2, we have 3 = 3C; so C = 1. Comparing the coefficients of x2 on both sides, we get
0 = A + B, which gives B = −A = 1/3. Thus

Z 2x − 1 dx

(x − 2)2(x + 1)
=

Z

 

−
1

3
·

1

x + 1
+

1

3
·

1

x − 2
+

1

(x − 2)2

!

dx

=
1

2 − x
+

1

3
ln |x − 2| −

1

3
ln |x + 1| + C.

By long division, we get11.
x4 + 1

x2 + 1
= x2 − 1 +

2

x2 + 1
. So

Z x4 + 1

x2 + 1
dx =

x3

3
− x + 2Arctan x + C.

Putting12. u = x2 , the integrand becomes
1

(u + 1)(u + 4)
=

1

3
·

1

u + 1
−

1

3

1

u + 4
. So

Z dx

(x2 + 1)(x2 + 4)
=

1

3

Z dx

x2 + 1
−

1

3

Z dx

x2 + 4

=
1

3
Arctan x −

1

6
Arctan

x

2
+ C.
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13. Put
1

x2(x − 1)(x + 2)
=

A

x
+

B

x2
+

C

x − 1
+

D

x + 2
.

The we have
1 = Ax(x − 1)(x + 2) + B(x − 1)(x + 2) + Cx2(x + 2) + Dx2(x − 1).

Setting x = 1, 0, −2 respectively, we have C = 1/3, B = −1/2 and D = −1/12. Comparing coefficients of x3 on

both sides, we have 0 = A + C + D, or A + 1
3

− 1
12

= 0 and hence A = − 1
4

. Thus

Z dx

x2(x − 1)(x + 2)
= −

1

4

Z dx

x
−

1

2

Z dx

x2
+

1

3

Z dx

x−1
−

1

12

Z dx

x+2

= −
1

4
ln |x| +

1

2x
+

1

3
ln |x − 1| −

1

12
ln |x + 2| + C.

14. Put

x5 + 1

x(x − 2)(x − 1)(x + 1)(x2 + 1)
=

A

x
+

B

x − 2
+

C

x − 1
+

D

x + 1
+

Ex + F

x2 + 1
.

Using the method of “covering” described in this section, we get A = 1/2, B = 11/10, C = −1/2 and D = 0. By

using the “plug-in method” described in the present section we have E = − 1
10

and F = 3
10

. Thus the partial fraction

decomposition for the integrand is

1

2
·

1

x
+

11

10
·

1

x − 2
−

1

2
·

1

x − 1
−

1

10
·

x

x2 + 1
+

3

10
·

1

x2 + 1
.

Thus the required integral is

1

2
ln |x| +

11

10
ln |x − 2| −

1

2
ln |x − 1| −

1

20
ln(x

2
+ 1) +

3

10
Arctan x + C.

15. Putting
2

x(x − 1)2(x2 + 1)
=

A

x
+

B

x − 1
+

C

(x − 1)2
+

Dx + E

x2 + 1
,

we have
2 = A(x − 1)

2
(x

2
+ 1) + Bx(x − 1)(x

2
+ 1) + Cx(x

2
+ 1) + (Dx + E)x(x − 1)

2
.

Setting x = 0, we obtain A = 2. Setting x = 1, we get C = 1. Next we set x = 2. This gives us an identity relating the
unknowns from A to E. Substituting A = 2 and C = 1 in this identity and then simplifying, we get a relation

5B + 2D + E = −9

between B, D and E. Setting x = 3 will give us another such a relation:

5B + 3D + E = −9.

From these two relations we can deduce that D = 0 and 5B + E = −9. Finally, setting x = −1 will give us yet another
relation among B, D and E:

B + D − E = −3.

Now it is not hard to solve for B and E: B = −2, E = 1. (Remark: if you are familiar with complex numbers, you can

find D and E efficiently by setting x = i to arrive at 2 = (Di+ E)i(i −1)2 , which gives Di+ E = 1 and hence D = 0
and E = 1, in view of the fact that D and E are real numbers.) We conclude

2

x(x − 1)2(x2 + 1)
=

2

x
−

2

x − 1
+

1

(x − 1)2
+

1

x2 + 1
.

So the required integral is equal to

Z 2 dx

x(x − 1)2(x2 + 1)
= 2 ln |x| − 2 ln |x − 1| −

1

x − 1
+ Arctan x + C.
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Z

sin3 3x dx =

Z

sin2 3x · sin 3x dx

=

Z

(1 − u
2
) · (−1/3)du = −

u

3
+

u3

9
+ C

= −
cos 3x

3
+

cos3 3x

9
+ C.

2. Let u = sin(2x − 1) so that du = 2 cos(2x − 1) dx and cos2(2x − 1) = 1 − u2.

Z

cos
3
(2x − 1) dx =

Z

cos
2
(2x − 1) · cos(2x − 1) dx

=

Z

(1 − u2) ·
1

2
du =

u

2
−

u3

6
+ C

=
sin(2x − 1)

2
−

sin3(2x − 1)

6
+ C.

3 Let. u = sin x so that du = cos x dx. Notice that x = 0 ⇒ u = 0 and x = π
2

⇒ u = 1. Thus

Z

π/2

0
sin

2
x cos

3
x dx =

Z

1

0
u
2
(1 − u

2
)du =

0

@

u3

3
−

u5

5

1

A

˛

˛

˛

˛

˛

˛

1

0

=
2

15
.

4. Let u = cos(x − 2). Then du = − sin(x − 2) dx and

Z

cos
2
(x − 2) sin

3
(x − 2) dx =

Z

u
2
(1 − u

2
)(−du) = −

u3

3
+

u5

5
+ C

= −
1

3
cos3(x − 2) +

1

5
cos5(x − 2) + C.

Let5. u = sin x. Then du = cos x dx Also,. x = π/2 ⇒ u = 1 and x = π ⇒ u = 0. So

Z

π

π/2
sin

3
x cos x dx =

Z

0

1
u
3

du =
u4

4

˛

˛

˛

˛

˛

˛

0

1

= −
1

4
.

The negative value in the answer is acceptable because cos x is negative when π/2 < x < π.

6. Set u = x2. Then du = 2x dx. So

Z

x sin
2
(x

2
) cos

2
(x

2
) dx =

1

2

Z

sin
2

u cos
2

u du =
1

8

Z

sin
2

2u du

=
1

8

Z

 

1 − cos 4u

2

!

du =
u

16
−

sin 4u

64
+ C

=
x2

16
−

sin(4x2)

64
+ C.

7 We use the “double angle” formulae several times:.

Z

sin
4

x cos
4

x dx =
1

16

Z

sin
4

2x dx =
1

16

Z

sin
2

2x sin
2

2x dx

=
1

16

Z

 

1 − cos 4x

2

!2

dx

=
1

64

Z

(1 − 2 cos 4x + cos2 4x) dx

=
1

64
x −

1

128
sin 4x +

1

64

Z 1 + cos 8x

2
dx

=
3

128
x −

1

128
sin 4x +

1

1024
sin 8x + C.

8. Let u = sin x. Then du = cos x dx and cos2 x = 1 − u2. So

Z

sin
4

x cos
5

x dx =

Z

u
4
(1 − u

2
)
2

du =
1

5
u
5 −

2

7
u
7

+
1

9
u
9

+ C

=
1

5
sin5 x −

2

7
sin7 x +

1

9
sin9 x + C.

Use the “double angle formula” twice:9.

Z

cos4 2x dx =

Z

 

1 + cos 4x

2

!2

dx

=
1

4

Z

(1 + 2 cos 4x + cos2 4x) dx

=
x

4
+

sin 4x

8
+

1

4

Z 1 + cos 8x

2
dx

=
3x

8
+

sin 4x

8
+

sin 8x

64
+ C.
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10. Let u = sin x. Then du = cos x dx and cos2 x = 1 − u2. So

Z

sin5 x cos3 x dx =

Z

u5(1 − u2)du =
u6

6
−

u8

8
+ C =

sin6 x

6
−

sin8 x

8
+ C.

11. Set u = cos x. Then du = − sin x dx and sin2 x = 1 − u2. So

Z

sin5 x cos4 x dx =

Z

sin4 x cos4 x · sin x dx =

Z

(1 − u2)2u4 (−du)

=

Z

(−u4 + 2u6 − u8) du

= −
1

5
u5 +

2

7
u7 −

1

9
u9 + C

= −
1

5
cos

5
x +

2

7
cos

7
x −

1

9
cos

9
x + C.

We use the “double angle formula” several times.12.

Z

sin6 x dx =

Z

 

1 − cos 2x

2

!3

dx

=
1

8

Z

(1 − 3 cos 2x + 3 cos2 2x − cos3 2x) dx

=
x

8
−

3

16
sin 2x +

3

8

Z 1 + cos 4x

2
dx −

1

8

Z

(1 − sin
2

2x) ·
d

dx

 

sin 2x

2

!

dx

=
5

16
x −

1

4
sin 2x +

1

48
sin

3
2x +

3

64
sin 4x + C.

Let13. u = sin x. Then du = cos x dx and cos6 x = (1 − sin2 x)3 = (1 − u2)3 . So

Z

cos
7

x dx =

Z

(1 − u
2
)
3

du =

Z

(1 − 3u
2

+ 3u
4 − u

6
) du

= u − u
3

+
3

5
u
5 −

1

7
u
7

+ C

= sin x − sin3 x +
3

5
sin5 x −

1

7
sin7 x + C.

   

2.
1

3
tan(3x + 1) + C. Let u = 3x + 1.

3. sec x + C, since this function’s derivative is sec x tan x.

4.
tan2 x

2
+ C. Let u = tan x, du = sec2 x dx.

5.
tan3 x

3
+ C. Let u = tan x, du = sec2 x dx.

6.
tan6 x

6
+ C. Let u = tan x, du = sec2 x dx.

7.
sec3 x

3
− sec x + C. Case m, n both ODD. Use (8.59) then let u = sec x, du = sec x tan x dx.

8.
tan5 x

5
+

tan7 x

7
+ C. Case m, n both EVEN. Solve for one copy of sec2 x then let u = tan x, du = sec2 x dx, in

the remaining.

9.
sec5 x

5
−

sec3 x

3
+ C. Case m, n both ODD. Factor out one copy of sec x tan x, use (8.59), then let u = sec x, du =

sec x tan x dx in the remaining.

10.
sec7 2x

14
−

sec5 2x

5
+

sec3 2x

6
+ C. Let u = 2x and use Example 375.

11.
tan6 2x

12
+C. Let u = 2x, du = 2 dx, and use Exercise 6, above or, more directly, let v = tan 2x, dv = 2 sec2 2x dx.

12.
tan2 x

2
+ ln | cos x|. Solve for tan2 x in (8.59), break up the integral into two parts, use the result in Exercise 1 for the

first integral, and let u = tan x in the second integral.

13.
1

6
sec5 x tan x +

5

24
sec3 x tan x +

5

16
(sec x tan x + ln | sec x + tan x|). Use Example 373 with k = 7, and then

apply Example 376.

14. See Example 369.

15.
1

4
sec

3
x tan x −

1

8
(sec x tan x + ln | sec x + tan x|). The case where m is ODD and n is EVEN. Solve for tan2 x

and use Example 373 with k = 5 along with Example 368.
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1

0

1

1 + x2
˛

˛

1

0

π

4

2.

Z 2 dx

x2 − 2x + 2
=

Z 2 dx

(x − 1)2 + 1
= 2 Arctan (x − 1) + C.

3. I =

Z dx

(x − 1)2 + 4
=

1

2
Arctan

x − 1

2
+ C.

4. There is no need to complete a square:

Z dx

x2 − 4x + 3
=

Z dx

(x − 1)(x − 3)

=

Z 1

2

 

1

x − 3
−

1

x − 1

!

dx

=
1

2
ln |x − 3| −

1

2
ln |x − 1| + C.

We need to complete the square in the denominator of the integrand:5.

Z 4

4x2 + 4x + 5
dx =

Z 4 dx

(2x + 1)2 + 4

=

Z dx
“

x − 1
2

”2
+ 1

= Arctan

„

x +
1

2

«

+ C.

6. The minus sign in front of x2 should be taken out first.

Z dx

4x − x2 − 3
= −

Z dx

(x − 1)(x − 3)

=
1

2
ln |x − 1| −

1

2
ln |x − 3| + C.

(For the last step, see the answer to Exercise 4 above.)

7. We have

Z 1
q

4x − x2
dx =

Z dx
q

−(x2 − 4x + 4 − 4)

=

Z dx
q

4 − (x − 2)2

=
1

2

Z dx
r

1 −
“

x−2
2

”2
= Arcsin

x − 2

2
+ C.

8 We have.

Z 0

−1

1

4x2 + 4x + 2
dx =

Z 0

−1

1

(2x + 1)2 + 1
dx

=
1

2
Arctan (2x + 1)

˛

˛

˛

˛

0

−1
= π/4.

9.

Z dx
q

2x − x2 + 1

=

Z dx
q

2 − (x − 1)2
= Arcsin

x − 1
√

2
+ C.

10.

Z dx

x2 + x + 1
=

Z dx

(x + 1/2)2 + 3/4
=

2
√

3
Arctan

 

2x + 1
√

3

!

+ C.

11. The roots of x2 + x − 1 are (−1 ±
√

5)/2; (these interesting numbers are related to the so-called Golden Ratio and the
Fibonacci sequence.) We have the following partial fraction decomposition:

1

x2 + x − 1
=

1
„

x − (−1+
√

5)
2

« „

x − (−1−
√

5)
2

« =
1

√
5

0

B

@

1

x − (−1+
√

5)
2

−
1

x − (−1−
√

5)
2

1

C

A
.

So

Z dx

x2 + x − 1
=

1
√

5

(

ln

˛

˛

˛

˛

˛

x −
(−1 +

√
5)

2

˛

˛

˛

˛

˛

− ln

˛

˛

˛

˛

˛

x −
(−1 −

√
5)

2

˛

˛

˛

˛

˛

)

+ C.

12. I =

Z dx

(2x + 1)

q

(2x + 1)2 − 1

=
1

2
Arcsec (2x + 1) + C,

since |2x + 1| = 2x + 1 for x > −1/2 (see Table 6.7).
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Set1. x = 2 sin θ. Then dx = 2 cos θ dθ and

q

4 − x2 = 2 cos θ. So

Z q

4 − x2 dx =

Z

2 cos θ · 2 cos θ dθ = 4

Z

cos
2

θ dθ

2= θ + sin 2θ + C = 2θ + 2 sin θ cos θ + C

2 Arcsin (= x/2) +
1

2
x

q

4 − x2 + C.

2. Let x = 3 tan θ. Then

q

x2 + 9 = 3 sec θ and dx = 3 sec2 θ dθ. Hence

Z q

x2 + 9 dx =

Z

3 sec θ · 3 sec2 θ dθ = 9

Z

sec3 θ dθ

=
9

2
{(tan θ sec θ + ln | sec θ + tan θ|} + C

=
x

2

q

x2 + 9 +
9

2
ln

»q

x2 + 9 + x

–

+ C.

(A constant from the ln term is absorbed by C.)

3. Let x = sec θ. Then

q

x2 − 1 = tan θ and dx = sec θ · tan θ dθ. Hence

Z q

x2 − 1 dx =

Z

sec θ tan
2

θ dθ

=
1

2
tan θ sec θ −

1

2
ln | sec θ + tan θ| + C

=
1

2
x

q

x2 − 1 −
1

2
ln

˛

˛

˛

˛

x +

q

x2 − 1

˛

˛

˛

˛

+ C.

4 Let. x − 2 = 2 sin θ. Then dx = 2 cos θ dθ and

q

4x − x2 =

q

−(x2 − 4x + 4 − 4) =

q

4 − (x − 2)2 = 2 cos θ.

So we have

Z q

4x − x2 dx =

Z

2 cos θ · 2 cos θ · dθ

= 2θ + sin 2θ + C

= 2θ + 2 sin θ cos θ + C

2 sin=
−1 x − 2

2
+

x − 2

2

q

4x − x2 + C.

5. Let x = 2 sin u. Then dx = 2 cos u du and (4 − x2)1/2 = 2 cos u. Thus

Z dx

(4 − x2)3/2
=

Z 2 cos u du

23 cos3 u
=

1

4

Z

sec2 u du

=
1

4
tan u + C =

1

4
·

sin u

cos u
+ C =

1

4
·

x
q

4 − x2
+ C.

6. Let x = 3 sin u. Then dx = 3 cos u du and (9 − x2)1/2 = 3 cos u. Thus

Z x2 dx

(9 − x2)3/2
=

Z 32 sin2 u · 3 cos u du

33 cos3 u
=

Z

tan2 u du

=

Z

(sec
2

u − 1) du = tan u − u + C =
sin u

cos u
− u + C

=
x

q

9 − x2
− Arcsin

x

3
+ C.

7. Let x = 2 sec θ. Then

q

x2 − 4 = 2 tan θ and dx = 2 sec θ tan θ dθ. Also notice that cos θ = 1/ sec θ = 2/x.

Z dx

x2
q

x2 − 4

=

Z 2 sec θ · tan θ dθ

4 sec2 θ · 2 tan θ

=
1

4

Z

cos θ dθ =
1

4
sin θ + C =

1

4

q

1 − cos2 θ + C

=
1

4

q

1 − (2/x)2 + C =

q

x2 − 4

4x
+ C.

8. Let 2x − 1 = tan θ. Then 2 dx = sec2 θ dθ and

q

4x2 − 4x + 2 =

q

(2x − 1)2 + 1 =

q

tan2 θ + 1 = sec θ.

Therefore we have

Z q

4x2 − 4x + 2 dx =
1

2

Z

sec
3

θ dθ

=
1

4
(tan θ sec θ + ln | sec θ + tan θ|) + C

=
1

4
(2x − 1)

q

4x2 − 4x + 2 +
1

4
ln

˛

˛

˛

˛

2x − 1 +

q

4x2 − 4x + 2

˛

˛

˛

˛

+ C.
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9. Let x = 3 tan θ. Then 9 + x2 = 9 sec2 θ and dx = 3 sec2 θ dθ. So

Z dx

(9 + x2)2
=

Z 3 sec2 θ dθ

81 sec4 θ
=

1

27

Z

cos
2

θ dθ

=
1

27

 

θ

2
+

sin 2θ

4

!

+ C

=
1

27

 1

2
Arctan

x

3
+

1

4
sin

„

2Arctan
x

3

«ff

+ C.

NOTE: It is possible to simplify the expression for sin(2Arctan x/3) ≡ sin 2θ:

sin 2θ = 2 sin θ cos θ = 2
sin θ

cos θ
· cos2 θ = 2 tan θ ·

1

sec2 θ

=
2 tan θ

1 + tan2 θ
=

2 · x/3

1 + (x/3)2
=

6x

9 + x2
.

10. The easiest way to solve this exercise is to use the substitution u =

q

4 − x2 . (This is highly nontrivial! At first sight one
would try the trigonometric substitution x = 2 sin θ. This method works, but the computation involved is rather tedious and

lengthy.) Then u2 = 4 − x2 and hence 2u du = −2x dx, which gives u du = −x dx. Now

dx

x
=

x dx

x2
=

−u du

4 − u2
=

u du

u2 − 4

and hence

Z

q

4 − x2

x
dx =

Z

u ·
u du

u2 − 4
=

Z

 

1 +
4

u2 − 4

!

du

= u +

Z

 

1

u − 2
−

1

u + 2

!

du

= u + ln |u − 2| − ln |u + 2| + C

= u + (ln |2 − u| + ln |2 + u|) − 2 ln |2 + u| + C

= u + ln |4 − u2| − 2 ln |u + 2| + C

=

q

4 − x2 + 2 ln |x| − 2 ln |2 +

q

4 − x2 | + C.

11. Let x = 5 tan θ. Then we have dx = 5 sec2 θ dθ, (x2 + 25)1/2 = 5 sec θ and (x2 + 25)3/2 = 53 sec3 θ. Hence

Z dx

(x2 + 25)3/2
=

Z 5 sec2 θ dθ

53 sec3 θ

=
1

25

Z

cos θ dθ

=
1

25
sin θ + C =

1

25

x
q

x2 + 25

+ C.

12. Let x = 2 sin θ. Then

q

4 − x2 = 2 cos θ and dx = 2 cos θ dθ. So

Z

q

4 − x2

x2
dx =

Z 2 cos θ

4 sin2 θ
· 2 cos θ dθ

=

Z

cot2 θ dθ

=

Z

(csc
2

θ − 1) dθ = − cot θ − θ + C

= −

q

4 − x2

x
− Arcsin

x

2
+ C.

13. Let x = a sin θ. Then dx = a cos θ dθ and hence

Z dx

x4
q

a2 − x2
=

Z a cos θ dθ

a4 sin4 θ · a cos θ

= a
−4

Z dθ

sin4 θ
= a

−4
Z

csc
4

θ dθ

= a
−4

Z

(csc
2

θ + csc
2

θ cot
2

θ) dθ

= a
−4

0

@− cot θ −
cot3 θ

3

1

A + C,

= −
1

a4
·

(a2 − x2)1/2

x
−

1

3a4
·

(a2 − x2)3/2

x3
+ C.

14. Let x = a sec θ. Then dx = a sec θ tan θ and hence

Z dx

x4
q

x2 − a2
=

Z a sec θ tan θ dθ

a4 sec4 θ · a tan θ

=
1

a4

Z

cos3 θ dθ =
1

a4

Z

(1 − sin2 θ) cos θ dθ

=
1

a4

0

@sin θ −
sin3 θ

3

1

A+ C

=
1

a4

0

@

(x2 − a2)1/2

x
−

1

3

(x2 − a2)3/2

x3

1

A + C.
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Notice that

sin θ = (1 − cos
2

θ)
1/2

= (1 − sec
−2

θ)
−1/2

=

0

@1 −
a2

x2

1

A

1/2

=
(x2 − a2)1/2

x
,

for x > 0.

15. We have

I ≡
Z

q

x2 + 2x − 3

x + 1
dx

=

Z

q

(x + 1)2 − 4

x + 1
dx =

Z

q

u2 − 4

u
du,

where u = x + 1. Use the tricky substitution similar to the one in Exercise 8 above: v =

q

u2 − 4 ≡
q

x2 + 2x − 3.

Then v2 = u2 − 4 and hence 2vdv = 2udu, or vdv = udu. Thus

du

u
=

udu

u2
=

vdv

v2 + 4
.

Now we can complete our evaluation as follows:

I =

Z v2dv

v2 + 4
=

Z

 

1 −
4

v2 + 4

!

dv

= v − 2Arctan
v

2
+ C

=

q

x2 + 2x − 3 − 2Arctan

q

x2 + 2x − 3

2
+ C.

16. Let u = x2 + 2x + 5. Then du = (2x + 2)dx and hence

Z (2x + 1) dx
q

x2 + 2x + 5

=

Z (2x + 2 − 1) dx
q

x2 + 2x + 5

=

Z du

√
u

− I = 2
√

u − I = 2

q

x2 + 2x + 5 − I,

where

I =

Z dx
q

x2 + 2x + 5

≡
Z dx
q

(x + 1)2 + 4

.

Let x + 1 = 2 tan θ. Then dx = 2 sec2 θ dθ and

q

x2 + 2x + 5 = 2 sec θ. So

I =

Z 2 sec2 θ dθ

2 sec θ
=

Z

sec θ dθ = ln | tan θ + sec θ| + C

= ln

˛

˛

˛

˛

x + 1 +

q

x2 + 2x + 5

˛

˛

˛

˛

+ C,

where a factor of 1
2

inside the logarithm symbol is absorbed by the integral constant C. Thus our final answer is

Z (2x + 1) dx
q

x2 + 2x + 5

= 2

q

x2 + 2x + 5 − ln

˛

˛

˛

˛

x + 1 +

q

x2 + 2x + 5

˛

˛

˛

˛

+ C.
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1. Yes, x = 0 is an infinite discontinuity.

2. No, the integrand is continuous on [−1, 1].

3. Yes, x = 0 is an infinite discontinuity.

4. Yes, x = 1 is an infinite discontinuity (and ∞ is an upper limit).

5. Yes, x = −1 is an infinite discontinuity.

6. No, the integrand is continuous on [−1, 1].

7. Yes, x = −π, π are each infinite discontinuities of the cosecant function.

8. Yes, ±∞ are the limits of integration.

9. Yes, x = 0 gives an indeterminate form of the type 0 · ∞ in the integrand.

10. Yes, ±∞ are the limits of integration.

11. 2. This is because lim
T→∞

Z

T

0
x
−1.5

dx = lim
T→∞

 

−2
√

T
+ 2

!

= 2.

12. +∞. This is because lim
T→∞

Z

T

2
x
−1/2

dx = lim
T→∞

„

2T
1/2 − 2

√
2

«

= +∞.

13. +∞. Note that lim
T→0+

1

2

Z

2

T

dx

x
= lim

T→0+

„ 1

2
ln |x|

« ˛

˛

˛

˛

2

T
= lim

T→0+

„ 1

2
ln 2 −

1

2
ln T

«

= −(−∞) = +∞.

14. 2. Use Integration by Parts (with the Table Method) and L’Hospital’s Rule twice.

This gives lim
T→∞

Z T

0
x2 e−x dx = lim

T→∞

0

@2 −
T2 + 2T + 2

eT

1

A = 2.

15. 0. Use the substitution u = 1 + x2 , du = 2x dx to find an antiderivative and note that
Z ∞
−∞

2x

(1 + x2)2
dx =

Z

0

−∞
2x

(1 + x2)2
dx +

Z ∞
0

2x

(1 + x2)2
dx.

= lim
T→−∞

Z

0

T

2x

(1 + x2)2
dx + lim

T→∞

Z

T

0

2x

(1 + x2)2
dx,

= lim
T→−∞

 

−
1

1 + x2

!

˛

˛

˛

˛

0

T
+ lim

T→∞

 

−
1

1 + x2

!

˛

˛

˛

˛

T

0
= −1 + 0 + 0 − (−1) = 0.

16. −1. Note that the infinite discontinuity is at x = −1 only. Now, use the substitution u = 1 − x2 , − du
2

= x dx. Then
Z 0

−1

x
q

1 − x2
dx = lim

T→−1

„

−
q

1 − T2
«˛

˛

˛

˛

0

T
= −1 − 0 = −1.

17. Diverges (or does not exist). There is one infinite discontinuity at x = 1. First, use partial fractions here to find that
1

x2 − 1
=

1

2
·

1

x − 1
−

1

2
·

1

x + 1
.

Next, using the definitions, we see that
Z 2

0

1

x2 − 1
dx =

Z 1

0

1

x2 − 1
dx +

Z 2

1

1

x2 − 1
dx =

= lim
T→1−

Z T

0

1

x2 − 1
dx + lim

T→1+

Z 2

T

1

x2 − 1
dx = lim

T→1−

„ 1

2
ln |x − 1| −

1

2
ln |x + 1|

« ˛

˛

˛

˛

T

0
+

+ lim
T→1+

„ 1

2
ln |x − 1| −

1

2
ln |x + 1|

« ˛

˛

˛

˛

2

T
=

= lim
T→1−

 

1

2
ln

˛

˛

˛

˛

x − 1

x + 1

˛

˛

˛

˛

!

˛

˛

˛

˛

T

0
+ lim

T→1+

 

1

2
ln

˛

˛

˛

˛

x − 1

x + 1

˛

˛

˛

˛

!

˛

˛

˛

˛

2

T
=,

= lim
T→1−

 

1

2
ln

˛

˛

˛

˛

T − 1

T + 1

˛

˛

˛

˛

−
1

2
ln | − 1|

!

+ lim
T→1+

 

1

2
ln

˛

˛

˛

˛

1

3

˛

˛

˛

˛

−
1

2
ln

˛

˛

˛

˛

T − 1

T + 1

˛

˛

˛

˛

!

= = (−∞ − 0) + (− 1
2

ln 3 −

(−∞) = ∞ − ∞, and so the limit does not exist.
So, the improper integral diverges.

18. −∞. See the (previous) Exercise 17 above for more details. In this case the discontinuity, x = 1, is at an end-point. Thus,
using partial fractions as before, we find that
Z

2

1

1

1 − x2
dx = lim

T→1+

Z

2

T

1

1 − x2
dx = − lim

T→1+

Z

2

T

1

x2 − 1
dx =

= − lim
T→1+

 

1

2
ln

˛

˛

˛

˛

x − 1

x + 1

˛

˛

˛

˛

!

˛

˛

˛

˛

2

T
= −

„

−
1

2
ln 3 − (−∞)

«

= −∞.

19. 1
2

. Use Integration by Parts and the Sandwich Theorem to find that
Z ∞
0

e−x sin x dx = lim
T→∞

Z T

0
e−x sin x dx = lim

T→∞
1

2

“

−e−x cos x − e−x sin x
”

˛

˛

˛

˛

T

0

= lim
T→∞

 

1

2

 

−
cos T

eT
−

sin T

eT

!

−
„

−
1

2

«

!

=
1

2
.

Recall that the Sandwich Theorem tells us that, in this case,

0 ≤ lim
T→∞

˛

˛

˛

˛

cos T

eT

˛

˛

˛

˛

≤ lim
T→∞

˛

˛

˛

˛

1

eT

˛

˛

˛

˛

= 0,

and so the required limit is also 0. A similar argument applies to the other limit.

20. +∞. The infinite discontinuity is a x = 1. Use the substitution u = ln x, du = dx
x

. Then
Z 2

1

dx

x ln x
= lim

T→1+

Z 2

T

dx

x ln x
l= im

T→1+
ln(ln x))

˛

˛

˛

˛

2

T
=

lim=
T→1+

(ln(ln2) − ln(ln T )) = −(−∞) = +∞.

21.
10

7
. The integrand is the same as

Z 1

−1

„

x2/5 + x−3/5
«

dx and so the infinite discontinuity (at x = 0) is in the

second term only. So,

Z 1

−1

„

x2/5 + x−3/5
«

dx =

Z 1

−1
x2/5 dx +

Z 1

−1
x−3/5 dx =

10

7
+

Z 0

−1
x−3/5 dx +

Z 1

0
x
−3/5

dx =
10

7
+ lim

T→0−

Z T

−1
x
−3/5

dx + lim
T→0+

Z 1

T
x
−3/5

dx =
10

7
li+ m

T→0−

0

@

5T2/5

2
−

5

2

1

A +

lim
T→0+

0

@

5

2
−

5T2/5

2

1

A =
10

7
−

5

2
+

5

2
=

10

7
.
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Now, using Newton’s Method with x0 = 1.5 as an initial estimate, n = 3, and f(x) = x2 + 5x + 6 − e2x , we
obtain the approximate value of the zero of f as 1.3358. The common value of these curves at this point is given by

e2(1.3358) ≈ 14.46. This represents the point of intersection of the curves x2 + 5x + 6 and e2x , in the interval [0, 2].
Beyond x = 2 we see that these curves get further apart so they cannot intersect once again. Since we are dealing with
horizontal slices we need to write down the inverse function of each of these functions. For example, the inverse function of

y = x2 + 5x + 6 is given by solving for x in terms of y using the quadratic formula. This gives

x =
−5 ± √

1 + 4y

2
.

Since x ≥ 0 here, we must choose the +-sign. On the other hand, the inverse function of the function whose values are

y = e2x is simply given by x = (ln y)/2. So, the area of a typical horizontal slice in the darker region above is given by

 

ln y

2
−

−5 +
√

1 + 4y

2

!

dy,

and this formula is valid provided 6 ≤ y ≤ 14.46.

If the horizontal slice is in the lighter area above, then its area is given by

 

ln y

2
− 0

!

dy =

 

ln y

2

!

dy,

and this formula is valid whenever 0 ≤ y ≤ 6.

As a check, note that both slice formulae agree when y = 6.

5. The horizontal line y = 5 intersects with the graph of y = e2x at the point P ≡ ( ln 5
2

, 5), approxmately (0.8047, 5).

Draw a vertical line through P . The area of a typical vertical slice on the left of this line is

((x2 + 5x + 6) − 5) dx ≡ (x2 + 5x + 1) dx.

On the right of this line we have

(x
2

+ 5x + 6 − e
2x

) dx

instead.

63
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1.V ertical  slice  area  =  (0  −  (x2  −  1))  dx  =  (1  −  x2)  dx.

2.H orizontal  slice  area  
√

y  +  1  dy.

3.V  ertical  slice  area  =  ((x2  +5x+6)− (e2x  ))  dx  =  (x2  +5x+6−e2x  )  dx.  Note  that  e2x  is  smaller  than  x2  +5x+6
on  this  interval.  See  the  figure  in  the  margin,  on  the  left.

4.S ketch  the  region  bounded  by  these  curves.  You  should  get  a  region  like  the  one  below:
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1. Area =

Z 1

−1
(1 − x2) dx =

4

3
.

2. Area =

Z

2

−2
(4 − x

2
) dx =

0

@4x −
x3

3

1

A

˛

˛

˛

˛

˛

˛

2

−2

=
32

3
.

3. Area =

Z 1

0
(x2 + 5x + 6 − e2x)dx =

0

@

x3

3
+

5

2
x2 + 6x −

e2x

2

1

A

˛

˛

˛

˛

˛

˛

1

0

=
28

3
−

e2

2

≈ 5.63881.

4. Area =

Z

1.3358

0
(x

2
+ 5x + 6 − e

2x
) dx ≈ 6.539.

5. Area =

Z 1

0
yeydy =

“

yey − ey
”

˛

˛

˛

˛

1

0
= 1.

6. π2 − 4. This curve lies above the x−axis because sin x ≥ 0 for 0 ≤ x ≤ π. It follows that x2 sin x ≥ 0 for 0 ≤ x ≤ π,
and so the area is given by the definite integral

Area =

Z π

0
x2 sin x dx = π2 − 4,

where the Table method of Integration by Parts is used to evaluate it. In particular, we note that an antiderivative is given
by

Z x
t
2

sin t dt = −x
2

cos x + 2x sin x + 2 cos x.

7. Area =

Z π

0
cos2 x sin x dx = −

cos3 x

3

˛

˛

˛

˛

˛

˛

π

0

=
2

3
.

8. Using the Table method of Integration by Parts (since this is a three-row problem), we find

Z

sin 3x · cos 5x dx =
5

16
sin 5x · sin 3x +

3

16
cos 3x · cos 5x + C.

Alternatively, this integral can be computed as follows:

Z

sin 3x · cos 5x dx =

Z 1

2
(sin 8x − sin 2x) dx = −

1

16
cos 8x +

1

4
cos 2x + C.

(Don’t be fooled by its different look! This is the same answer as the above.) Notice that, for x in the interval [π/10, 3π/10],
3x is in [3π/10, 9π/10] and hence sin 3x is positive. However, for the same range of x, 5x is in [π/2, 3π/2] and hence
cos 3x is negative or zero. Hence the area of the region is the absolute value of

Z 3π/10

π/10
sin 3x · cos 5x dx =

„ 5

16
sin 5x · sin 3x +

3

16
cos 3x · cos 5x

«˛

˛

˛

˛

3π/10

π/10

= −
5

16

„

sin
9

10
π + sin

3

10
π

«

= −
5
√

5

32
≈ −0.35.

Here we use the facts that cos π
2

= 0, cos 3π
2

= 0, sin π
2

= 1 and sin 3π
2

= −1. It turns out that sin 9
10

π +

sin 3
10

π =

√
5

2
, which is very hard to prove!

9.
9

2
. Refer to the graph below:

The points of intersection of these two graphs are given by setting y = −x into the expression x + y2 = 2 and solving for
x. This gives the two points, x = 1 and x = −2. Note that if we use vertical slices we will need two integrals. Solving for

x in terms of y gives x = −y and x = 2− y2 and the limits of integration are then y = −1 and y = 2. The coordinates

of the endpoints of a typical horizontal slice are given by (−y, y) and (2 − y2, y). So, the corresponding integral is given
by

Area =

Z 2

−1
(2 − y

2
+ y) dy =

9

2
.

10 The required area is.

Z 2

−2
(y2 − (y − 5)) dy =

0

@

y3

3
−

y2

2
+ 5y

1

A

˛

˛

˛

˛

˛

˛

2

−2

=
76

3
.
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11. 4 units. Note the symmetry: Since, f is an even function, (see Chapter 5), its graph over the interval [−π, π] is symmetric
with respect to the y−axis and so, since f is “V”-shaped and positive, the area is given by

Area = 2 × (area to the right of x = 0),

and this gives

= 2Area

Z π

0
(sin x) dx = 4 units.

12. 4
√

2. The graph on the right represents the two curves over the interval [ π
4

, 9π
4

]:

Using the symmetry in the graph we see that

2Area =

Z 5π
4

π
4

(sin x − cos x) dx = 4
√

2,

since cos
5π

4
= −

√
2

2
, sin

5π

4
= −

√
2

2
.

    

1
0 (1 − y) · 2πy dy.

2. Using a vertical slice:
R 1
0 (x − x2) · 2πx dx;

using a horizontal slice:
R 1
0 π(y − y2) dy.

Using a vertical slice:3.
R 1
0 3π x2 dx; (we do not use horizontal slices because this method is too complicated for the present

problem.)

4. Using a vertical slice:
R 2
0 2x · 2πx dx;

using a horizontal slice:
R 1
0 π(22 − (y/2)2) dy.

5. Using a vertical slice:
R 1
0 (2x − x) · 2πx dx =

R 1
0 2πx2 dx.

Using a horizontal slice:

3π

4

Z

1

0
y
2

dy +

Z

2

1
π

0

@1 −
y2

4

1

A dy.

6. π/3; π/6; 8π; 32
3

π; 2
3

π.
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1.U  sing  a  vertical  slice:  
R  1
0  πx2  dx;

using  a  horizontal  slice  
R
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3. 2
√

5. Here y′ = 2, and so L =

Z 1

−1

p

1 + 4 dx = 2
√

5.

4. 2
√

2. Now x′(y) = 1. So, L =

Z 2

0

√
2 dy = 3

√
2.

5. 3
√

2. This is the same as y = x + 3, so y′ = 1, and it follows that L =

Z 1

−2

√
2 dx = 3

√
2.

6.
52

3
. Now y′(x) =

√
x and so (if we set u = 1 + x, du = dx) we see that L =

Z 8

0

p

1 + x dx =
52

3
.

7.
1

2

√
5 +

1

4
ln
“√

5 + 2
”

. In this case, L =

Z 1

0

q

1 + 4x2 dx. Use the substitution 2x = tan θ, 2 dx = sec2θ dθ,

and the usual identity to obtain an

antiderivative in the form
1

2

Z

sec
3

θ dθ We have,Now, see Example 368 for this integral..
1

2

Z

sec
3

θ dθ =

1

4
(tan θ sec θ + ln | sec θ + tan θ|). But tan θ = 2x, and so sec θ =

q

1 + 4x2 . Thus, L =

Z 1

0

q

1 + 4x2 dx =

1

4

„

2x

q

1 + 4x2 + ln |
q

1 + 4x2 + 2x|
« ˛

˛

˛

˛

1

0
=

1

4
·
“

2
√

5 + ln(2 +
√

5)
”

, and the rest follows.

8.
√

65 +
1

8
ln
“

8 +
√

65
”

. Use the method of Example 7 above. The arc length is given by L =

Z 2

0

q

1 + 16x2 dx. Now

use the substitution 4x = tan θ, 4 dx = sec2θ dθ, and an antiderivative will look like
1

4

Z

sec3 θ dθ. Finally, we see

that

L =

Z 2

0

q

1 + 16x2 dx =
1

8

„

4x

q

1 + 16x2 + ln |
q

1 + 16x2 + 4x|
« ˛

˛

˛

˛

2

0
=

1

8
·
“

8
√

65 + ln(8 +
√

65)
”

, and the

result follows.

9.
1

2

√
17 +

1

8
ln(4 +

√
17). See Exercise 8, above. We know that L =

Z

1

0

q

1 + 16x2 dx. Use the substitution

4x = tan θ, 4 dx = sec2θ dθ, and the usual identity to obtain an antiderivative in the form

1

4

Z

sec3 θ dθ. Reverting back to the original variables, we get,

L =

Z 1

0

q

1 + 16x2 dx =
1

8

„

4x

q

1 + 16x2 + ln |
q

1 + 16x2 + 4x|
« ˛

˛

˛

˛

1

0
=

1

8
·
“

4
√

17 + ln(4 +
√

17)
”

=

1

2

√
17 +

1

8
ln(4 +

√
17).

10.
181

9
. Note that 1 + y

′
(x)

2
= 1 +

„

x
6 −

1

2
+

1

16x6

«

=

„

x
3

+
1

4x3

«2
.

It follows that the expression for the arc length is given by L =

Z

3

1

„

x
3

+
1

4x3

«

dx, giving the stated result.

11. 4π. Here, x′(t) = −2 sin t, y′(t) = 2 cos t so that the length of the arc is given by L =

Z

2π

0

q

4 sin2 t + 4 cos2 t dt =

Z 2π

0

√
4 · 1 dt = 2 · 2π = 4π.

12. 2π. Now, x′(t) = − sin t, y′(t) = − cos t so that the length of the arc is given by L =

Z

2π

0

q

sin2 t + cos2 t dt =

Z 2π

0

√
1 dt = 1 · 2π = 2π.

13.
√

2. In this example, x′(t) = 1 y, ′(t) = −1 so that the length of the arc is given by L =

Z

1

0

p

1 + 1 dt =

Z 1

0

√
2 dt =

√
2.

14. 3
2

. Use the Fundamental Theorem of Calculus to show that y′(x) =

q

x2 − 1. Then,

q

1 + (y′(x))2 =
p

x2 = x. So,

L =

Z 2

1
x dx =

3

2
.

15.
√

2. Once again, use the Fundamental Theorem of Calculus to show

that y′(x) =
√

cos 2x. Then,

q

1 + (y′(x))2 =
p

1 + cos 2x =
p

2 cos2 x, b identity (which one?). So,y a trig.

L =

Z π/2

0

p

2 cos2 x dx =
√

2

Z π/2

0
cos x dx =

√
2.

16. 10.602. See Example 476 except that we solve for x in terms of y > 0 (because the given interval is a y−interval). The
length L is then given by doubling the basic integral over half the curve, that is,

L = 2

Z

1

−1

v

u

u

t

4 − 3y2

4(1 − y2)
dy ≈

Z

0.99

−0.99

v

u

u

t

4 − 3y2

4(1 − y2)
dy ≈ 5.3010.

17. 3.3428. The length L is given by an integral of the form L =

Z 4

1

q

1 + x2

x
dx.

We use a trigonometric substitution x = tan θ, dx = sec2θ dθ. Then,

q

1 + x2 = sec θ and an antiderivative is
given by

Z sec3θ

tan θ
dθ =

Z secθ

tan θ

“

1 + tan
2

θ
”

dθ =

Z sec θ

tan θ
dθ +

Z

sec θ tan θ dθ =

Z

csc θ dθ + sec θ = ln | csc θ − cot θ| + sec θ.

Since x = tan θ it follows that csc θ =
sec θ

tan θ
=

q

1 + x2

x
, cot θ =

1

x
. So an antiderivative is given by

Z

q

1 + x2

x
dx =

DO NOT COPYDO NOT COPYPROTECTED BY COPYRIGHTPROTECTED BY COPYRIGHT

     

1.2 .  Since  y′  =  0,  it  follows  that  L  =  
Z  2  √

1  dx  =  2.
  0

4  
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√
2.2.4

√
2.  Since  y′  =  1,  it  follows  that  L  =  

Z

0  

p
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ln

˛

˛

˛

˛

q

1 + x2

x
−

1

x

˛

˛

˛

˛

+

q

1 + x2 . Finally, we see that L =

Z

4

1

q

1 + x2

x
dx =

0

B

@
ln

˛

˛

˛

˛

q

1 + x2

x
−

1

x

˛

˛

˛

˛

+

q

1 + x2

1

C

A

˛

˛

˛

˛

4

1

=

 

ln

˛

˛

˛

˛

√
17

4
−

1

4

˛

˛

˛

˛

+
√

17

!

−
„

ln

˛

˛

˛

˛

√
2 − 1

˛

˛

˛

˛

+
√

2

«

=
√

17 −
√

2 + ln

˛

˛

˛

˛

√
17 − 1

4

˛

˛

˛

˛

− ln

˛

˛

˛

˛

√
2 − 1

˛

˛

˛

˛

≈ 3.3428.

18. ln(1 +
√

2) ≈ 0.8813. Here, y′(x) = tan x and so

q

1 + y′(x)2 =

q

1 + tan2 x =
p

sec2 x = sec x. So, the arc
length is given by

Z

π/4

0
sec x dx = ln | sec x + tan x|

˛

˛

˛

˛

π/4

0
= ln(

√
2 + 1) − ln(1 + 0) = ln(1 +

√
2).

19. 1
2

√
5− 1

4
ln(

√
5−2). See Exercise 7, above for the evaluation of the integral. Note that −

1

4
ln(

√
5−2) =

1

4
ln(

√
5+2).

Follow the hints.20.

    
= 3.75.

2. 1.33. Set m1 at x1 = 0, m2 at x2 = 1 and m3 at x3 = 2. Then x = 1.33.

3. (x.y) =

„ 5

12
,

1

3

«

. Note that x =

P

mixi
P

mi

and y =

P

miyi
P

mi

where (xi, yi)

are the coordinates of mi. In this case, x =
4 · 0 + 5 · 1

12
=

5

12
. Similarly, y =

4 · 1 + 0

12
=

1

3
. Note that even

though the system of masses is at the vertices of an isosceles triangle, the center of mas is not along the bisector of the
right-angle (which is the line of symmetry). This doesn’t contradict the Symmetry Principle since the masses are not all the
same!

4. (x.y) =

 

1,

√
3

3

!

. As before, x =

P

mixi
P

mi

and y =

P

miyi
P

mi

where (xi, yi)

are the coordinates of mi. Here, x =
0 + 6 + 3

9
= 1. Similarly, y =

0 + 0 + 3
√

3

9
=

√
3

3
. In this exercise the

masses are all the same and the triangle is equilateral, so (by the Symmetry Principle) the center of mass must lie along the
line of symmetry (which it does), that is, it must lie on the line x = 1 which bisects the base of the triangle.

5.

 

0,
4R

3π

!

. The total mass m =
πR2δ

2
since we are dealing with one-half the area of a circle and δ is constant. This use

of geometry saves us from actually calculating the mass integral which looks like

Z R

−R

q

R2 − x2 δ dx. Next, the moment

about the y−axis is given by My =

Z R

−R
xslice δ dA = δ

Z R

−R
x

q

R2 − x2 dx. Now, let x = R cos θ, etc. But

even simpler is the remark that the integrand, x

q

R2 − x2 , is an odd function defined over a symmetric interval and so its

integral must be zero. Either way, this gives Mx = δ

Z R

−R
x

q

R2 − x2 dx = 0 and so x = 0, i.e., the center of mass

lies along the axis of symmetry (which is the y−axis, since δ is constant).

Similarly we find the moment about the x−axis, Mx =

Z R

−R
yslice δ dA =

δ

2

Z R

−R

“

R2 − x2
”

dx =
δ

2

4R3

3
=

2R3δ

3
. It follows that the y−coordinate, y, of the center of mass is given by y =

Mx

m
=

2R3δ

3
·

2

πR2δ
=

4R

3π
.

6.

 

b

2
,

h

2

!

. Use of geometry shows us that the total mass is its area times its density, that is, m = bhδ. Next, x =

Z b

0
xslice δ dA =

1

bhδ

Z b

0
xhδ dx =

b

2
. Similarly, y =

Z b

0
yslice δ dA =

1

bhδ

Z b

0

h

2
hδ dx =

h

2
.

7.

„

0,
2

3

«

. The region is an inverted triangle with a vertex at the origin and opposite side equal to 2 units. Its total mass is

its area times its density, which, in this case, is δ. So, m = δ. Let f(x) = 1 and g(x) = 1 − |x|, over [−1, 1]. Note
that the region can be described by means of these two graphs. Also, f(x) ≥ g(x) and so we can use the formulae already

derived for the center of mass. So, x =
1

δ

Z 1

−1
xslice δ dA =

1

δ

Z 1

−1
x (1 − |x|) δ dx =

1

δ

Z 0

−1
x (1 + x) δ dx+

1

δ

Z 1

0
x (1 − x) δ dx = 0. Next, y =

1

δ

Z 1

−1
yslice δ dA =

1

δ

Z 1

−1

 

1 + |x|
2

!

(1 − |x|) δ dx =
1

2δ

Z 1

−1

“

1 − x2
”

δ dx =

2

3
.

8.

„

−
1

12
,

1

3

«

. The total mass is m =

Z 1

−1
δ(x) dx =

Z 1

−1
(1 − x) dx = 2. Next, x =

1

2

Z 1

−1
xslice δ dA =

1

2

Z 1

−1
x (1 − |x|) (1 − x) dx =

1

2

Z

0

−1
x (1 + x) (1 − x) dx +

1

2

Z

1

0
x (1 − x) (1 − x) dx =

„ 1

2

«

·
 −1

6

!

= −
1

12
.

Similarly, y =
1

2

Z 1

−1
yslice δ dA =

1

2

Z 1

−1

 

1 + |x|
2

!

(1 − |x|) (1 − x) dx =
1

4

Z 1

−1
(1 − x2) (1 − x) dx =

1

3
.

9.

„ 3

5
,

3

8

«

. The total mass, m = δ

Z 1

0

√
x dx =

2δ

3
. So,

x =
3

2δ

Z 1

0
xslice δ dA =

3

2

Z 1

0
x

√
x dx =

3

2

Z 1

0
x3/2 dx =

3

5
.

Furthermore,

y =
3

2δ

Z 1

0
yslice δ dA =

3

2

Z 1

0

√
x

2

√
x dx =

3

4

Z 1

0
x dx =

3

8
.
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10.

„ 3

2
,

3

10

«

. The total mass, m = δ

Z 2

0

x2

4
dx =

2δ

3
. So,

x =
3

2δ

Z 2

0
xslice δ dA =

3

2δ

Z 2

0
x δ

x2

4
dx =

3

8

Z 2

0
x3 dx =

3

2
.

Similarly,

y =
3

2δ

Z

2

0
yslice δ dA =

3

2δ

Z

2

0
δ

x2

8

x2

4
dx =

3

2 · 32

Z

2

0
x
4

dx =
3

10
.

11.

„ 1

2
,

π

4

«

. The graph of this function is positive on [0, 1]. The total mass, m = δ

Z 1

0
2 sin(πx) dx = 2δ

 

−
cos(πx)

π

!

˛

˛

˛

˛

1

0
=

4δ

π
. So,

x =
π

4δ

Z

1

0
xslice δ dA =

π

4δ

Z

1

0
x 2 sin(πx) δ dx

=
π

2

Z 1

0
x sin(πx) dx =

1

2
.

Similarly,

y =
π

4δ

Z 1

0
yslice δ dA =

π

4δ

Z 1

0

2 sin(πx)

2
δ 2 sin(πx) dx =

π

2

Z 1

0
sin2(πx) dx =

π

2

Z 1

0

1 − cos(2πx)

2
dx =

π

4
. Note the symmetry about the line x = 1/2 so that the center of mass must lie along this line.

12.

0

@

2(e2 − 1)

1 + e2
,

3e4 + 1

8(1 + e2)

1

A. The total mass is m =

Z 2

0
x δ e

x
dx = δ

Z 2

0
x e

x
dx = (e

2
+ 1)δ. Next,

x =
1

1 + e2

Z 2

0
x2 ex dx =

2e2 − 2

1 + e2
. Finally, one more application of

Integration by Parts (or the Table Method)

y =
1

2(1 + e2)

Z 2

0
x e2x dx =

3e4 + 1

8(1 + e2)
.

13.

 

0,
11

3
√

3 + 2π

!

. Since δ = 2, the total mass is m =

Z 1

−1

q

4 − x2 δ dx = 2

Z 1

−1

q

4 − x2 dx = 2
√

3 +
4π

3
,

where we used the trig. substitution x = 2 sin θ, etc.

The geometric area is not so easy to calculate in this case, so we return to the integral definition. Now, because of symmetry
about the line x = 0 and since δ is constant, we must have

x = 0.

Furthermore,

y =
3

6
√

3 + 4π

Z 1

−1

q

4 − x2

2

q

4 − x2 2 dx =
3

6
√

3 + 4π

Z 1

−1
(4 − x2) dx =

3

6
√

3 + 4π
·
22

3
=

11

3
√

3 + 2π
.

14.

„ 6

5
, −

2

5

«

, see the solved example. The total mass is

m =

Z 2

0
(6x − 3x2) 2x dx = 8. Next, x =

1

8

Z 2

0
x (6x − 3x2) 2x dx =

6

5
. Similarly,

y =
1

8

Z 2

0

x2 − 2x

2
(6x − 3x2) 2x dx = −

2

5
.

    

1.
π

3
=

Z 1

0
π y2 dy =

Z 1

0
2π x(1 − x) dx.

2.
π

3
=

Z 1

0
π x2 dx =

Z 1

0
2π y(1 − y) dy.

3.
π

3
=

Z 1

0
π y

2
dy =

Z 1/2

0
π (1 − 4x

2
) dx.

4.
4π

3
=

Z 1

0
4π x

2
dx =

Z 2

0
π

0

@1 −
y2

4

1

A dy.

5. 16π
3

(you’ll need two terms if you use horizontal slices here).

16π

3
=

Z 2

0
2π x2 dx

=
3π

4

Z 2

0
y2 dy + π

Z 4

2

0

@4 −
y2

4

1

A dy.

6.
8π

5
= 4π

Z

1

0
y
3/2

dy =

Z

1

−1

“

1 − x
4
”

dx.

7.
π2

2
= π

Z π

0
sin2 x dx = 4π

Z 1

0
y Arcsin y dy.

8. π2−2π = 2π

Z π/2

0
x cos x dx = π

Z 1

0
Arccos 2y dy. This last integral is very hard to evaluate! Try the substitution

y = cos u, dy = − sin u du. Then use the Table method and then back-substitute. The first intergal in x is evaluated
using the Table method.

9.
π

4
(e

2 −1) = π

Z 1

0
x
2

e
2x

dx. You can’t use horizontal slices here because it is almost impossible to solve for x in terms

of y in the expression for y = xex . Use the Table method to evaluate the integral.

10. 2π

„

1 −
5

e2

«

= 2π

Z 2

0
x2e−x dx. Use the Table method to evaluate the integral.
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11.
3π

10
= π

Z 1

0

“

x − x4
”

dx = 2π

Z 1

0

„

y3/2 − y3
«

dy.

12.
4223π

5670
= π

Z 1/3

0

“

1 − (x
3 − 3x + 1)

2
”

dx + π

Z 1

1/3

“

1 − x
6
”

dx.
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9.

Z π

−π
(cos2 x + sin2 x) dx = 2π. The Trapezoidal Rule with n = 6 and the Actual value agree exactly, since the integrand

is equal to 1.

10.

Z π

−π
(cos2 x − sin2 x) dx = 0, using Simpson’s Rule with n = 6. The exact answer, obtained by direct integration, is

0, since the integrand is equal to cos 2x. Note that the two values agree!

11.

Z 1

0
e
−x2

dx ≈ 1.4628, using Simpson’s Rule with n = 6. The Actual value is 1.462651746

12.

Z 2

−1

1

1 + x6
dx ≈ 1.82860, using Simpson’s Rule with n = 4. The Actual value is ≈ 1.94476. Don’t try to work it out!

13.

Z 2

−2

x2

1 + x4
dx ≈ 1.221441, using the Trapezoidal Rule with n = 6. The exact answer obtained by direct integration is

1.23352.

14.

Z

2

1
(ln x)

3
dx ≈ 0.10107, using Simpson’s Rule with n = 6. The Actual value is 2 ln3 2 − 6 ln2 2 + 12 ln 2 − 6 ≈

0.101097387.

15.

Z

p

3x + 2 dx =
2

9

“

p

3x + 2
”3

.

Let u = 3x + 2.

16.

Z 1

x2 + 4x + 4
dx = −

1

x + 2
.

Note that x2 + 4x + 4 = (x + 2)2 .
Then let u = x + 2, du = dx.

17.

Z dx

(2x − 3)2
= −

1

2 (2x − 3)
.

Let u = 2x − 3, du = 2dx, and so dx = du/2.

18.

Z dx
√

a + bx
= 2

√
a + bx

b
.

Let u = a + bx, du = bdx, and dx = du/b, if b 6= 0.

19.

Z

(
√

a − √
x)

2
dx = ax −

4
√

a

3

`√
x
´3

+
1

2
x
2

.

Expand the integrand and integrate term-by-term.

20.

Z x dx
q

a2 − x2
= −

q

a2 − x2 .

Let u = a2 − x2 . Then du = −2xdx and x dx = −du/2.

21.

Z

x2
q

x3 + 1 dx =
2

9

„q

x3 + 1

«3
.

Let u = x3 + 1, du = 3x2 dx, so that x2 dx = du/3.

22.

Z (x + 1)

3
q

x2 + 2x + 2

dx =
3

4

 

3
r

“

x2 + 2x + 2
”

!2

.

Let u = x2 + 2x + 2, du = (2x + 2) dx = 2(x + 1) dx. So, (x + 1) dx = du/2.

23.

Z

(x
4

+ 4x
2

+ 1)
2
(x

3
+ 2x) dx =

1

12
(x

4
+ 4x

2
+ 1)

3

Let u = x4 + 4x2 + 1, du = (4x3 + 8x) dx = 4(x3 + 2x) dx and so, (x3 + 2x) dx = du/4.

24.

Z

x
−1/3

q

x2/3 − 1 dx =

„q

x2/3 − 1

«3
.

Let u = x2/3 − 1. Then du = (2/3)x−1/3 dx, or x−1/3 dx = 3 du/2.

25.

Z 2x dx

(3x2 − 2)2
= −

1

3
“

3x2 − 2
”

Let u = 3x2 − 2, du = 6x dx and so 2x dx = du/3.

26.

Z dx

4x + 3
=

1

4
ln |4x + 3|

Let u = 4x + 3, du = 4dx so that dx = du/4.

27.

Z x dx

2x2 − 1
=

1

4
ln
˛

˛

˛2x2 − 1
˛

˛

˛

Let u = 2x2 − 1, du = 4x dx so that x dx = du/4.

28.

Z x2 dx

1 + x3
=

1

3
ln
˛

˛

˛
1 + x3

˛

˛

˛

Let u = 1 + x3 , du = 3x2 dx so that x2 dx = du/3.

29.

Z (2x + 3) dx

x2 + 3x + 2
= ln

˛

˛

˛x
2

+ 3x + 2
˛

˛

˛

Let u = x2 + 3x + 2, du = (2x + 3) dx.

30.

Z

sin(2x + 4) dx = −
1

2
cos (2x + 4)

Let u = 2x + 4, du = 2 dx, and dx = du/2.

31.

Z

2 cos(4x + 1) dx =
1

2
sin (4x + 1)

Let u = 4x + 1, du = 4 dx, and dx = du/4.
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32.

Z

p

1 − cos 2x dx =
√

2 cos x.

Note that 1−cos 2x
2

= sin2 x. The result follows upon the extraction of a square root. In actuality, we are assuming that
p

sin2 x = | sin x| = sin x, here (or that sin x ≥ 0 over the region of integration).

33.

Z

sin
3x − 2

5
dx = −

5

3
cos

 

3x − 2

5

!

Let u = 3x−2
5

, du = 3dx
5

. Then dx = 5du
3

.

34.

Z

x cos ax2 dx =
1

2

sin ax2

a

Assume a 6= 0. Let u = ax2 , du = 2ax dx, so that x dx = du/2a.

35.

Z

x sin(x
2

+ 1) dx = −
1

2
cos

“

x
2

+ 1
”

Let u = x2 + 1, du = 2x dx. Then x dx = du/2.

36.

Z

sec2
θ

2
dθ = 2 tan

1

2
θ

Let u = θ/2, du = dθ/2. The result follows since
R

sec2 u du = tan u.

37.

Z dθ

cos2 3θ
=

1

3
tan 3θ

The integrand is equal to sec2 3θ. Now let u = 3θ, du = 3dθ.

38.

Z dθ

sin2 2θ
= −

1

2
cot 2θ

The integrand is equal to csc2 2θ. Now let u = 2θ, du = 2dθ, and note that
R

csc2 u du = − cot u.

39.

Z

x csc
2
(x

2
) dx = −

1

2
cot x

2

Let u = x2 , du = 2x dx, so that x dx = du/2. Note that
R

csc2 u du = − cot u.

40.

Z

tan
3x + 4

5
dx =

5

3
ln

˛

˛

˛

˛

sec
3x + 4

5

˛

˛

˛

˛

Let u = 3x+4
5

, du = 3dx/5 and so dx = 5du/3. The result follows since
R

tan u du = − ln | cos u| = ln | sec u|.

41.

Z dx

tan 2x
=

1

2
ln | sin 2x|

The integrand is equal to cot 2x. Let u = 2x, du = 2dx. Then, dx = du/2, and since
R

cot u du = ln | sin u|, the
result follows.

42.

Z

p

1 + cos 5x dx =
2
√

2

5
sin

5x

2

Use the identity in Exercise 6, above. Since
√

1 + cos 5x =
√

2 · cos
“

5x
2

”

we let u = 5x
2

, du = 5dx/2. Then

dx = 2du/5 and the conclusion follows.

43.

Z

csc(x +
π

2
) cot(x +

π

2
) dx = − sec x

Trigonometry tells us that sin(x + π
2

) = cos x, and cos(x + π
2

) = − sin x. Thus, by definition, csc(x + π
2

) cot(x +
π
2

) = − sec x tan x. On the other hand,
R

sec x tan x dx = sec x.

44.

Z

cos 3x cos 4x dx =
1

2
sin x +

1

14
sin 7x

Use the identity cos A cos B = 1
2

(cos(A − B) + cos(A + B)), with A = 4x, B = 3x, and integrate the terms

individually. This is also a “ three-row problem” using the Table method in Integration by Parts and so you can use this
alternate method as well.

45.

Z

sec 5θ tan 5θ dθ =
1

5
sec 5θ

Let u = 5θ, du = 5dθ. Then dθ = du/5 and since
R

sec u tan u du = sec u, we have the result.

46.

Z cos x

sin2 x
dx = −

1

sin x

The integrand is equal to cot x csc x. The result is now clear since
1

sin x
= csc x.

47.

Z

x
2

cos(x
3

+ 1) dx =
1

3
sin

“

x
3

+ 1
”

Let u = x3 + 1, du = 3x2 dx. Then x2 dx = du/3 and the answer follows.

48.

Z

sec θ (sec θ + tan θ) dθ = sec θ + tan θ

Expand the integrand and integrate it term-by-term. Use the facts
R

sec2 u du = tan u, and
R

sec u tan u du = sec u

49.

Z

(csc θ − cot θ) csc θ dθ = csc θ − cot θ =
1

sin θ
−

cos θ

sin θ

Expand the integrand and integrate it term-by-term. Use the facts
R

csc2 u du = − cot u, and
R

csc u cot u du = − csc u. Rewrite your answer using the elementary functions sine and
cosine.

50.

Z

cos−4 x sin(2x) dx =
1

cos2 x

Write sin 2x = 2 sin x cos x and simplify the integrand. Put the cos3 x-term in the denominator and then use the
substitution u = cos x,

du = − sin x dx. Then −2
R

u−3 du = u−2 and the result follows.

51.

Z tan2 √
x

√
x

dx = 2 tan
√

x − 2
√

x

Let u =
√

x, du = 1
2
√

x
dx, which gives 2

√
x du = dx, or dx = 2u du. The integral becomes

Z 2u tan2 u

u
du =

Z

2 tan2 u du =

Z

2(sec2 u − 1) du = 2 tan u − 2u, and the result follows.
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52.

Z 1 + sin 2x

cos2 2x
dx =

1

2 cos 2x
+

1

2

sin 2x

cos 2x

Note that the integrand is equal to sec2 2x + sec 2x tan 2x. Let u = 2x, du = 2dx, or dx = du/2. Use the facts
R

sec2 u du = tan u, and
R

sec u tan u du = sec u. Now reduce your answer to elementary sine and cosine functions.

53.

Z dx

cos 3x
=

1

3
ln |sec 3x + tan 3x|

Let u = 3x, du = 3dx, dx = du/3, and use the result from Example 367, with x = u.

54.

Z dx

sin(3x + 2)
=

1

3
ln |csc (3x + 2) − cot (3x + 2)|

Note that the integrand is equal to csc(3x + 2). Now let u = 3x + 2, du = 3dx, dx = du/3. The integral looks like
(1/3)

R

csc u du = (1/3) ln | csc u − cot u| and the result follows. This last integral is obtained using the method
described in Example 367, but applied to these functions. See also Table 8.9.

55.

Z 1 + sin x

cos x
dx = ln |sec x + tan x| − ln |cos x|

Break up the integrand into two parts and integrate term-by-term. Note that − ln | cos x| = ln | sec x| so that the final
answer may be written in the form

ln |sec x + tan x| + ln |sec x| = ln
˛

˛

˛
sec2 x + tan x sec x

˛

˛

˛
.

56.

Z

(1 + sec θ)2 dθ = θ + 2 ln |sec θ + tan θ| + tan θ

Expand the integrand and integrate term-by-term.

57.

Z csc2 x dx

1 + 2 cot x
= −

1

2
ln |1 + 2 cot x|

Let u = 1 + 2 cot x, du = −2 csc2 x dx. So, csc2 dx = − du
2

. The integral now becomes (−1/2)

Z du

u
=

−(1/2) ln |u|.

58.

Z

ex sec ex dx = ln
˛

˛

˛
sec

“

ex
”

+ tan
“

ex
”˛

˛

˛

Let u = ex, du = ex dx, and use Example 367.

59.

Z dx

x ln x
= ln |ln x|

Let u = ln x, du = dx
x

. The integral looks like
R du

u
= ln |u| and the result follows.

60.

Z dt
q

2 − t2
= Arcsin

1

2

√
2t

The integrand contains a square root of a difference of squares of the form

q

a2 − u2 where a =
√

2, and u = t. Let

t =
√

2 sin θ, dt =
√

2 cos θ dθ. Since

q

2 − t2 =
√

2 cos θ, the integral looks like
R

dθ = θ = Arcsin t√
2

.

61.

Z dx
q

3 − 4x2
=

1

2
Arcsin

2

3

√
3x

The integrand contains a square root of a difference of squares of the form

q

a2 − u2 where a =
√

3, and u = 2x.

Let 2x =
√

3 sin θ, 2dx =
√

3 cos θ dθ. Since

q

3 − 4x2 =
√

3 cos θ, the integral looks like
R

(1/2)dθ = θ
2

=

1
2
Arcsin 2x√

3
, which is equivalent to the answer.

62.

Z (2x + 3) dx
q

4 − x2
= −2

q

4 − x2 + 3Arcsin
1

2
x

Break up the integrand into two parts so that the integral looks like
Z 2x dx
q

4 − x2
+

Z 3
q

4 − x2
dx.

Let u = 4 − x2 , du = −2x dx in the first integral and x = 2 sin θ, dx = 2 cos θ dθ in the second integral. Then
q

4 − x2 = 2 cos θ and the second integral is an Arcsine. The first is a simple substitution.

63.

Z dx

x2 + 5
=

1

5

√
5Arctan

1

5
x
√

5

This integrand contains a sum of two squares. So let, x =
√

5 tan θ, dx =
√

5 sec2 θ dθ. The integral becomes
Z

√
5 sec2 θ dθ

5 sec2 θ
=

√
5

5

Z

dθ and the result follows since θ = Arctan x√
5

, and 1√
5

=

√
5

5
.

64.

Z dx

4x2 + 3
=

1

6

√
3Arctan

2

3

√
3x

The integrand contains a sum of two squares, a2 + u2 where a =
√

3 and u = 2x. So let 2x =
√

3 tan θ, 2 dx =√
3 sec2 θ dθ. The integral becomes

Z (1/2)
√

3 sec2 θ dθ

3 sec2 θ
=

√
3

6

Z

dθ and the result follows since θ = Arctan 2x√
3

.

65.

Z dx

x

q

x2 − 4

=
1

2
Arcsec

x

2

The integrand contains a square root of a difference of two squares,

q

u2 − a2 where a = 2 and u = x. So let x > 2 and

x = 2 sec θ, dx = 2 sec θ tan θ dθ. Moreover,

q

x2 − 4 = 2 tan θ. The integral becomes
Z 2 sec θ tan θ dθ

(2 sec θ)(2 tan θ)
=

1

2

Z

dθ and the result follows since θ = Arcsec x
2

.

66.

Z dx

x

q

4x2 − 9

=
1

3
Arcsec

2x

3

The integrand contains a square root of a difference of two squares,

q

u2 − a2 where a = 3 and u = 2x. So let x > 0

and set 2x = 3 sec θ, 2dx = 3 sec θ tan θ dθ. Moreover,

q

4x2 − 9 = 3 tan θ. The integral becomes
Z (3/2) sec θ · tan θ dθ

(3/2) sec θ · 3 tan θ
=

1

3

Z

dθ and the result follows since θ = Arcsec 2x
3

.
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67.

Z dx
q

x2 + 4

= ln

˛

˛

˛

˛

˛

˛

˛

q

4 + x2

2
+

x

2

˛

˛

˛

˛

˛

˛

˛

= ln

˛

˛

˛

˛

q

4 + x2 + x

˛

˛

˛

˛

, where the “missing” constants are absorbed by the constant of integration, C.

The integrand contains a square root of a sum of two squares,

q

u2 + a2 where a = 2 and u = x. Set x = 2 tan θ,

dx = 2 sec2 θ dθ. Moreover,

q

x2 + 4 = 2 sec θ. The integral becomes

Z 2 sec2 θ dθ

(2 sec θ)
=

Z

sec θ dθ and the result follows from Example 367.

68.

Z dx
q

4x2 + 3

=
1

2
ln

˛

˛

˛

˛

˛

˛

˛

q

4x2 + 3
√

3
+

2x
√

3

˛

˛

˛

˛

˛

˛

˛

= ln

˛

˛

˛

˛

q

4x2 + 3 + 2x

˛

˛

˛

˛

, where the “missing” constants are absorbed by the constant of integration, C.

The integrand contains a square root of a sum of two squares,

q

u2 + a2 where a =
√

3 and u = 2x. Set 2x =
√

3 tan θ,

2 dx =
√

3 sec2 θ dθ. Moreover,

q

4x2 + 3 =
√

3 sec θ. The integral becomes

Z (
√

3/2) sec2 θ dθ
√

3 sec θ
= (1/2)

Z

sec θ dθ and the result follows from Example 367, once again.

69.

Z dx
q

x2 − 16

= ln

˛

˛

˛

˛

˛

˛

˛

x

4
+

q

x2 − 16

4

˛

˛

˛

˛

˛

˛

˛

= ln

˛

˛

˛

˛

x +

q

x2 − 16

˛

˛

˛

˛

, where the “missing” constants are absorbed by the constant of integration, C.

The integrand contains a square root of a difference of two squares,

q

u2 − a2 where a = 4 and u = x. Set x = 4 sec θ,

dx = 4 sec θ tan θ dθ. Moreover,

q

x2 − 16 = 4 tan θ. The integral becomes
Z 4 sec θ tan θ dθ

4 tan θ
=

Z

sec θ dθ and the result follows from Example 367.

70.

Z ex

1 + e2x
dx = Arctan

“

ex
”

Use a substitution here: Let u = ex, du = ex dx. The integral now looks like

Z 1

1 + u2
du = Arctan u, where

u = ex.

71.

Z 1

x

q

4x2 − 1

dx = Arcsec 2x

The integrand contains a square root of a difference of two squares,

q

u2 − a2 where a = 1 and u = 2x. So let x > 0

and set 2x = sec θ, 2dx = sec θ tan θ dθ. Moreover,

q

4x2 − 1 = tan θ. The integral becomes
Z (1/2) sec θ · tan θ dθ

(1/2) sec θ · tan θ
=

Z

dθ and the result follows since θ = Arcsec 2x.

72.

Z dx
q

4x2 − 9

=
1

2
ln

˛

˛

˛

˛

˛

˛

˛

2x

3
+

q

4x2 − 9

3

˛

˛

˛

˛

˛

˛

˛

= ln

˛

˛

˛

˛

2x +

q

4x2 − 9

˛

˛

˛

˛

, where the “missing” constants are absorbed by the

constant of integration, C.

The integrand contains a square root of a difference of two squares,

q

u2 − a2 where a = 3 and u = 2x. So let x > 0

and set 2x = 3 sec θ, 2 dx = 3 sec θ tan θ dθ. Moreover,

q

4x2 − 9 = 3 tan θ. The integral becomes
Z (3/2) sec θ · tan θ dθ

3 tan θ
= (1/2)

Z

sec θ dθ and the result follows since
R

sec θ dθ = ln | sec θ + tan θ|.

73.

Z

e−3x dx = −
1

3
e−3x

Let u = −3x, du = −3 dx. Then dx = −du/3.

74.

Z dx

e2x
= −

1

2
e−2x

Write the integrand as e−2x and let u = −2x, du = −2 dx.

75.

Z

(ex − e−x)2 dx =
1

2
e2x − 2x −

1

2
e−2x

Expand the expression and integrate term-by-term using the two preceding exercises.

76.

Z

xe
−x2

dx = −
1

2
e
−x2

Let u = −x2 , du = −2x dx so that x dx = −du/2.

77.

Z sin θ dθ
√

1 − cos θ
= 2

p

1 − cos θ

Let u = 1 − cos θ, du = sin θ dθ. We now have an easily integrable form.

78.

Z cos θ dθ
q

2 − sin2 θ

= Arcsin

„ 1

2

√
2 sin θ

«

Write θ = x. Let u = sin x, du = cos x dx. The integral takes the form
Z du
q

2 − u2
. Now set u =

√
2 sin θ. (This is why we changed the name of the original variable to “x”, so that we

wouldn’t get it confused with THIS θ). Then du =
√

2 cos θ dθ and

q

2 − u2 =
√

2 cos θ and the rest of the integration

is straightforward. (Note: If you want, you could set u = sin θ immediately and proceed as above without first having to let
θ = x etc.)

79.

Z e2x dx

1 + e2x
=

1

2
ln
“

1 + e
2x
”

Let u = 1 + e2x, du = 2e2x dx. Now, the integral gives a natural logarithm

PROTECTED BY COPYRIGHT DO NOT COPY



53

80.

Z ex dx

1 + e2x
= Arctan

“

ex
”

Let u = ex, du = ex dx. Now, the integral is of the form
Z du

1 + u2
and this gives an Arctangent.

81.

Z cos θ dθ

2 + sin2 θ
=

1

2

√
2Arctan

„ 1

2

√
2 sin θ

«

Write θ = x. Let u = sin x, du = cos x dx. The integral takes the form
Z du

2 + u2
. Now set u =

√
2 tan θ. (This is why we changed the name of the original variable to “x”, so that we wouldn’t

get it confused with THIS θ). Then du =
√

2 sec2 θ dθ and 2 + u2 = 2 sec2 θ and the rest of the integration is
straightforward. (Note: If you want, you could set u = sin θ immediately and proceed as above without first having to let
θ = x etc.)

82.

Z

sin
3

x cos x dx =
1

4
sin

4
x

Let u = sin x, du = cos x dx.

83.

Z

cos4 5x sin 5x dx = −
1

25
cos5 5x

Let u = cos 5x, du = −5 sin 5x dx or sin 5x = −du/5. The rest is straightforward.

84.

Z

(cos θ + sin θ)2 dθ = θ − cos2 θ

or, this can also be rewritten as θ + sin2 θ

Expand and use the identities cos2 θ + sin2 θ = 1, along with
sin 2θ = 2 sin θ cos θ. Then use the substitution u = 2x, or if you prefer, let u = sin θ, etc.

85.

Z

sin3 x dx = −
1

3
sin2 x cos x −

2

3
cos x

This is the case m is even (m = 0) and n is odd (n = 3) in the text.

86.

Z

cos
3

2x dx =
1

6
cos

2
2x sin 2x +

1

3
sin 2x

Let u = 2x. The new integral is in the case where m is odd (m = 3) and n is even (n = 0) in the text.

87.

Z

sin3 x cos2 x dx = −
1

5
sin2 x cos3 x −

2

15
cos3 x

This is the case m is even (m = 2) and n is odd (n = 3) in the text. To get the polynomial in cos x simply use the

identities sin2 x = 1 − cos2 x whenever you see the sin2 x−term and expand and simplify.

88.

Z

cos
5

x dx =
1

5
cos

4
x sin x +

4

15
cos

2
x sin x +

8

15
sin x

This is the case m is odd (m = 5) and n is even (n = 0) in the text. To get the polynomial in sin x simply use the

identities cos2 x = 1 − sin2 x whenever you see a cos2 x−term and then expand and simplify.

89.

Z

sin
3

4θ cos
3

4θ dθ = −
1

24
sin

2
4θ cos

4
4θ −

1

48
cos

4
4θ

Let u = 4θ. Then the new integral is in the case where m is odd (m = 3) and n is odd (n = 3) in the text.

90.

Z cos2 x dx

sin x
= cos x + ln |csc x − cot x|

Write cos2x = 1− sin2 x, break up the integrand into two parts, and use the fact that

Z

csc x dx = ln | csc x − cot x|.

91.

Z cos3 x dx

sin x
=

1

2
cos

2
x + ln |sin x|

Write cos2x = 1 − sin2 x, break up the integrand into two parts. In one, use the fact that
Z

cot x dx = ln | sin x|. In the other, use the substitution u = sin x in the other.

92.

Z

tan2 x sec2 x dx =
1

3
tan3 x

Let u = tan x, du = sec2 x dx.

93.

Z

sec
2

x tan
3

x dx =
1

4
tan

4
x

Let u = tan x, du = sec2 x dx.

94.

Z sin x dx

cos3 x
=

1

2 cos2 x

Let u = cos x, du = − sin x dx.

95.

Z sin2 x dx

cos4 x
=

1

3
tan

3
x

The integrand is equal to tan2 x sec2 x. Now let u = tan x.

96.

Z

sec
4

x dx =
1

3
tan x sec

2
x +

2

3
tan x

This is the case m = 4, n = 0 in the text. Note that sec2x = 1+tan2 x. So, this answer is equivalent to tan x+ tan3 x
3

with the addition of a constant.

97.

Z

tan
2

x dx = tan x − x

The integrand is equal to 1 − sec2 x. Now break up the integrand into two parts and integrate term-by-term.

98.

Z

(1 + cot θ)2 dθ = − cot θ − ln
“

1 + cot2 θ
”

Expand the integrand, use the identity 1+ cot2 θ = csc2 θ and integrate using the facts that
R

csc2 x dx = − cot x, and
R

cot x dx = ln | sin x|. Note that the second term may be simplified further using the fact that

ln
“

1 + cot2 θ
”

= ln csc2 θ = − ln sin2 θ = −2 ln sin θ.
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99.

Z

sec4 x tan3 x dx =
1

6
tan4 x sec2 x +

1

12
tan4 x

This is the case m = 4, n = 3 in the text.

100.

Z

csc
6

x dx = −
1

5
csc

4
x cot x −

4

15
csc

2
x cot x −

8

15
cot x

Use the same ideas as in the case m = 6, n = 0 in the secant/tangent case.

101.

Z

tan3 x dx =
1

2
tan2 x −

1

2
ln
“

1 + tan2 x
”

This is the case m = 0, n = 3 in the text.

102.

Z cos2 t dt

sin6 t
= −

1

5
csc

2
t cot

3
t −

2

15
cot

3
t

The integrand is equal to cot2 x csc4 x, and this corresponds to the case m = 4, n = 2 in the secant/tangent case.

103.

Z

tan θ csc θ dθ = ln |sec θ + tan θ|

The integrand is really sec θ in disguise!

104.

Z

cos
2

4x dx =
1

8
cos 4x sin 4x +

1

2
x

Use the identity cos2 2 = 1+cos 22

2
, with 2 = 4x. Then use a simple substitution u = 8x, and simplify your answer

using the identity sin 8x = sin(2 · 4x) = 2 sin 4x cos 4x.

105.

Z

(1 + cos θ)2 dθ =
3

2
θ + 2 sin θ +

1

2
cos θ sin θ

Expand the integrand, use the identity cos2 θ = 1+cos 2θ
2

and integrate term-by-term.

106.

Z

(1 − sin x)3 dx =
5

2
x +

11

3
cos x −

3

2
cos x sin x +

1

3
sin2 x cos x

Expand the integrand, and integrate term-by-term using the identity sin2 θ =
1−cos 2θ

2
, and the case m = 0, n = 3 in

the text.
Recall that (1 − 2)3 = 1 − 32 + 32

2 − 2
3

107.

Z

sin4 x dx = −
1

4
sin3 x cos x −

3

8
cos x sin x +

3

8
x

This is the case m = 0, n = 4 in the text.

108.

Z

sin
2

2x cos
2

2x dx = −
1

8
sin 2x cos

3
2x +

1

16
cos 2x sin 2x +

1

8
x

Let u = 2x first. Then the new integral corresponds to the case m = 2, n = 2 in the text.

109.

Z

sin
4

θ cos
2

θ dθ = −
1

6
sin

3
θ cos

3
θ −

1

8
sin θ cos

3
θ +

1

16
cos θ sin θ +

1

16
θ

This is the case m = 2, n = 4 in the text.

110.

Z

cos6 x dx =
1

6
cos5 x sin x +

5

24
sin x cos3 x +

5

16
cos x sin x +

5

16
x

This is the case m = 6, n = 0 in the text.

111.

Z

cos x sin 2x dx = −
1

6
cos 3x −

1

2
cos x

You can use either Table integration in a three-row problem or the identity

cos A sin B =
1

2
sin(A + B) −

1

2
sin(A − B) to find this integral.

112.

Z

sin x cos 3x dx = −
1

8
cos 4x +

1

4
cos 2x

You can use either Table integration in a three-row problem or the identity

cos A sin B =
1

2
sin(A + B) −

1

2
sin(A − B) to find this integral.

113.

Z

sin 2x sin 3x dx =
1

2
sin x −

1

10
sin 5x

You can use either Table integration in a three-row problem or the identity

sin A sin B =
1

2
cos(A − B) −

1

2
cos(A + B) to find this integral.

114.

Z

cos 2x cos 4x dx =
1

4
sin 2x +

1

12
sin 6x

You can use either Table integration in a three-row problem or the identity

cos A cos B =
1

2
cos(A − B) +

1

2
cos(A + B) to find this integral.

115.

Z

sin
2

2x cos 3x dx =
1

6
sin 3x −

1

4
sin x −

1

28
sin 7x

Use the identity sin2
2 = 1−cos 22

2
with 2 = 2x. Break up the integrand into two parts, and integrate using the

substitution u = 4x and the identity

cos A cos B =
1

2
cos(A − B) +

1

2
cos(A + B) to find the other integral.

116.

Z

sec x csc x dx = ln |tan x|

There are two VERY different ways of doing this one:

In the first proof we note the trigonometric identity (and this isn’t obvious!),

sec2 x

tan x
=

1

sin x cos x
= sec x csc x,

so the result follows after using the substitution u = tan x, du = sec2 x dx.
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In the second proof we note that (and this isn’t obvious either!)

1

sin x cos x
=

2

sin 2x
= 2 csc 2x.

Now use the substitution u = 2x, du = 2dx and this new integral becomes

2 ·
1

2

Z

csc u du = ln | csc u − cot u|. The answer is equivalent to

ln | csc 2x − cot 2x| + C, because of the identity 1 − cos 2x = 2 sin2 x.

117.

Z dx

1 − cos x
= −

1

tan 1
2

x
= − cot

x

2
.

Use the identity 1 − cos 22 = 2 sin2
2, with 2 = x

2
. Then 1

1−cos x
= 1

2
csc2 x

2
. Let u = x/2, du = dx/2 and

use the integral
R

csc2 u du = − cot u and simplify.

118.

Z dx
q

2 + 2x − x2
= Arcsin

1

3

√
3 (x − 1)

First, complete the square to find 2 + 2x − x2 = 3 − (x − 1)2. Next, let a =
√

3, u = x − 1. This integrand has a

term of the form

q

a2 − u2. So we use the trigonometric substitution

u = x − 1 =
√

3 sin θ, dx =
√

3 cos θ dθ.

Furthermore,

q

2 + 2x − x2 =
√

3 cos θ. So, the integral now takes the form
Z

√
3 cos θ dθ
√

3 cos θ
=

Z

dθ = θ

where θ = Arcsin x−1√
3

which is equivalent to the stated answer.

119.

Z dx
q

1 + 4x − 4x2
=

1

2
Arcsin

√
2

„

x −
1

2

«

First, complete the square to find 1 + 4x − 4x2 = 2 − (2x − 1)2 . Next, let a =
√

2, u = 2x − 1. This integrand has

a term of the form

q

a2 − u2. So we use the trigonometric substitution

u = 2x − 1 =
√

2 sin θ, 2dx =
√

2 cos θ dθ

or, dx =

√
2

2
cos θ dθ.

Furthermore,

q

1 + 4x − 4x2 =
√

2 cos θ. So, the integral now takes the form

1

2

Z

√
2 cos θ dθ
√

2 cos θ
=

1

2

Z

dθ =
θ

2

where θ = Arcsin 2x−1√
2

which is equivalent to the stated answer.

120.

Z dx
q

2 + 6x − 3x2
=

1

3

√
3Arcsin

1

5

√
15 (x − 1)

This one is a little tricky: First, complete the square to find 2 + 6x − 3x2 = 5 − 3(x − 1)2 . But this is not exactly a
difference of squares, yet! So we rewrite this as

5 − 3(x − 1)2 = 5 − (
√

3x −
√

3)2 ,

and this is a difference of squares. Now let a =
√

5, u =
√

3x −
√

3. We see that the integrand has a term of the form
q

a2 − u2. So we use the trigonometric substitution

u =
√

3x −
√

3 =
√

5 sin θ,√
3 dx =

√
5 cos θ dθ

or, dx =

√
5

√
3

cos θ dθ.

Furthermore,

q

2 + 6x − 3x2 =
√

5 cos θ. So, the integral now takes the form

Z

√
5√
3

cos θ dθ

√
5 cos θ

=
1

√
3

Z

dθ =
θ

√
3

where θ = Arcsin

√
3x−

√
3√

5
which is equivalent to the stated answer.

121.

Z dx
q

x2 + 6x + 13

= ln

˛

˛

˛

˛

˛

˛

˛

q

x2 + 6x + 13

2
+

x + 3

2

˛

˛

˛

˛

˛

˛

˛

First, complete the square to find x2 +6x + 13 = (x +3)2 + 4. Next, let a = 2, u = x + 3. This integrand has a term

of the form

q

a2 + u2. So we use the trigonometric substitution

u = x + 3 = 2 tan θ,

dx = 2 sec2 θ dθ.

Furthermore,

q

x2 + 6x + 13 = 2 sec θ. So, the integral now takes the form

Z 2 sec2 θ dθ

2 sec θ
=

Z

sec θ dθ = ln | sec θ + tan θ|,

where sec θ = Arcsec

q

x2+6x+13

2

and tan θ = x+3
2

which is equivalent to the stated answer.

122.

Z dx

2x2 − 4x + 6
=

1

4

√
2Arctan

1

8
(4x − 4)

√
2

First, complete the square to find 2x2 − 4x + 6 = 2(x − 1)2 + 4. The integral now looks like:

Z 1

2x2 − 4x + 6
dx =

Z 1

2(x − 1)2 + 4
dx =

1

2

Z 1

(x − 1)2 + 2
dx.
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Next, let a =
√

2, u = x − 1. The previous integrand has a term of the form a2 + u2. So we use the trigonometric
substitution

u = x − 1 =
√

2 tan θ,

dx =
√

2 sec2 θ dθ.

Furthermore, 2x2 − 4x + 6 = 2 sec2 θ. So, the original integral now takes the form

1

2

Z

√
2 sec2 θ dθ

2 sec2 θ
=

√
2

4
θ =

√
2

4
Arctan

x − 1
√

2
,

which is equivalent to the stated answer.

123.

Z dx

(1 − x)

q

x2 − 2x − 3

= −
1

2
Arcsec

x − 1

2

First we complete the square so that x2 − 2x − 3 = (x − 1)2 − 4. A trigonometric substitution is hard here: Let’s try
another approach...

Let u = x − 1, du = dx. Then the integral becomes (note the minus sign)

−
Z du

u

q

u2 − 4

.

Now we incorporate the number 4 into the square by factoring it out of the expression, thus:

u

q

u2 − 4 = 2u

s

„u

2

«2
− 1.

Now we use the substitution v = u
2

, 2dv = du. The integral in u now becomes

−
Z 2 dv

4v

q

v2 − 1

= −
1

2

Z dv

v

q

v2 − 1

= −
1

2
Arcsec v,

according to Table 6.7 with 2 = v. The answer follows after back-substitution.

124.

Z (2x + 3) dx

x2 + 2x − 3
=

3

4
ln |x + 3| +

5

4
ln |x − 1|

Use partial fractions. The factors of the denominator are (x + 3)(x − 1). You need to find two constants.

125.

Z (x + 1) dx

x2 + 2x − 3
=

1

2
ln
˛

˛

˛x
2

+ 2x − 3
˛

˛

˛

Let u = x2 + 2x − 3, du = (2x + 2) dx so that
du = 2(x + 1) dx. Now the integral in u gives a natural logarithm.

Alternately, use partial fractions. The factors of the denominator are (x + 3)(x − 1). You need to find the two constants.

126.

Z (x − 1) dx

4x2 − 4x + 2
=

1

8
ln
˛

˛

˛4x
2 − 4x + 2

˛

˛

˛−
1

4
Arctan (2x − 1)

The denominator is a Type II factor (it is irreducible) since b2 − 4ac = (−4)2 − 4(4)(2) < 0. So the expression is
already in its partial fraction decomposition. So, the partial fractions method gives nothing.

So, complete the square in the denominator. This gives an integral of the form

Z (x − 1) dx

4x2 − 4x + 2
=

Z (x − 1) dx

(2x − 1)2 + 1
,

which can be evaluated using the trigonometric substitution,

u = 2x − 1, du = 2dx or dx = du/2. Solving for x we get

x = u+1
2

, so x − 1 = u−1
2

. The u−integral looks like

1

2

Z u − 1

1 + u2
du.

Break this integral into two parts and use the substitution

v = 1 + u2, dv = 2u du, udu = dv/2

in the first, while the second one yields an Arctangent.

127.

Z x dx
q

x2 − 2x + 2

=

q

x2 − 2x + 2 + ln

˛

˛

˛

˛

q

x2 − 2x + 2 + x − 1

˛

˛

˛

˛

Completing the square we see that x2 − 2x + 2 = (x − 1)2 + 1. Next, we set

x − 1 = tan θ, dx = sec2 θ dθ
x = 1 + tan θ,
q

x2 − 2x + 2 =

q

(x − 1)2 + 1 = sec θ.

The integral becomes

Z x dx
q

x2 − 2x + 2

=

Z (1 + tan θ) sec2 θ

sec θ
dθ

and this simplifies to
Z

(sec θ + sec θ tan θ) dθ = ln | sec θ + tan θ| + sec θ.

Finally, use the back-substitutions sec θ =

q

x2 − 2x + 2 and tan θ = x − 1.

128.

Z (4x + 1) dx
q

1 + 4x − 4x2
= −

q

1 + 4x − 4x2 +
3

2
Arcsin

√
2

„

x −
1

2

«

Completing the square we see that 1 + 4x − 4x2 = 2 − (2x − 1)2 . The integrand has a term of the form

q

a2 − u2

where a =
√

2, u = 2x − 1. So, we set
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2x − 1 =
√

2 sin θ, 2dx =
√

2 cos θ dθ

x = 1+
√

2 sin θ
2

,

4x + 1 = 3 + 2
√

2 sin θ,
q

1 + 4x − 4x2 =
√

2 cos θ.

The integral becomes

Z (4x + 1) dx
q

1 + 4x − 4x2
=

Z

 

3 + 2
√

2 sin θ
√

2 cos θ

! √
2

2
cos θ dθ

which simplifies to

1

2

Z

(3 + 2
√

2 sin θ) dθ =
3

2
θ −

√
2 cos θ.

Finally, use the back-substitutions θ = Arcsin 2x−1√
2

and cos θ =

q

1+4x−4x2
√

2
, to get it in a form equivalent to the

stated answer.

129.

Z (3x − 2) dx
q

x2 + 2x + 3

= 3

q

x2 + 2x + 3 − 5 ln

˛

˛

˛

˛

˛

˛

˛

q

x2 + 2x + 3
√

2
+

x + 1
√

2

˛

˛

˛

˛

˛

˛

˛

Completing the square we see that x2 + 2x + 3 = 2 + (x + 1)2 . The integrand has a term of the form

q

a2 + u2 where

a =
√

2, u = x + 1. So, we set

x + 1 =
√

2 tan θ, dx =
√

2 sec2 θ dθ
x =

√
2 tan θ − 1,

3x − 2 = 3
√

2 tan θ − 5 = 3
√

2 tan θ − 5,
q

x2 + 2x + 3 =
√

2 sec θ.

The integral becomes

Z (3x − 2) dx
q

x2 + 2x + 3

=

Z

 

3
√

2 tan θ − 5
√

2 sec θ

!

√
2 sec2 θ dθ

which simplifies to

3
√

2

Z

sec θ tan θ dθ − 5

Z

sec θ dθ = 3
√

2 sec θ − 5 ln | sec θ + tan θ|.

Finally, use the back-substitutions sec θ =

q

x2+2x+3√
2

, and

tan θ =
x+1√

2
, to get it in a form equivalent to the stated answer.

130.

Z ex dx

e2x + 2ex + 3
=

1

2

√
2Arctan

1

4

“

2ex + 2
”√

2

Let u = ex, du = ex dx. The integral is now a rational function in u on which we can use partial fractions. The

denominator is irreducible, since b2 − 4ac = 4 − 4(1)(3) < 0. You need to find two constants.

131.

Z x2 dx

x2 + x − 6
= x −

9

5
ln |x + 3| +

4

5
ln |x − 2|

Use long division first, then use partial fractions. The factors of the denominator are x2 + x − 6 = (x + 3)(x − 2). You
need to find two constants.

132.

Z (x + 2) dx

x2 + x
= 2 ln |x| − ln |1 + x|

Use partial fractions. The factors of the denominator are x2 + x = x(x + 1). You need to find two constants.

133.

Z (x3 + x2) dx

x2 − 3x + 2
=

1

2
x2 + 4x − 2 ln |x − 1| + 12 ln |x − 2|

Use long division first. Then use partial fractions. The factors of the denominator are x2 − 3x + 2 = (x − 1)(x − 2).
You need to find two constants.

134.

Z dx

x3 − x
= − ln |x| +

1

2
ln |x − 1| +

1

2
ln |1 + x|

Use partial fractions. The factors of the denominator are x3 − x = x(x2 − 1) = x(x − 1)(x + 1). You need to find
three constants.

135.

Z (x − 3) dx

x3 + 3x2 + 2x
= −

3

2
ln |x| −

5

2
ln |x + 2| + 4 ln |1 + x|

Use partial fractions. The factors of the denominator are x3 + 3x2 + 2x = x(x2 + 3x + 2) = x(x + 1)(x + 2). You
need to find three constants.

136.

Z (x3 + 1) dx

x3 − x2
= x +

1

x
− ln |x| + 2 ln |x − 1|

Use partial fractions. The factors of the denominator are x3 − x2 = x2(x − 1). You need to find three constants.

137.

Z x dx

(x + 1)2
=

1

1 + x
+ ln |1 + x|

Use partial fractions.

138.

Z (x + 2) dx

x2 − 4x + 4
= −

4

x − 2
+ ln |x − 2|

Use partial fractions. The factors of the denominator are x2 − 4x + 4 = (x − 2)2 . You need to find two constants.

139.

Z (3x + 2) dx

x3 − 2x2 + x
= 2 ln |x| −

5

x − 1
− 2 ln |x − 1|

Use partial fractions. Note that x3 − 2x2 + x = x(x2 − 2x + 1) = x(x − 1)2. There are four constants to be found
here!

140.

Z 8 dx

x4 − 2x3
=

2

x2
+

2

x
− ln |x| + ln |x − 2|

Use partial fractions. Note that x4 − 2x3 = x3(x − 2). There are four constants to be found here!
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141.

Z dx

(x2 − 1)2
= −

1

4 (x − 1)
−

1

4
ln |x − 1| −

1

4 (1 + x)
+

1

4
ln |1 + x|

Use partial fractions. Note that (x2 − 1)2 = (x − 1)2(x + 1)2.

142.

Z (1 − x3) dx

x(x2 + 1)
= −x + ln |x| −

1

2
ln
“

x2 + 1
”

+ Arctan x

Use long division first, then use partial fractions.

143.

Z (x − 1) dx

(x + 1)(x2 + 1)
= − ln |1 + x| +

1

2
ln
“

x
2

+ 1
”

Use partial fractions.

144.

Z 4x dx

x4 − 1
= ln |x − 1| + ln |1 + x| − ln

“

x2 + 1
”

Note that x4 − 1 = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1). Use partial fractions.

145.

Z 3(x + 1) dx

x3 − 1
= 2 ln |x − 1| − ln

“

x2 + x + 1
”

Note that x3 − 1 = (x − 1)(x2 + x + 1). Use partial fractions.

146.

Z (x4 + x) dx

x4 − 4
=

1

4
ln |x − 2| −

1

12
ln |x + 2| −

1

12
ln(x2 + 2) +

√
2

3
Arctan

x
√

2

2

Use long division first, then use partial fractions.

147.

Z x2 dx

(x2 + 1)(x2 + 2)
= −Arctan x +

√
2Arctan

1

2

√
2x

The factors are (x2 + 2)(x2 + 1), both irreducible. Four constants need to be found. This is where the Arctangents come
from!

148.

Z 3 dx

x4 + 5x2 + 4
= −

1

2
Arctan

1

2
x + Arctan x

The factors are (x2 + 4)(x2 + 1), both irreducible. Four constants need to be found. This is where the Arctangents come
from!

149.

Z (x − 1) dx

(x2 + 1)(x2 − 2x + 3)
= −

1

2
Arctan x +

1

4

√
2Arctan

1

4
(2x − 2)

√
2

Use partial fractions. Watch out, as both factors in the denominator are Type II.

150.

Z x3 dx

(x2 + 4)2
=

2

x2 + 4
+

1

2
ln
“

x2 + 4
”

Use partial fractions.

151.

Z (x4 + 1) dx

x(x2 + 1)2
= ln |x| +

1

x2 + 1

Use partial fractions.

152.

Z (x2 + 1) dx

(x2 − 2x + 3)2
= −

1

x2 − 2x + 3
+

1

2

√
2Arctan

1

4
(2x − 2)

√
2

Use partial fractions. Note that (x2 − 2x + 3)2 is irreducible (Type II). Now you have to find the four constants!

153.

Z x dx
√

x + 1
= −2

p

x + 1 +
2

3

“

p

x + 1
”3

Let u = x + 1, du = dx. Then x = u − 1, and the integral becomes easy.

154.

Z

x
p

x − a dx =
2

5

“

p

x − a
”5

+
2

3

“

p

x − a
”3

a

Let u = x − a, du = dx. Then x = u + a, and the integral becomes easy.

155.

Z

√
x + 2

x + 3
dx = 2

p

x + 2 − 2Arctan
p

x + 2

Let u =
√

x + 2, u2 = x + 2. Then 2u du = dx and x = u2 − 2 which means that x + 3 = u2 + 1. The integral

takes the form
R 2u2 du

1+u2 . This one can be evaluated using a long division and two simple integrations.

156.

Z dx

x
√

x − 1
= 2Arctan

p

x − 1

Let u =
√

x − 1, u2 = x − 1. Then 2u du = dx and so x = 1 + u2. The integral takes the form
R 2u du

u(1+u2)
which

is an arctangent function...

157.

Z dx

x

q

a2 − x2
=

1

a
ln

˛

˛

˛

˛

˛

˛

˛

a

x
−

q

a2 − x2

x

˛

˛

˛

˛

˛

˛

˛

.

Let x = a sin θ, dx = a cos θ dθ. Then

q

a2 − x2 = a cos θ. After some simplification we find a−1 R csc θ dθ =

a−1 ln |csc θ − cot θ|. Finally, csc θ =
a

x
, cot θ =

q

a2 − x2

x
.

158.

Z dx

x2
q

a2 − x2
= −

1

a2x

q

a2 − x2

Let x = a sin θ, dx = a cos θ dθ. Then sqrta2 − x2 = a cos θ. After some simplification we find a−2 R csc2 θ dθ =

−a−2 cot θ.

159.

Z

x3
q

x2 + a2 dx =
1

5
x2

„
q

x2 + a2
«3

−
2

15
a2
„
q

x2 + a2
«3

Let x = a tan θ, dx = a sec2 θ dθ. Then

q

x2 + a2 = a sec θ. After some simplification you’re left with an integral

with an integrand equal to sec2 θ tan3 θ. Use Example 371.
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160.

Z dx

x2
q

x2 + a2
= −

1

a2x

q

x2 + a2

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some simplification you’re left with an
integral with an integrand equal to csc θ cot θ. Its value is a cosecant function. Finally, use the fact that, in this case,

csc θ =

q

x2 + a2

x

161.

Z dx
q

x2 + a2
= ln

˛

˛

˛

˛

x +

q

x2 + a2
˛

˛

˛

˛

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some simplification you’re left with an integral
of the form in Example 367.

162.

Z x2 dx
q

x2 + a2
=

1

2
x

q

x2 + a2 −
1

2
a2 ln

˛

˛

˛

˛

x +

q

x2 + a2
˛

˛

˛

˛

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some simplification you’re left with an integral
of the form in Example 369.

163.

Z x2 dx

(x2 + a2)2
= −

1

2

x

x2 + a2
+

1

2a
Arctan

x

a

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some simplification you’re left with the integral
of the square of a sine function...

164.

Z

x cos x dx = cos x + x sin x

Use Table integration

165.

Z

x sin x dx = sin x − x cos x

Use Table integration

166.

Z

x sec2 x dx = x tan x + ln |cos x|

Use Integration by Parts: Let u = x, dv = sec2 x dx. No need to use Table integration here.

167.

Z

x sec x tan x dx = x sec x − ln |sec x + tan x|

Use Integration by Parts: Let u = x, dv = sec x tan x dx. No need to use Table integration here.

168.

Z

x2ex dx = x2ex − 2xex + 2ex

Use Table integration

169.

Z

x
4

ln x dx =
1

5
x
5

ln x −
1

25
x
5

Use Integration by Parts: Let u = ln x, dv = x4 dx. No need to use Table integration here.

170.

Z

x3ex2
dx =

1

2
x2ex2

−
1

2
ex2

Write the integrand as x3ex2
= x2 · xex2

. Then use Integration by Parts with u = x2 , dv = xex2
dx. Use the

substitution v = x2 in the remaining integral.

171.

Z

sin
−1

x dx = xArcsin x +

r

“

1 − x2
”

Use Integration by Parts: Let u = Arctan x, dv = dx, followed by the substitution u = 1 + x2, etc.

172.

Z

tan−1 x dx = xArctan x −
1

2
ln
“

x2 + 1
”

Use Integration by Parts: Let u = Arctan x, dv = dx, followed by the substitution u = 1 + x2, etc.

173.

Z

(x − 1)
2

sin x dx = cos x − 2 sin x + 2x cos x − x
2

cos x + 2x sin x

Use Table integration

174.

Z q

x2 − a2 dx =
1

2
x

q

x2 − a2 −
1

2
a2 ln

˛

˛

˛

˛

x +

q

x2 − a2
˛

˛

˛

˛

Let x = a sec θ, dx = a sec θ tan θ dθ. Then

q

x2 − a2 = a tan θ, etc.

175.

Z q

x2 + a2 dx =
1

2
x

q

x2 + a2 +
1

2
a2 ln

˛

˛

˛

˛

x +

q

x2 + a2
˛

˛

˛

˛

Let x = a tan θ, dx = a sec2 θ dθ. Then

q

x2 + a2 = a sec θ, etc.

176.

Z x2 dx
q

x2 − a2
=

1

2
x

q

x2 − a2 +
1

2
a
2

ln

˛

˛

˛

˛

x +

q

x2 − a2
˛

˛

˛

˛

Let x = a sec θ, dx = a sec θ tan θ dθ. Then

q

x2 − a2 = a tan θ, etc.

177.

Z

e
2x

sin 3x dx = −
3

13
e
2x

cos 3x +
2

13
e
2x

sin 3x

Use Table integration

178.

Z

e−x cos x dx = −
1

2
e−x cos x +

1

2
e−x sin x

Use Table integration

179.

Z

sin 3x cos 2x dx = −
1

10
cos 5x −

1

2
cos x

Use a trig.. identity ... the one for sin A cos B, with A = 3x, B = 2x.

180.

Z π
8

0
cos

3
(2x) sin(2x) dx =

3

32

Let u = 2x first, du = 2dx, and follow this by the substitution v = cos u, dv = − sin u du which allows for an easy
calculation of an antiderivative.
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181.

Z

4

1

2
√

x

2
√

x
dx =

2

ln 2

Let u =
√

x. The result follows easily.

182.

Z ∞
0

x3e−2x dx =
3

8

Use Table integration to find an antiderivative and then use L’Hospital’s Rule (three times!).

183.

Z +∞
−∞

e−|x| dx = 2

Divide this integral into two parts, one where x ≥ 0 (so that |x| = x), and one where x < 0 (so that |x| = −x). Then
Z

+∞
−∞

e
−|x|

dx =

Z

0

−∞
e

x
dx +

Z ∞
0

e
−x

dx and the integrals are defined by a limit.

184.

Z ∞
0

4x

1 + x4
dx = π

Let u = x2 , du = 2x dx. The integral becomes an Arctangent.

185.

Z 1

−1
x2 cos (nπx) dx =

4 cos nπ

n2π2
, when n ≥ 1, is an integer. Use Table integration.

186. 1
2

R 2
−2 x2 sin

“

nπx
2

”

dx = 0, when n ≥ 1, is an integer. Use Table integration.

187. 1
L

RL
−L (1 − x) sin

“

nπx
L

”

dx = 2L cos nπ
nπ

,

when n ≥ 1, L 6= 0. Use Table integration.

188.

Z

2

0
(x

3
+ 1) cos

„nπx

2

«

dx = 6
8n2π2 cos nπ − 16 cos nπ + 16

n4π4
,

when n ≥ 1, is an integer. Use Table integration.

189.

Z 1

−1
(2x + 1) cos (nπx) dx =

2

nπ
sin nπ = 0,

when n ≥ 1, is an integer. Use Table integration.

190.
1

L

Z

L

−L
sin x cos

„nπx

L

«

dx = 0,

when n ≥ 1, is an integer and L 6= 0. Use Table integration.

191. Total demand over 10 years is

Z

10

0
500

“

20 + t e
−0.1t

”

dt =

Z

10

0
10000 dt + 500

Z

10

0
t e

−0.1t
dt.

Now integrating by parts

Z

t e
−0.1t

dt = −10t e
−0.1t

+ 10

Z

e
−0.1t

dt = −10t e
−0.1t

+ 10
“

−10e
−0.1t

”

.

Thus total demand =
h

10, 000t + 500{−10t e−0.1t + 10(−10e−0.1t)}
i10

0
=
h

10, 000t − 5000te−0.1t − 50, 000e−0.1t
i10

0
=

100, 000−50, 000e−1 − 50, 000e−1 − (0− 0− 50, 000) = 150, 000− 100, 000e−1 = 113212.1 ≈ 113212 units.

192. (a) Use partial fractions.
1

y(y − 10)
=

A

y
+

B

10 − y
=

A(10 − y) + By

y(10 − y)

If y = 0, then 10A = 1, so A = 1
10

. If y = 10, then 10B = 1, and B = 1
10

. Therefore,

Z 1

y(y − 10)
dy =

1

10

Z dy

y
+

1

10

Z dy

10 − y
dy

=
1

10
ln|y| −

1

10
ln|10 − y| + C =

1

10
ln

˛

˛

˛

˛

˛

y

10 − y

˛

˛

˛

˛

˛

+ C

Thus

t =
25

10
ln

˛

˛

˛

˛

˛

y

10 − y

˛

˛

˛

˛

˛

+ C

When t = 0, y = 1, so 0 = 2.5ln 1
9

+ C = 2.5(ln 1 − ln 9) + C = −2.5ln 9 + C. Thus C = 2.5ln 9 and

t = 2.5ln

˛

˛

˛

˛

˛

y

10 − y

˛

˛

˛

˛

˛

+ 2.5ln 9 = 2.5ln

˛

˛

˛

˛

˛

9y

10 − y

˛

˛

˛

˛

˛

(b) When y = 4, t = 2.5ln 4×9
6

= 4.479 hours.

(c) From (a), t
2.5

= ln
9y

10−y
, so e

t
2.5 =

9y
10−y

, and (10−y)e0.4t = 9y , so 10e0.4t = 9y+ye0.4t =

y(9 + e0.4t). Thus

y =
10e0.4t

9 + e0.4t
=

10

1 + e−0.4t

(d) At t = 10, y = 10
1+9e−4 = 8.58 gm.

193. Let I denote an antiderivative. Now let u = 3 + sin t, du = cos t dt. Then I is of the form
R

du/u = ln |u|+ C or in
terms of the original variables, I = ln |3 + sin t| + C.

194. Let I denote the integral. Now let x = z2, dx = 2z dz. Then use the trig. subs. z = tan θ/
√

2 to get I =
√

x −
(1/

√
2) tan−1(

√
2x)+ C. (Note that another identical answer is given by I = x/2−√

x/2+(1/2) ln |1+2
√

x|+C.
Of course they have to differ by a constant)

195. I is as before. Let t = z3, dt = 3z2 dz. Use long division to simplify the rational function and the method of partial

fractions to get I = 3t2/3/2 + ln |t1/3 + 1| − (1/2) ln |t2/3 − t1/3 + 1| −
√

3 tan−1
“

(2t1/3 − 1)
√

3/3
”

+ C.

196. Use the identity sin 2t = 2 sin t cos t first, then the substitution u = cos t, du = − sin t dt to get an antiderivative
I = −2 cos t + 4 ln |2 + cos t| + C. The definite integral is now given by 2 − 4 ln 3 + 4 ln 2.
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197. Let I denote the integral and x = z2, dx = 2z dz. Then use long division to simplify the rational function and the method
of partial fractions to get I = 2

√
x/3 − (4/9) ln |2 + 3

√
x| + C.

198. Write tan x = sin x/ cos x and simplify the resulting expression of sines and cosines. Next use the identity cos2 x =

1− sin2 x in the denominator and the substitution u = sin x to reduce the integral into a rational function of u. Now use
the method of partial fractions to get

I =
α

β − α
ln | sin x − α| +

β

α − β
ln | sin x − β| + C,

where α = (1 +
√

5)/2 and β = (1 −
√

5)/2.

199. Reduce the integrand to sines and cosines. Next, take a common denominator in both numerator and denominator and

simplify. Recombine the terms in the denominator so as to use the identity sin2 t = 1 − cos2 t. Now use the substitution
u = cos t, du = − sin t dt. The denominator can now be written as a difference of two squares. Use partial fractions as

before to get I = (1/
√

6)
“

ln | cos t −
p

3/2| − ln | cos t +
p

3/2|
”

+ C.

200. Let I denote the integral and x = z2, dx = 2z dz. Then use long division to simplify the rational function and the method
of partial fractions to get I = −x + 8

√
x − 16 ln |2 +

√
x| + C.

201. Multiply both numerator and denominator by
√

1 + u and simplfy. Now let u = sin x, du = cos x dx. The denominator

simplifies because of a basic identity and the rest is easily integrated to give I = sin−1(u) −
q

1 − u2 + C.

202. Let u =
√

x, dx = 2u du so that I = −2 cos
√

x + C.

203. Let x = z4, dx = 4z3 dz and use partial fractions. Then I = (1/2) ln |x| − 2 ln |x1/4 − 1| + C.

204. Let x1/6 = z, dx = 6z5 dz. The resulting rational funcion of z has a denominator of degree 9 so the method of partial

fractions will be tedious. The answer, when simplified, is I = 3 ln |1+x1/3 |+3/(2x2/3 )−ln |x|−3x−1/3 −1/x+C.

205. Let x1/6 = z, dx = 6z5 dz. Now use long division to simplify the rational function in z and integrate term by term.

Then I = 6x7/6/7 − 6x5/6/5 + 2
√

x − 6x1/6 + 6 tan−1(x1/6) + C.

206. Let x1/6 = z, dx = 6z5 dz. As before use long division to simplify the rational function in z and integrate term by term.
Then

I = x +
6x5/6

5
+

3x2/3

2
+ 2

√
x + 3x1/3 + 6x1/6 + 6 ln |x1/6 − 1| + C.

207. Let x1/3 = z, dx = 3z2 dz. Changing the limits we get the same limits in the z variables. Using long division and

simplifying we get an antiderivative I = 3z2/2 − 3z + 3 ln |z + 1| and this gives us the answer 3(ln 2 − 1/2).

208. Let x1/12 = z, dx = 12z11 dz. Another long division, simplification, integration and back-substitution gives

I =
3

2
x
2/3

+
12

7
x
7/12

+ 2
√

x +
12

5
x
5/12

+ 3x
1/3

+ 4x
1/4

+ 6x
1/6

+ 12x
1/12

+ 12 ln |x1/12 − 1| + C.

209. Let x1/2 = z, dx = 2z dz. Changing the limits we get the same limits in the z variables. Using long division and
simplifying we get an antiderivative I = 2z − 2 ln |z + 1| and this gives us the answer 2(1 − ln 2).

210. Let x1/2 = z, dx = 2z dz. Now use the Table Method to integrate the resulting z integral. We get I = −2x cos
√

x +
4 cos

√
x + 4

√
x sin

√
x + C.

211. Let x1/5 = u, dx = 5u4 du. Changing the limits we get the same limits in the u variables. Using long division and
simplifying we get 5 ln 2 − 35/12.

212. Let z = tan(x/2) etc. The resulting z integrand looks like −2/(z2 −4z−1). Now complete the square in the denominator
and use partial fractions. We get an antiderivative that looks like

I = −
1

√
5

“

ln | tan(x/2) − 2 −
√

5| − ln | tan(x/2) − 2 +
√

5|
”

.

Putting in the limits we get the answer

√
5

5

 

ln

√
5 − 1

√
5 + 1

+ ln

√
5 + 2

√
5 − 2

!

.

213. Let x1/2 = z, dx = 2z dz. Changing the limits we get the same limits in the z variables. The cubic 1 + z3 in the
denominator is easily factored. Now use partial fractions. Then (with coffees) evaluate the limit of the antiderivative at
infinity. Done correctly you’ll get the answer 4π

√
3/9.

214. Let 2x = u, dx = du/2. The new u limits become 0 and π/2. Now let z = tan(x/2) etc. The new z limits now become

0 and 1 and the new integrand looks like 1/(1 + 2z − z2). Factor the denominator using the quadratic formula and using
partial fractions you’ll find the answer √

2

4
ln

 √
2 − 1

√
2 + 1

!

.

215. Another tedious one! Let z = tan(x/2) etc. The new z limits now become 0 and 1. The resulting rational function can be
integrated using partial fractions to find the simple answer of π/4.

216. Let z = tan(x/2) etc. The new z limits now become 0 and tan π/8. The resulting integral looks like

Z tan π/8

0

2(1 + z2)

z4 + 6z2 + 1
dz

which can be integrated using partial fractions (first complete the “square” in the denominator by rewriting it as (z2+3)2 −
(
√

8)2 and then factor the difference of squares as usual. Another few coffees should do the trick! The answer is

√
2

2
tan−1 √

2.

217. Let z = tan(x/2) etc. An antiderivative is then found to be (
√

2/2) arctan((
√

2/2) tan(x/2)). Evaluating this between
the limits 0 and 4π we get (

√
2/2)(0 + 2π) − (

√
2/2)(0) = π

√
2.

218. Let z = tan(x/2) etc. An antiderivative is given by (2
√

3/2) arctan((
√

3/3)(2 tan(x/2)−1)). Evaluating this between
the limits −π and π we get (2

√
3/3)Arctan (+∞) − (2

√
3/3)Arctan (−∞) = (2

√
3/3)(π/2) + (2

√
3/3)(π/2) =

2π
√

3/3.
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219. This time we let z = tan(x) etc. An antiderivative is (
√

21/12) arctan((
√

21/3)(tan(x))−x/4. Evaluating this between
the limits 2π and 5π we get (

√
21/12)(Arctan (0) + 5π) − 5π/4 −(

√
21/12)(Arctan (0) + π/2) = π(

√
21 − 3)/4.

220. Use the Table method and Rodriguez’s formula to show that

Z

g(x)Pn(x) dx = g(x)
1

n!2n
D

n−1
((x

2 − 1)
n

) − g
′
(x)

1

n!2n
D

n−2
((x

2 − 1)
n

) + · · ·

+(−1)n−1g(n−1)(x)
1

n!2n
Dn−n((x2 − 1)n) +

Z

(−1)ng(n)(x)
1

n!2n
(x2 − 1)n dx.

Using this last equation we can evaluate the integrated terms over [−1, 1] and note that in every boundary term there is

always a term of the form (x2 − 1)m left-over and this term becomes zero at the end-points. So, only the final integral
term on the right remains.
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1. 32

2. 25

3. 2
6

= 64

4. 12

5. 45

6. 4x
2 − y

2

7. x
2

8.
2

25

9. x2y3

10. 1 − r4

11. a3b5

12. 8a
9

13.
1

x
7
12

14. 64

15. 6

16.
x12

27

17. 3

18. 8

19. 3n+1

20. 2

21. Expand the right side, collect terms and compare the coefficients. You’ll find that 1 = −a2 which is an impossibility since
the right side is always negative or zero and the left side is positive.

22. See Example 453 where you set r = x2.

23. 1 + x + x
2

+ ... + x7

24. Expand the left-side and simplify.

25. Use the Power Laws and simplify

26. Since ar+s = aras we can set s = −r. Then a0 = ara−r and since a0 = 1 we get 1 = ara−r and the result
follows.

27. See the Introduction to this section for a similar argument.

28. Let x = 2, y = 3. Then 28 6= 26 .

29. Replace r by −r in Example 563 and then set r =
x

2
and simplify.

Write30. x as x =
a

1
2 + a

− 1
2

2
. Square both sides of this equality, use the Powers Laws, and then subtract 1 from the result.

Simplify.
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1.
2

3

2.
2

3

3. 3

4. y = 3x − 10

5. y = x − 1

6. y = −2x − 5

7. y =
4

3
x − 10

8. y = −
3

2
x + 3

9. y = −
2

3
x +

1

3

10.
“

− 1
3

, 2
3

”

11. There is no intersection whatsoever since the lines are parallel or have the same slope (= 1)

12. There is no intersection point either since the lines are parallel or have the same slope (= 1)

13. a) y = x − 2

b) The altitude has length
√

32 = 4
√

2. First, we find the equation of the line through (4, −6) having slope −1 as it
must be perpendicular to the line through (2, 0) and (6, 4) (i.e., y = x − 2). This line is given by y = −x − 2.
The find the point of intersection of this line with y = x − 2. We get the point (0, −2). The base of the triangle
has length given by the distance formula in the exercise applied to the points A and B. Its value is

√
32. The altitude

has height given by the same distance formula, namely, the distance between the points C(4, −6) and (0, −2); its
value is

√
32 as well. The rest follows.

     

1. 1/2

2.
√

3/2

3.
√

3/3: tan π/6 = sin π/6/ cos π/6 = (1/2)/(
√

3/2) = 1/
√

3 =
√

3/3

4. −
√

2/2: cos(−5π/4) = cos(5π/4) = cos(π + π/4) = cos(π) cos(π/4) − sin(π) sin(π/4) = − cos(π/4) =
−

√
2/2

5.
√

2/2: cos(7π/4) = cos(8π/4 − π/4) = cos(2π − π/4) = cos(−π/4) = cos(π/4) =
√

2/2

6. −
√

2/2: sin(5π/4) = sin(π + π/4) = sin(π) cos(π/4) + cos(π) sin(π/4) = − sin(π/4) = −
√

2/2

7. −
√

3/2: cos(7π/6) = cos(π + π/6) = cos(π) cos(π/6) − 0 = − cos(π/6) = −
√

3/2

8. −
√

2/2: sin(−3π/4) = − sin(3π/4) = − sin(π − π/4) =
(−1)(−1) cos(π) sin(π/4) = (−1)(−1)(−1) sin(π/4) = −

√
2/2

9. −
√

2/2: cos(3π/4) = cos(π − π/4) = cos(π) cos(π/4) + 0 = (−1) cos(π/4) = −
√

2/2

10. −
√

3/2: sin(5π/3) = sin(2π − π/3) = 0 − cos(2π) sin(π/3) = − sin(π/3) = −
√

3/2

11. 0: cos(3π/2) = cos(2π − π/2) = cos(2π) cos(π/2) + sin(2π) sin(π/2) = 0 + 0 = 0

12. −1: sin(3π/2) = −1

13. Undefined. tan(3π/2) = sin(3π/2)/ cos(3π/2) = (−1)/(0) = −∞ or is undefined.

14. −1: Use No. 5 above; tan(7π/4) = sin(7π/4)/ cos(7π/4) = sin(2π−π/4)/(
√

2/2) = − cos(2π) sin(π/4)/(
√

2/2) =
−(

√
2/2)/(

√
2/2) = −1

15. −1/2: sin(7π/6) = sin(π + π/6) = sin(π) cos(π/6) + cos(π) sin(π/6) = 0 − sin(π/6) = −1/2

16.
√

2/2: Use No. 5 above again; cos(−7π/4) = cos(7π/4)

17.
√

2/2: cos(17π/4) = cos(16π/4 + π/4) = cos(4π) cos(π/4) − 0 =
√

2/2

18. 0: cos(5π/2) = cos(2π + π/2) = cos(2π) cos(π/2) − sin(2π) sin(π/2) = 0 − 0 = 0

19.
√

3/2: cos(11π/6) = cos(12π/6 − π/6) = cos(2π) cos(π/6) + 0 = cos(π/6) =
√

3/2

20.
√

3/2: cos(−13π/6) = cos(13π/6) = cos(12π/6 + π/6) = cos(2π) cos(π/6) = cos(π/6) =
√

3/2

21. −
√

2/2: cos(225o) = cos(5π/4) and use No. 4.

22.
√

2/2: cos(405o) = cos(9π/4) = cos(2π + π/4) = cos(π/4) =
√

2/2

23. −1/2: cos(960o) = cos(16π/3) = cos(6π − 2π/3) = cos(2π/3)

24. 1/2: sin(−210o) = sin(−7π/6) = − sin(7π/6) = 1/2, see No. 15

25. −1: tan(−1125
o
) = tan(−25π/4) = − tan(25π/4) = − tan(6π + π/4) = − tan(π/4) = −1

26. Draw a picture. Note that sin φ = 4/5 and cos φ = 3/5. Thus, sec φ = 1/ cos φ = 5/3

27. Draw a picture. Observe that sin u =
√

15/4 > 0 in Quadrant II. So, csc u = 1/ sin u = 4/
√

15 and tan u =
sin u/ cos u = (

√
15/4)/(−1/4) = −

√
15
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c)  Area  =  (1/2)
p

(32)
p

(32)  =  16

14.  y  =  x

15.y=  −x  +  4
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28. Draw a picture. Here, cos φ =
√

8/3 by Pythagoras. Thus, tan φ = (1/3)/(
√

8/3) = 1/
√

8

29. Draw a picture. Now, tan v = −3/4 and v in Quadrant IV means that sin v = −3/5 and cos v = 4/5.

30. Draw a picture. This time sec φ = 2 and φ acute means that φ is in Quadrant I. Hence, cos φ = 1/2 and sin φ =
√

3/2.
It follows that tan φ =

√
3.

31. Draw a picture. Well, csc w = −3 means that sin w = −1/3 and so cos w = −
√

2/3. Therefore, cot w =
cos w/ sin w =

√
2

32.

LHS = (
sin x

cos x
+

cos x

sin x
)
2

= (
sin2 x + cos2 x

cos x sin x
)
2

= (
1

cos x sin x
)2 = (

1

cos x
)2(

1

sin x
)2 = sec2 x csc2 x

= sec
2

x(1 + cot
2

x) = sec
2

x + sec
2

x cot
2

x

= sec2 x + csc2 x.

33.

LHS = sin θ + cot θ cos θ = sin θ +
cos2 θ

sin θ

=
sin2 θ + cos2 θ

sin θ
=

1

sin θ
= csc θ

34.

LHS =
cos x + tan x(1 + sin x)

1 + sin x
=

cos x + tan x +
sin2 x

cos x

1 + sin x

=
cos2 x + tan x cos x + sin2 x

cos x(1 + sin x)
=

1 + sin x

cos x(1 + sin x)
= sec x

35.

LHS =
sin2 y

cos2 y
− sin

2
y = sin

2
y(

1

cos2 y
− 1)

= sin2 y(sec2 y − 1) = sin2 y tan2 y

36.

LHS =

1 +
cos x

sin x

1 +
sin x

cos x

=

sin x + cos x

sin x
cos x + sin x

cos x

=
sin x + cos x

sin x

cos x

cos x + sin x

= cot x

37.

LHS =
1

sin φ

cos φ
+

cos φ

sin φ

=
1

sin2 φ + cos2 φ

cos φ sin φ

=
1

1

cos φ sin φ

= cos φ sin φ

38.

LHS = sin2 x
cos2 x

sin2 x
+ cos2 x

sin2 x

cos2 x
= cos2 x + sin2 x = 1

39.

LHS =
cos2 x + sin2 x

cos2 x sin2 x
=

1

cos2 x sin2 x

=
1

sin2 x(1 − sin2 x)
=

1

sin2 x − sin4 x

40.

LHS = (sin2 φ − cos2 φ)(sin2 φ + cos2 φ) = (sin2 φ − cos2 φ)(1)

= sin
2

φ − (1 − sin
2

φ) = 2 sin
2

φ − 1
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41.

LH = (1 +S
sin2 u

cos2 u
)(1 − sin

2
u (=)

cos2 u + sin2 u

cos2 u
)(1 − sin

2
u)

(=
1

cos2 u
)(cos2 u) = 1

42. cos(π/2 + θ) = cos(π/2) cos θ − sin(π/2) sin θ = − sin θ

43. sin(π + x) = sin π cos x + cos π sin x = − sin x

44. cos(3π/2 + θ) = cos(3π/2) cos θ − sin(3π/2) sin θ = sin θ

45. sin(π − x) = sin π cos x − cos π sin x = sin x

46. cos(π − x) = cos π cos x + sin π sin x = − cos x

47. sin(3π/2 + θ) = sin(3π/2) cos θ + cos(3π/2) sin θ = − cos θ

48. cos(3π/2 − θ) = cos(3π/2) cos θ + sin(3π/2) sin θ = − sin θ

49. Using No. (43) we see that

= tan(LHS π + x =)
sin(π + x)

cos(π + x)
=

− sin x

cos π cos x − sin π sin x

=
− sin x

− cos x
= tan x

Using Nos. (45) and (46) we get50.

= tan(LHS π − x =)
sin(π − x)

cos(π − x)
=

sin x

− cos x

= − tan x

     

1. (−∞, ∞).

2. All reals except ± π
2

, ± 3π
2

, ± 5π
2

, ... (these are the points where cos t = 0.)

3. z ≥ − 2
3

.

4. |x| < 2. (You can also write this as −2 < x < 2.)

5. All reals except 0, ±π, ±2π, .... (these are the points where sin x = 0.)

6. (−∞, ∞).

7. (−∞, ∞).

8. (−∞, ∞). Note that t4/5 is defined for all values of t.

9. x 6= 1.

10. z ≥ − 11
3

11. |x| > 1. (That is, either x > 1 or x < −1.)

12. 2
2 ≤ 1. (You can also write this as |2| ≤ 1, or −1 ≤ 2 ≤ 1.)

13. The natural domain of f is −∞ < 4 < ∞.

14. ♥ ≥ 0.

15. x2 < 1. (You can also write this as |x| < 1, or −1 < x < 1.)
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