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Exercise Set 1 (page 13)

S

10.

11.
12.

13.

14.

—2, -1, 2, i.

(z 4 1)3 sin(z + 1). Use the Boz method.

z — 24 2sin(z — 2) — cos z.

—2cos(z + ct).

F(m/2) = sin(cos(w/2)) = sin0 = 0.

22 + h. You get this by dividing by h since h # 0.

cos h — sin h

1
sin (t 4+ 8) ————— + cos (t + 3) .
h h

(a) —m2, (b) 472,

(a) £(0) = 1, (b) £(0.142857) = 0.857143, (c) Since 0 < @ < 1 we see that 2 < 3z + 2 < 5. So, f(3z + 2) =
B3z +2)2 =922 + 12z + 4.

f(F(z)) =z, F(f(=)) = |=|.

The Box method gives that g(x + 1) = (x + 1)2 — 2(z + 1) + 1 = «2.

Again we use the Box method with the quantity (z — 1)/(2 — @) inside the Box. Since h(D) = (20 + 1)/(1 + 0), we use

some simple algebra to see that the right-hand side becomes just x.

8. Observe that f(z + h) — 2f(z) + f(z — h) = 8h2, so that, for h # 0 the cancellation of the h2 terms gives the
stated result.

The definition of the funcion tells us that (using the Boz method), f(z + 1) = (z + 1) — 1 = a whenever 0 < x +1 < 2,
which is equivalent to saying that f(x + 1) = @ whenever —1 < @ < 1. We use the same idea for the other interval.
Thus, f(z + 1) = 2(x 4+ 1) = 2z + 2 whenever 2 < @ + 1 < 4, equivalently, f(z + 1) = 2@ + 2 whenever 1 < @ < 3.
Since the interval {1 < @ < 2} is contained inside the interval {1 < @ < 3} it follows that f(x + 1) = 2a + 2 for such
x.

Exercise Set 2 (page 23)
w={ 1 e

Fa) = { 3z + 4, ifx > —4/3,

—3x — 4,  otherwise.

2

x if x>0
h ) >0,
(@) {712, otherwise.

_J 1—-t  ift>o0,
f(’”)*{ 1+t ift < 0.

sinw  for w in any interval of the form [27wn, 27n + =],
g(w) = &
sinw  otherwise,
where n is an integer.
L . ife > 1,
2
zy\/a2 -1
z) =
(=) *+; ife < —1
z\/z2 -1
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o ={ % Jiz0

0, ifaz >0,
f(I):{2:r:, if x < 0.

Exercise Set 3 (page 24)

1.C orrection: If A < 0, then —A < B implies —1/A > 1/B.
2.T his is false. To see this, let A =1 and B = 0.
3.C' orrection: 0 < A < B implies A2 < B2,
4.C orrection: A > B > 0 implies 1/A < 1/B.
5.C orrection: A < B implies —A > —B.
6.C orrection: If A2 < B2 and B > 0, then A < B.
7.T his statement is correct. There is nothing wrong!
8.( 0,m). (Note: To complete our argument we need sin @ > 0, which is guaranteed by 0 < z < .)
9.1 t’s values are less than or equal to 6. Actually, its largest value occurs when @ = 2 in which case f(2) ~ 5.8186.
10.gi s unbounded: This means that it can be greater than (resp. less than) any given number. The problem occurs at @ = 0.

11.Fr om @ > 1 we see that both @ and @ — 1 are positive. Hence we can square both sides of the inequality x > « — 1 to arrive

atz2 > (x—1)2. (Alternately, since both x and = — 1 are positive, 2 > x2 —x —(z—1) = 22 —2x+1 = (x—1)2.)

12.Fr omp < 1 we see that 1 — p > 0. Since © > 1 (certainly this implies the positivity of x), we have z1 P > 117P op

z1=P > 1. Nowzl=P = z—(P—=1) = p{l . So the last inequality can be rewritten as p{l > 1. We can multiply
=

both sides of this inequality by sin x because 1 < = < 7 guarantees that sin x is positive.
2
19. Since both @ and @2 are > 0, we can apply the AG-incquality to get EEE= > Va 22 = Va3, Since o + 22 > 0,

2
we have © + 22 > TEEZ 502 + 22 > Va3, Yes, we can square both sides since @ > 0, and so both terms in the
inequality are greater than or equal to 0.

14. Yes. Under no further conditions on the symbol, since it is true that (3 — 1)2 > 0 for any symbol, O. Hrpanding the
square and separating terms we get that 02 > 20 — 1.

15. Sincel — p > 0 and |z| > 1, we have |z|1 7P > 117P = 1, or |z| |z| P > 1, which gives |x| > |x|P. Taking

reciprocals, we get Tt 5 - (The last step is legitimate because both |x|P and |x| are positive.)

16. |v| < c. This is because we need 1 — v2 /c? > 0. Now solve this inequality for v.

17. If n = 2, the result is clear, because 2 < (1.5)2 < 3. So let’s assume that n > 2, now. We use (1.12) with the quantity
“1/n” inside the box symbol (or replacing the box by 1/m, if you like). We'll see that

2+___+'n.'n.71---

nT

n(n—1 2)(1

27

4 — = - - S 4
Tn(dy 42zl )2y 4 neo =) @A) (1yn,

thady + 2070 (g 4o g 2= Do AWM (o1,

Now, we regroup all the terms in the above display in the following way . ... Note that the following term is not apparent in
the display above, but it IS there! See Equation (1.12 ).

n(n—1)(n—2) _ (ﬂ) (u

n3

I
z
=

3
afi
.
=
= =
3
|
V]
=

D
- (2) (37),
(-3
A similar idea is used for the other terms. Okay, so using this rearrangement of terms we can rewrite (1 + %)" as
(rd)" -
S (R A (D) -
FO-B - B0 =)

(where there are (n 4 1) terms in the right hand side). Now, notice that for every integer n > 2, each term of the form
“l — (something)/n” is less than 1 and bigger than zero, because we’re subtracting something positive from 1. So,

(-1 <
(-50-2) < Wl

where we have used Figure 9 with A = 1 — 2/m, O = 1 — 1/n (or with the symbols “I — 1/n” inside the box), and
A =1 (or with “1” inside the triangle). Using these estimates we can see that we can replace every term inside the “large
brackets” by 1 so that

(1+%)" =...

i (- g G- R -3 (- )

<1414 grtar+o-+

(1)

i

We're almost done! Now we use the following inequalities ...
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2x2x1=22

3l=3x2x1 >
4=4x3x2x1 > 2x2x2x1=23
Bl=5x4x3x2x1 > 2x2x2x2x1=2%
nt > 2n—l

Now since we must “reverse the inequality when we take reciprocals
for every integer n > 2,

of positive numbers” (Table 1.2, Table 1.3) we get that

Chapter Exercises (page 26 )

1.

11.
12.
13.

14.
15.

16.

17.

18.

19.

_ 1 1
nl > 2"t implies =~ — <
n! on—1
Combining this estimate with Equation (1.1) we get a new estimate, namely,
1\n 1 1 - 1
(1+3) < bThld gt gt oo
(1.2)
1.1 ) 1
<4+ bbb+ by

Now, the sum on the right above is a finite geometric series and we know that, if n > 2,

1 1 1 1-(pntt 1
1 1 g - 227 0
TEgr b gyt g = i < pip =2

Now you can see that, when we combine this latest estimate with (1.2) we find

(t+3)" <1+r+d+b 5t

< 142=3
which is what we wanted to show. Okay, this looks a bit long, but we did include all the details, right? Eventually, you’ll be

able to skip many of the details and do them in your head, so to speak, and the whole thing will get shorter and faster, you’ll
see.

It looks tough, but we’ll be using
this 200 yr old inequality later on,
in Chapter 4, when we define Euler’s

number, 2.7182818284590.

6, 1, 2, 28 = 1L

(22 + 1)3 cos(x? + 1).
2+ 3 4 2sin(z + 3) — cos(z + 5).

sin h cosh — 1

- sin x cos .

From £ > 6 we see that @ must be positive: © > 0. So we can rewrite it as 3 > 6z, which gives = < %. Thus the
solution is 0 < = < %.

z > — %, since we an subtract 4 from both sides ...

@ < %. Note that 2z — 1 < 0 and s0 2z < 1.

|z| > /5. In other words, either © > /5 or @ < —+/5.

1t] < ¥5. Thatis, — ¥5 <t < V5.

—o00 < @ < +o0. That is, @ can be any real number. This is because the stated inequality implies that sin @ < 1 and this
is always true!

2 > 2Y/P . (Note: For general p, 2P is defined only for z > 0.)
lz| < 3. Or—3 < o < 3.

B z + 3, forx > —3,
f(z) = { —z — 3, forxz < —3.
_ t—0.5, ift>0.5,
g(z) = { —t 4+ 0.5, otherwise.
_ 1—t, ift <1,
g(t) = { t— 1 otherwise.

; 2z — 1, x> %
@ =91 1_2z, 2< <

[ 1-—6z, ifz<1/6,
f@) = { 6x — 1, otherwise.

274,

z if eitherz > 2 orz < —2,
f(x):{ > = =
4— 22,

if =2 < = < 2.

_ [ 3-23 e < 3
R A £

fl@) =|(z — 12| = (& — 1)2 = 22 — 20 + 1 forall x. (Note that (x — 1)2 is always > 0 for any value of x.)
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21.

22.

28.

24.

25.

Fa) = |22 — @) = { R A b

flz) = |22 + 2| = 22 + 2 for all =, because f(x) = a2 + 2 > 2 > 0 to begin with.

Fromp < 1 we have 1 —p > 0. Sox > 1 > 0 gives 21 ~P > 117P = 1. Now «1=P = 2= (P—1) = p{l . Thus
z

=T = 1. On the other hand, from 0 < @ < m/2 we have cosw > 0. So we can multiply p{l > 1 throughout by
z z
cosw to arrive at <254 > cosw.

zp—1 =

2, 2.25, 2.370370, 2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 2.58117, 2.59374. Actually, these
numbers approach the value 2.71828 . . ..

From 0 < @ < % we have sinw > 0 and cosz > 0. Thus we may apply the AG-inequality to get SiBZfeose >

- . ) ) - = sin z4cos @ i
V/sin z cos z. Since sin 2z = 2sin @ cos @, we see that V/sin @ cos @ = % and so = >/ %

Multiplying both sides by /2 we get the desired inequality.
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olutions

Exercise Set 4 (page 38)

1. 4
2.1
3.0
4. oo, since t > 2 andt — 2.
5.0
6. —1, since = —x forz < 0.
7. 0
s _1
E

9. 0
10. +oo, since |[x — 1| =1 —a > 0 forxz < 1.
1. 0

1
12. —

6

13. i) 0, ii) 1. Since the limits are different the graph must have a break at @ = 1.
14.4) 1, 4i) 1, iii) 0, iv) 1;
since these limits are dif

15.4) 1, 4i) 2, iii) 1, iv) 2.

nce the one-sided limits are equal at © = 0 and g(0) = 1, the graph has no break at @ = 0. But
rent at @ = 1, it must have a break at @ = 1

Exercise Set 5 (page 48)

1. No, because the left and right-hand limits at = = 0 are different, (2 # 0).

2. Yes, the value is 4, because the two one-sided limits are equal (to 4).

3. Yes, the value is 0, because the two one-sided limits are equal (to 0).

4. Yes, the value is 0, because the two one-sided limits are equal (to 0).

5. Yes, the value is 0, because the two one-sided limits are equal; remove the absolute value, first, and note that sin 0 = 0.
6. No, because the left-hand limit at @ = 0 is —oco while the right-hand limit there is +oc.

7. No, because the left-hand limit at @ = 0 is —oo and the right-hand limit there is +oc.

8. Yes, the answer is 1/2 because the two-one sided limits are equal (to %).

9. Yes, because the two-one sided limits are equal (to 2).
10.No , because the left-hand limit at © = O is +3 and the right-hand limit there is +2 (3 # 2).

11.a) Yes, the left and right-hand limits are equal (to 0) and f(0) = 0;
b)Y es, because g is a polynomial;
¢)Y es, because the left and right-limits are equal to 3 and h(0) = 3;
d)Y es, since by Table 2.4d, the left and right-limits exist and are equal and f(0) = 2;
)Y es, because f is the quotient of two continuous functions with a non-zero denominator at @ = 0. Use Table 2.4d again.

12.Fo llow the hints.

Exercise Set 6 (page 51)

1. @ = 0 only; this is because the right limit is 2 but the left-limit is 0. So, f cannot be continuous at @ = 0.

2. @ = 0 only; this is because the right limit is 1 but the left-limit is 0. So, f cannot be continuous at @ = 0.

3. @ = =1 because these are the roots of the denominator, so the function is infinite there, and so it cannot be continuous
there.

4. @ = 0 only. In this case the right limit is the same as the left-limit, 1, but the value of f(0) = 2 is not equal to this
common value, so it cannot be continuous there.

5. @ = 0 only. This is because the right-limit at @ = 0 is 400, so even though f(0) is finite, it doesn’t matter, since one of
the limits is infinite. So, f cannot be continuous at @ = 0.

6. @ = 0 only, because the left-limit there is 1.62 while its right-limit there is 0. There are no other points of discontinuity.

PROTECTED BY COPYRIGHT DO NOT COPY
5



Exercise Set 7 (page 57)

1. —1. Use the trigonometric identity, sin(0 + 7) = — sin O.
2. —1. Use the hint.

3. 2. Multiply the expression by 1 = 2 and rearrange terms.

2
4. 0. Let O = 3z, rearrange terms and simplify.

K 2z | 4z
5. 2. Multiply the whole expression by “1” or 2L . 2L

6. 1. Let 0 = & — 1. As@ — 1 we have 0 — 0 and SBE — 1,

Exercise Set 8 (page 58)

1. 0. Continuity of the quotient at x = 2.

2. 0. Note that cos 0 = 1.

3. L. Factor the denominator.

4. —1. Reurite the sccant function as the reciprocal of the cosine function and use the trig. identity cos D = —sin(0 — Z.).
5. —2. Factor out the 2 from the numerator and then use the idea of Ezercise 4, above.

6. 0. The function is continuous at @ = 2, and sin 27 = 0.

7. 3. Multiply and divide the expression by 3 and rewrite it in a more familiar form.

8. —oc. Use your calculator for a test of this limit. The numerator approaches —1 and the denominator approaches O through
positive values. So the quotient must approach the stated value.

9. +oo. The denominator approaches O through negative values, while the numerator approaches —1. Thus, the quotient
approaches the stated value.

10. 0. The function is continuous at @ = 0.
11. @ = w. The denominatoris O and the numerator isn’t.
12, @ = 0. Since limg_, f(z) = limg_,o SIBE = 1 5 £(0), we know that f cannot be continuous there, by definition.

13. None. This is because f is a polynomial and so it is continuous everywhere.
14. @ = =+1, the roots of the denominator.

15. @ = +£2. For @ = 2 the numerator is of the form 0/0 and f(2) is not defined at all, so the function is not continuous

here (by definition). Neat, the denominatoris zero for @ = —2, but the numerator isn’t zero here. So the function is of the
form —4/0 = —oo and so once again, f is not continuous here because its value here is —oo.
16. 3. Use the Hint. We know from the Hint (with A = @, B = 2g) that cosz — cos 2z = —2sin(3xz/2) sin(—z/2).
Then
cosx — cos 2w 2sin(32/2) sin(—x/2)
12 x x

2(%) sin(3z/2) (%l)sin(f:t/2)
(%) (=)
7( 3) sin(3x/2) sin(—w/2)

A C RN

Now use the hint with O = 3L and 0 = — £, as @ — 0. Both limits approach 1 and so their product approaches 3/2.

17. 0. Use the Hint. We can rewrite the expression as

tanx — sina tan @ (1 — cos x)
2 2 ’

tanxz (1 — cosx
sin x 1 1 —cosx
- ( z )(COS:E)( z )

As @ — 0, the first term approaches 1, the second term approaches 1, while the last term approaches 0, by Table 2.12. So,
their product approaches 0.

x

18. +oo. The limit exists and is equal to +oo.

b mp—x
19 a=-Z b= —ma=T.
20. 1. Rationalize the denominator. Note that the function is continuous at @ = 0.
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EXERCISE SET 9 (page 63)

1.0 . This is a limit as @ — oo, not as @ — 0.
2.0 . Divide the numerator and denominator by @ and simplify.
3.1 . Divide the numerator and denominator by @ and simplify.

4.1 5. Rationalize the numerator first, factor out \/T out of the quotient, simplify and then take the limit.

5. 0. Use the Sandwich Theorem.

6.T he graph of the function sin @ isn’t going anywhere definite; it just keeps oscillating between 1 and —1 forever and so it
cannot have a limit. This is characteristic of periodic functions in general.

Exercise Set 10 (page 77)

1. —oo. Sincex — 07 it’s necessary that x > 0. So, simplifying, we get (z — 1)/ = 1 — (1/x) and since z > 0 it must be
that the limit of 1/x as @ — 07T emists and is equal to plus infinity. Hence, asx — 0T, (x —1)/z — 1 — (+00) = —oo.

2. 4oo. As before, as @ — 01, @ must be positive and so, (2 + x)/x = (2/z) + 1. Since 2/x — +oo as x — 01 it
follows that (2 + @) /x — +oo + 1 = +0o.

3. The limit does not exist. Note that this is a two-sided limit so we (usually) need to check each one of the one-sided limits
at 0. Since @ — 0 we have & # 0, so (3 — @)/x = (3/x) — 1. Now for the one-sided limits. As x — 01, @ > 0
so the right-hand limit is equal to 3/0 — 1 = 400 — 1 = +o00. Forx — 07, < 0 so the left-hand limit is equal to
—3/0—1= —o0o — 1 = —oo. Since each of these one-sided limits are different, the required two-sided limit cannot evist.

4. +oo. Asz — 0T we must have © > 0 so, (2z+1)/z = 24 (1/z). So, asx — 0T this quotient tends to 2+ oo = +ooc.

5. —oco. Nowx — 0 means that @ < O and = approaches zero. Thus, (z2 + 1)/x = = + (1/x) and 1/ — —oo (since
@ < 0 in its approach to zero). It follows that the limit evists and is equal to 0 — 0o = —oo.

6. +oc. This is a good question because it is a two-sided limit and it has an absolute value in it, so one doesn’t normally expect
such a limit to even exist. We remove the absolute value first. Simplifying the expression and then applying the definition of
the absolute value we get, since x # 0, (z + 1)/|x| = (z/|z|) + (1/|z|) so that,

I+17{1+1/x, if @ >0,
o] L —1-1/z, i =<o.
Now letting @ — 07, we see that & > 0 so (x + 1)/|x| — 1+ 1/0 = 1 4 oo = +o0. However, letting x — 0~ means
that x < 0 so (z + 1)/|a| = —1 — 1/@. But as@ — 0, @ < O and the expression —1/x — —(—o00) = +oo. So,
—1—1/2 — —1 — (—00) = —1 4 00 = +00. See? Both one-sided limits are actually equal, so the limit ewists and is

equal to +oo.
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10.

11.

12.

13.

14.
15.
16.

17.

18.

19.
20.

21.

22.

24.

25.

11.
12.
13.
14.
15.

The limit does not exist. Again we have a two-sided limit and an absolute value inside the expression. Applying the definitions
we get

2
22 + = 2z + 1, if @ >0,
=1 -2z -1, if =z<o.

But as @ — 01 we have 2 +1 — 1 andas @ — 07, =2z — 1 — —1. Since both limits are different at O the two sided

limit cannot exist.

Does not exist. This is because the two one sided limits are different. On the one hand, © — 1T means that & —1 > 0 which implies
thatx /(x—1) — 1/0 = 400. On the other hand, x — 1~ means that x —1 < O which implies thatx /(x—1) — —oo,

since the quotient is always negative and its denominator is approaching zero.

+o00. First observe that the numerator is continuous at © = 2 (x is always in radians, remember?). Thus, 1 + sin(z) —

1 4 sin2 =& 1.909. The limit’s existence is now a matter for the denominator to decide. But since the denominator

z—2>0asz — 2 and it approaches zero, it follows that the quotient, (1 + sin @) /(z — 2) — (1.909)/0 = +oo.

+oo. This is simple because © — —37T is equivalent to saying that x + 3 — 01 (from the right too, basically by adding
3 to both sides of = — —3T and thinking for a minute). Hence the quotient 1/(z + 3) — 1/0 = +oo in this case.

—o00. The numerator tends to 1/2 as @ — 1/27, while @ — 1/27 actually means that 2z — 1 — 07 (seen by
multiplying both sides of @ — 1/27 by 2 and rearranging terms). So the denominator tends to zero from the left (that is,
through negative values) and so the quotient must tend to —oo.

The limit does not exist. The function defined by the numerator cos(z — 2) — cos0 = 1 as @ — 2 by continuity. Being a
two-sided limit we see that the sign of the approach of the denominator@ — 2 to 0 will depend on whether the limit is from
the right (in which case we get 0 through positive values) or from the left (in which case we get 0 through negative values).
It follows the right hand limit is 4+oc while the left-hand limit is —oo. So the limit cannot ewist.

+oo. (Similar to Exercises 6 and 7, above.) The point here is that the presence of the absolute value |x — 2| in the
denominator ensures that the quotient always approaches O from the right regardless of how @ — 2. So now the limit does,
in fact, exist and is equal to 4oc.

+oo. (See Ezample 60 (c) in this section.)
The limit does not exist. (See Ezample 60 (a) in this section with the same identity.)

The limit does not evist. (See Ezample 60 (b) in this section.) The oscillations of 2% sin @ get larger and larger as © — oo
s0 there can be no limit.
10711 As @ — 4oo the quotient, 1/(1 + x2) — 0 through positive values of x. It follows that the sum 1/(1 + x2) +

10~11 — 0410711 = 10711 Note that if you did this problem on a hand-held conventional calculator you might think
the answer is O since the machine only gives 9 decimal places accuracy! But it isn’t equal to zero, is it!?

—1078. This is similar to the preceding one except that now @ — —oo means that @ < 0, i.e., —1/a3 > 0 and so it
tends to zero anyhow as @ — —oo.

+o00. The first term approaches O while the second term approaches —(—o00) = +oo. The result follows from this.

+o00. Same idea as the previous one ... The first term approaches 0 while the second term approaches +00 as @ — oo.

—oo. The first term approaches zero as @ — 07, while the second term approaches — cos(0)/0 = —1/0 = —oo through
positive values of . The result follows.

0. Recall that Va2 = |z| by definition, so since @ — oo it follows that @ > O for all large values of x. So, it must be
the case that the denominator 20 — Va2 = 2z — @ = w approaches plus infinity, through positive values of @. In other
words, the quotient approaches 1 /oo = 0.

1. The reason for this is the classic trig identity, sin? @ + cos2 @ = 1 valid for any real numbver z. So, we are basically
taking the limit as @ — oo of the constant function 1 which, of course, gives 1. Although each term in this expression is
oscillating and has no limit, their sum does have a limit. (It doesn’t generally happen, but it does happen here!)

The limit does not exist. We know from trig that the tan function is infinite at 7 /2, because cos(w/2) = 0 and the
numerator is 1. But what is the approach like? Well, as @ — w/27T, the expression 3tanx — +oo while as as
x — m/27, the expression 3tan @ — —oo (check the graph of the tan function if you're not sure). It follows that the
required two-sided limit cannot exist because both one-sided limits will give different "infinities”.

—o00. This is similar to the preceding one. We know from trig that the cot function is infinite at 7, because sin ® = 0

and cosm = —1. Again, what is the approach like? As @ — 7 we know that for = close to m and just less than m, the
expression cos < 0. On the other hand, for such @ the expression sin @ > 0. Their quotient is therefore negative and so

the quantity 3z + cot @ — —oo as @ — 7w . This means that 3@ + cotx — —oo as@ — ™ .

Chapter Exercises (page 79)

Since f is a polynomial, it is continuous everywhere and so also at @ = 1.
g is the product of two continuous functions (continuous at 0) and so it is itself continuous at t = 0.
h is the sum of three continuous functions and so it is continuous at z = 0.

f is a constant multiple of a continuous function and so it is continuous too (at @ = ).

The graph of f is ‘V’-shaped at @ = —1 but it is continuous there nevertheless.

The limit is 3 — 2 + 1 = 2 since f is continuous at @ = 1.

The limit is 0 - 1 = 0 since g is continuous at t = 0.

The limit is 0 + (2)(0) — cos 2 = — cos 2 & 0.416 since h is continuous at z = 0.

The limit is 2 - cos ® = (2)(—1) = —2 since f is continuous at © = 7.

The limit is | — 1 4+ 1| = |0| = 0 since f is continuous at x = —1.

0. The function is continuous at t = 2.

%. Factor the denominator first, then take the limit.
+o0. Use estended real numbers.
1. Remove the absolute value first.

+oo.
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16.

17.
18.
19.
20.
21.

22.

24.

25.
26.

27.

28.

29.

30.

31.

32.

35.

36.

37.

i) 1; i) 1; i6i) 0; iv) 1; v) Since (i) and (ii) are equal we see that g is continuous at @ = 0 as g(0) = 1, by definition.
Since the left and right limits at @ = 1 are different (by (iii) and (iv)), we see that g is not continuous at x = 1 and so the
graph has a break there.

The limit from the left is 2 and the limit from the right is 1. So the limit cannot ewist.
| — 2| = 2. The absolute value function is continuous there.
0/(—1) = 0. The quotient is continuous at © = —2.

0. The function is continuous at that point.

Does not exist. The left-hand limit as @ — 1 is 1, but the right-hand limit as @ — 1 is |1 — 1| = 0, so the limit cannot
exist.
@ = 0. This is because the left-and right-hand limits there are not equal. For evample, the left limit is —2 while the

right-limit is 0. Use the definition of the absolute value, OK?
@ = 0. The left-hand limit is —1 while the right-hand limit is 1.
None. The denominatoris 3 — 1 = (z — 1)(z2 + @ + 1) with = = 1 as its only real root. Why? By “completing the

square”, we have #2 + @ + 1 = (: + %)2 + 2 > 2 > 0 and hence 2 + z + 1 does not have real roots. The only

possible point of discontinuity is @ = 1. But both the left and right limits at @ = 1 are —1/3, which is also the value of f
at @ = 1. Hence f is continuous at @ = 1 and so everywhere.

x = 0. Bven though the values of the left and right limits here are ‘close’ they are not equal, since —0.99 # —1.

@ = 0. The left and right-hand limits there are both equal to +oco, so f cannot be continuous there.
a

— . Multiply the expression by 1 = L& QL gimplify Then take the limit.

Y az b

+o00. This limit actually exists in the extended reals. Observe that the numerator approaches 1 regardless of the direction
(left or right) because it is continuous there, while the denominator approaches O regardless of the direction, too, and for the
same reason. The quotient must then approach 1/0 = +oo in the extended reals.

0. Break up the expression into three parts, one involving only the term @, another with the term sin /@ and the remaining
one with the term x/ sin 2. The first term approaches 0, the next term term approaches 1 while the last term approaches
1/2, by Ezercise 27, with a = 2,b = 1 and Table 2.4, (d). So, the product of these three limits must be equal to zero.

1. Let 0 = /5= a. Asx — 37, we have O — 01 and so SO 1.

%. See Ezercise 27 in this Section: Multiply the expression by ax/az, re-arrange terms and evaluate.
0. This limit actually exists. This is because the numerator oscillates between the values of £1 as @ — oo, while the
denominator approaches oo. The quotient must then approach (something) /oo = 0 in the extended reals.

Does not exist. There are many reasons that can be given for this answer. The easiest is found by studying its graph and
seeing that it’s not ‘going anywhere’. You can also see that this function is equal to zero infinitely often as @ — —oo (at
the zeros or roots of the sine function). But then it also becomes as large as you want it to when @ is chosen to be anyone
of the values which makes sin @ = —1. So, it oscillates like crazy as © — —oo, and so its limit doesn’t ewist.

0. Hard to belicve? Rationalize the numerator by multiplying and dividing by the expression \/@2 + 1 + @. The numerator
will look like (z2 + 1) — @2 = 1, while the denominator looks like \/x2 + 1 + . So, as @ — +o0, the numerator stays
at 1 while the denominator tends to oo. In the end you should get something like 1/00 = 0 in the extended reals.

Set a = —5,b = 1 in Bolzano’s Theorem and set your calculator to radians. Now, calculate the values of f(—5), f(1).
You should find something like f(—5) = —4.511 and f(1) = 1.382 so that their product f(—5) - f(1) < 0. Since the
function is a product of continuous functions, Bolzano’s Theorem guarantees that f(x) = O somewhere inside the interval
[—5, 1]. So, there is a root there.

Set a = —3,b = 0. Now, calculate the values of f(—3), f(0).Then f(—3) = —9 and f(0) = 2 so that their product
f(=3) - f(0) < 0. Since the function is a polynomial, it is a continuous function, so Bolzano’s Theorem guarantees that
f(z) = 0 somewhere inside the interval [—3, 0]. So, there is a root there.

Let f(z) = @2 — sina. Write f(a) - f(b). Now let a, b with a < b be any two numbers whatsoever. Check that your
calculator is in radian mode, and calculate the values f(a) - f(b) like crazy! As soon as you find values of a, b where
f(a) - £(b) < 0, then STOP. You have an interval [a, b] where f(x) = O somewhere inside, by Bolzano’s Theorem. For
ezample, f(—0.3) - f(2.5) = 2.179, £(0.3) - f(1.5) = —0.257 < 0. STOP. So we know there is a root in the interval
[0.3, 1.5].
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Solutions

Exercise Set 11 (page 91)

1. 4. Use the binomial theorem to expand and simplify.

2. —1. Note that f(z) = —x for @ < 0 and so forx = —1, too.

3. +oo. The quotient is equal to 1/h? — 400 as h — 0.

4. a)4oo, b)1. Notethat f(1 +h) =1+ h forh < 0 and f(1 +h) =2+ h for h > 0.

5. —— = 0.3536.
2v2
6. 4. Use the binomial theorem to expand and simplify.
7. 3.
8. —4.
9. 6.
10. 1. Note that f(z) = x near © = 1.
11. 0. Note that f(z) = 2 forz > 0 and f(z) = —x2 for = < 0.

12. 0 for all @ # 0, and the slope does not exist when @ = 0.
13. The derivative does not exist since f is not continuous there.

14. The derivative does not exist because f(x) is undefined for any x slightly less than —1. However, its right-derivative at
z = —1is foo.

15. Yes. The absolute value can be removed so that f(x) = x2. It turns out that £/ (0) = 0.

6. f(1) = —3%.
17. (1) = —2.

18. a) f'(1) does not ewist since f is not continuous at @ = 1. Alternately note that the left- and right-derivatives at @ = 1
! _ ’ —
are unequal: f4 (1) =1, f/ (1) = co.

b)N o. In this case f is continuous at @ = 2 but the one-sided derivatives are uncqual: f} (2) = —4, f/ (2) = 1.
c)Since2 < § < 3, we see that f'(§) = —5.

Exercise Set 12 (page 99)

3 1L 3
1. —xz2 = —\/=z.
2 2

_ 2
2. —2t7 3 = 2,
3

3. 0.

4. P VE L
3 3z
t=4/5 1

5. = —.

5 55/

6. 0.

7. 4t3

s -3z~ % =

_ 1

9. —z7 2 = _—.

22
14

10. wz™
11. 2t. Use the Power Difference Rules

12. 6x + 2. Use the Power, Sum and Difference Rules
18. 1(t2 4 4) + 2t(t — 1). Use the Product Rule

1/2

14, f(z) =322 4 2 so f'(x) = 823/2 4 S Use the Power Rule

2V
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(22 + 1) (0.5)2—0-5 — 240.5

15. . Use the Quotient Rule
2z + 1)2

(x+1) —(z — 1) 2

16. = Use the Quotient Rule
(z 4+ 1)2 (z 4+ 1)2
2 2 3

¢ 4+ x—1 3z — (z® — 1 2z + 1

17. ¢ ) ¢ )~ ¢ ) ¢ ). Use the Quotient Rule

(22 + o — 1)2
(v +32%/%) ((2/3)271/3) = 2%/3) ((1/2)271/2 4 (9/0)271/ 1))

" (VT + 323/4)2

Use the Quotient Rule

Exercise Set 13 (page 112)

1.0

2.3

52 _

32 2.

4. %\/ —7.
_5.-7/2

5. —5a .

7 2L _¢
da?
3 4 _ 3
8. 4ax(z 4+ 1)3 4+ (@ + 1)* = (@ + 1)3 (52 + 1).
9. —%.

10. (t 4 2)2 4+ 2(t — 1)(t + 2) = 3t2 + 6t.

11, 32(422 — @) (x — 1)71/3 = 82422 — 32)(x — 1)71/3.
12. 210(2z + 3)104,

13 11 _ 1

2z T 2=z

14. 322 — 6z + 3, or 3(x — 1)2: Both are identical.

15.

5 L 14 3yT 14 3yT
16. = .
423/2(1 4+ 7)3

12vE(l + Vo)l
17. —10. Note that '’ (z) = 6z — 10.
18. 3.077(x 4 0.5)—3-324,
19. Use the Chain Rule; For instance, let O = x2, from which we get %f(l:) = f/(0)DO. Put 22 in the Boz, note that
DO = 2z and simplify. You’ll find %f(x% =2z f/(22).
20. Use another form of the Chian Rule: Putting u = g(z) and w =

d dw dw du 1
d—?/g(x):_: ke
x

dx du dx 3

21. Lety(z) = f(22). By the Chain Rule, we have y' (z) = f'(22)-2¢ = 22§’ (22). Replacing = by =2 in f' (z)+f(z) =

0, we have f'(z2) + f(x2) = 0, or f/(22) = —f(22) = —y(x). So y'(z) = 2zf(x2) can be rewritten as
y/(z) = —2zy(x), thatis, y' (x) + 2xy(z) = 0.

22. Use the Chain Rule once again on both sides of f(F(x)) = z=. We find f' (F(z))F’(z) = 1, which gives F'(z) =
1
T (F ()

238. Use another form of the Chain Rule: %’é = %’ti . éi_i — 3¢2 . ﬁ At w = 9 we havet = V9 + 6 = 9 and
dy _3.92. _1_ _ 81
du = ° Ve 2

24 y=232(z —2)+1 (or32c —y — 63 =0).
25. Just use the Chain Rule. You don’t even have to know f, g explicitly, just their values: So, y'(2) = £ (g9(2)) - g’ (2) =
) 1=1.

2 P y 4y _ dy dr dy dr _ (1 _ 9.2 _—1/2
26. (1 (31:72\/;)2) ('a \/Z) Use the Chain Rule in the form: %4 = 44 dr gy, 44 dr — (1 27 )(2 t )
Now set r = 3t — 2V/%.
R, d 2641
27. £1(9) = =L~ since f'(x) = %J On the other hand, since V2 = ||, we sce that Eé — 2t
243 z4+/T 2,/t24¢
tZOand% 2t—1_ ry <o
28. Lety = |x| = Va2. Now, set g(u) = V&, wu = u(x) = x2. Then, y = g(u(x)). Using the Chain Rule we get

4 = 4 4 = 1 = —E— 7LUJE77.ETJETI .
V(@) = o' (u(@) W (@) = gle 20 = A =y wn #0

29. By definition, limp, _, ¢ f(””f)*h’)t’f("”o) = f'(xq). Look at the limit

flzo +h) — flzo)
h

Jim [F (w0 + h) = f(z0)] = lim h=f'(zg)-0=0.

We have shown that limp,_, ¢ f(zg + h) — f(zg) = O, which forces
lim f(zg + h) = f(zg)-
Jim £ (xo ) = f(zq)

This, however, is another way of writing
lim  f(2) = f(=0)-

T—T

Hence f is continuous at xq (by an equivalent definition of continuity).
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Exercise Set 14 (page 119)

11.

12.
13.

14.
15.
16.

17.

18.

19.

20.
21.

—2. Implicit differentiation gives (2@ + y) + vy’ (z)(z + 2y) = 0. Nowset x = 1, y = 0 and solve for y’(1).

dazy—4y3
3x2 292"

dy _ 3z2-242

dx doy—4y3

dx
dy
— @. Implicit differentiation gives an expression of the form

L +v) 20 + ') + ey’ +y = 0. Now solve fory’ after setting x = 16 and y = 0.
ﬁ. Implicit differentiation gives an expression of the form 1 — 2yy’ (z) = 0. Now solve for y’.

0. Implicit differentiation gives an ewpression of the form 2z + 2yy’(z) = 0. Now set @ = 0, y = 3. You see that
!
v/ (0) = 0.

y+1=%(z+1). Note that y/ (z) = %=

o
y—1= %(171), or @ — 3y + 2 = 0. Note that y/ (z) = x—ﬁ%
y = 5(z —4), or5z — 2y — 20 = 0. Note that y' () = ;ﬂ;—;
y=—(x—1) — 1, orz +y = 0. Note that y’ (z) :7%.

Exercise Set 15 (page 128)

cos 1 S
%% The derivative is given by S25YE
2 2z

2sec(2z) - tan(2z) - sin @ + sec(2x) - cos z.

2 2

1. The derivative is given by cos® @ — sin? @. Now evaluate this at @ = 0.

. The derivative is given by 252 - Now use an identity in the denominator and factor.
x

1 —sinaz cos

1
2. Note that y/ (t) = —<98t_  Now set t = 0.
2

2/1+sin t
—2z sin(z2) cos(cos(z?)).
2x cos 3z — 3z2 sin 3x.

2 1
2o Y/3 tan(21/3) + S sec2(21/3).

—(1 + cos z) csc2 (2 + @ + sin ). Don’t forget the minus sign here!
—3 cot 3x csc 3x. The original function is the same as csc 3x.

—sinxz + zcosx + cosx

1. In this case, the derivative is given by ——————————_ Remember that cos(w/2) = 0, sin(w/2) = 1.
cos2 @ —1

4z cos(2z2).

1. In this case, the derivative is given by 2sin @ cosz. When = = Z we know that cos & = sin & = ;2£

—3csc?(3z — 2).
2csca — (2@ + 3) cscx cot .

—(sin @ + = cos z) sin(z sin @).

1 1
sec vz + — sec/z - tan V.
2@ 2

0, except when 2 = 2 4 2nm, where n > 0 is an integer. This is because cscO - sin O = 1 for any symbol, O, by
definition, whenever the co tis defined.

—sin 2(z — 6) — 2csc 2a cot 2x. (Use the identity 2 sin u cos u = sin 2u to simplify.)

4sec? 20 tan 2z. The given function is equal to sec? (2x).

Notice that, for @ # 0, y(x) = sinz/ tan @ = sin @ - cot @ = cos . On the other hand, at @ = 0, we have y(0) = 1,

which coincides with the value of the cosine function at @ = 0. Therefore, y(x) = cos @ for all @. Now all three parts are
clear.
- sy sy
2 2
sy
—_ a
2
a —_ a
2 2
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Exercise Set 16 (page 136)

You can use your Plotter program to sketch the graphs.

10.

11.

12.

13.

14.

15.

il

® x>

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

fle)y =4—22, 0<z<2 f 1l

g@)=@-1)"1 1l<a<oo g

fz)=2—23, —co<az<oo. fl@)=¥2-%, —c0o <z < co.
f@) =vBF 2T, -3 <e <o fTl(2) =42 -5), 0<w < oo

f)=@+9/3, —2<y<oo. Tl =33-20<y< oo

(i) F(0) = 2, since f(2) = 0 forces 2 = F(f(2)) = F(0).

VI—z, 0<a < 4. See the margin.

() =2 141, 0<z < oo

(ii) f(—1) = 6, since F(6) = —1 means that 6 = f(F(6)) = f(—1).

(iii) Indeed, if f(x) = O then @ = F(f(z)) = F(0) = 2, and so this is the only possibility.

(iv) y = 8, because f(—2) = 8 means (by definition) that F(8) = —2 so y = 8 is a solution. No, there are no other
solutions since if we set F(y) = —2 theny = f(F(y)) = f(—2) = 8, so that y = 8 is the only such solution.

(v) No. The reasoning is the same as the preceding exercise. Given that f(—1) = 6, the solution @ of f(x) = 6 must

satisfy @ = F(f(x)) = F(6) = —1, by definition of the inverse function, F.

1 1 1

We know that F/(—1) = — = — = |
I (F(=1)) f(=2.1) 4

F(z) = x, Dom(f) = Ran(F) = (—oo,+00) = {x : —co < z < +oo}, and Dom(F) = Ran(f) =

(— o0, +00) too.

1
F(z) = —, Dom(f) = Ran(F) = {z : = # 0}, and Dom(F) = Ran(f) = {= :

F(z) = ¥Z, Dom(f) = Ran(F) = {z : —0c0 < = < +oo} = Dom(F) = Ran(f).

t— 4

F(t) = Dom(f) = Ran(F) = {z : 0 < t < 1} while Dom(F) = Ran(f) = {= :

—4 <t <11}

22 — 1 1
G(z) = — Dom(g) = Ran(G) = {= : - < @ < +oo} while Dom(G) = Ran(g) = {z :0 < @ < co}.

Note that g is one-to-one on this domain. Its inverse is given by G(t) where G(t) =

1
{t:0<t< —} while Dom(G) = Ran(g) = {t:0<t < 1}.
2

This f is also one-to-one on its domain. Its inverse is given by F(x) where F(z) =

3 3
{z:a# ;} while Dom(F) = Ran(f) = {z : @ # 7;}.

1

This g is one-to-one if y > —% and so it has an inverse, G. Its form is G(y) where G(y)
1

Dom(g) = Ran(G) = {y : —— < y < +oo} while Dom(G) = Ran(g) = {y :
2

Exercise Set 17 (page 144)

sin(Arccos(0.5)) = sin(%) = 325
cos(Arcsin(0)) = cos0 = 1.

sec(sinT1($)) = sec(%) = \%

2

Dom(g) = Ran(G) =

Dom(f) = Ran(F) =

—1 4+ T¥4dy

> s

1
——= <y < +oo}.
4

—+/5. (This is hard!) Let tan~ L (— $) = a. Then —F < a < 0; (see the graph of the Arctangent function in this

Section.) Also, tan a = — % Thus

5
sec?a =1+ tan?a =1+ (-1/2)2 = =.
4

But — & < a < 0 implies that sec « = 1/ cos a > 0. Therefore

p)
1 cosa 1 1 _
csca = = . = sseca = (—2) — = —V5.
sino  sina cosa  tana 2
seo(sin™1(33)) = sec E = 2.
Arcsin(tan(— %)) = Arosin(—1) = —%.

7 /4, as we are dealing with the principal branch here.
1, since this is true regardless of the branch.

\/2/2, since this is true regardless of the branch.

—1.

0, since sin ® = 0 and Arcsin (0) = 0.

/2, since we are dealing with the principal branch of arccos.

—7/3, since sin(—27/3) = —+/3/2 and Arcsin (—v/3/2) = —=x/3.

37 /4, since cos(57/4) = —+/2/2 and so Arccos (—+/2/2) = 37 /4.

—7/4, since tan(3w/4) = —1 and so Arctan (—1) = —x /4.

— 7 /24207, ~n/2-2nm, since sin(—7 /2+2n1) = — 1 and Arcsin (—1) = —m /2. Here n=0, 1,2,3, ...
—7/4.

7r+2nm, 7-2n7, where n=0,1,2

7 /4, since tan(w) = 0, and Arctan (1) = /4.

—0.8082, (use your calculator here).
7/3, since tan © = 0 and Arctan (v/3) = 7 /3.
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10.
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Exercise Set 18 (page

2x

d 2
— Arcsin(a?) = which is 0 at & = 0.
de

1— a4

22

N

2xArccos © —

1
2(1 + x) VT
sin @
- . Remember the identity?
sin x|

sinz — sin" ! 2. cos 2\/1 — 22
sin2 z - \/1 — 2

1

2|z|\/ (22 — 1)sec— L z

2, because cos(2Arcsin x) - which is 2 at @ = 0.

1—=
16z

V1 — 162

1

" (Arctan 2)2(1 + 22)

3|x|3

zy\/a6 — 1

322 Arcsec(z3) +
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Exercise Set 19 (page 162)

[N

S

]

10.

11.

12.

13.

14.

—2. Factor the numerator and simplify.
2. Factor the numerator and simplify.
2. Use L’Hospital’s Rule.

0. Use L’Hospital’s Rule.

sin? ¢ — sin(t2) sint\2  sin(t2)
= lim -
t—0

0. Indeed, lim =1-1=0.
t—0 +2 + +2

—. The quotient is continuous at @ = 1. Use of L’Hospital’s Rule will give nonsense here.

2

Arctan x

This limit does not exist. In fact, applying L’Hospital’s rule to the one-sided limits at & = 0 shows that lim ————— =
z—0 z2
(14 22)1 Arctan x (14 22)1
lim ————— = 400 and lim ———— = lim ———— = —oo. So there is NO limit at @ = 0.
z—0t 2 z—0— z2 z—0— 2z
(1 - 22)—1/2
1. By L’Hospital’s rule, lim ——— =1
=0 (14 22)—1
6 5z 3z
—. Multiply the expression by 1 = — - —, re-arrange terms and take the limit.
5 3z b5z
1
—. Use L’Hospital’s Rule.
3
— . In this evercise we must apply L’Hospital’s rule “three” times before we can see the answer.
36
2. Indeed,
x sin (sin z) sin(sin ) + @ cos(sin @) - cos
lim ———— = lim
z—0 1 — cos(sin ) z—0 sin(sin z) - cos @
1 x cos(sin z)
= lim 4+
z—0 \ cosz sin(sin z)
x
= 14 lim [ ———— . cos(sinz)
z—0 \ sin(sin z)
x sin @
= 1+ lim . ——— .cos(sinz) | = 2.
z—0 \sinz sin(sin z)

Chapter Exercises (page 163)

1.27(z + 1)26.

2.
3.

10.
11.
12.

csc 2@ — 2(x + 1) csc 2@ cot 2a. Note that csc(2z) =

—3cos? zsin .

1

Sin 2z -

2(z 4 5) cos((z + 5)2). You can easily do this one using the “Box” form of the Chain Rule!
sinz — cos @

(sinx + cosx)2

1
Use the Generalized Power Rule.

=5
2 cos 2.

—4 cos 4z - sin(sin 4z).

6 tan 2 - sec3 2x. The two minus signs cancel out!
2z sec 2z + 2(x2 + 1) tan 2z sec 2.

—3csc 3z - cot 3w.

sec 2 4 2(x + 2) tan 2z sec 2z.
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202 4 60 — 2
2z +3)2

13.

14. 3cos3w - (x1/% +1) + La=4/5 . sin 3.

15. (2@ + 6) cos(x2 + 6z — 2).

16. 2.8.
2 Nz
17— = —.
3V2 3
V3
18. —————— . Be careful with the square root terms.
3(2 + V3)

19. 210 x 5104 — 42 x 5105,
20. 0.
21. 4. The derivative is 4 cos(sin (4z)) cos(4x).

22. 2.

23. 1. f(z) = @ + 2 form > —2. In this case, ¢ = —1 > —2 so this is our f.
1

24. ek

25. 87,318 - (3z — 2)97, 87, 318.

26. Putting w = 322 and y = f(u), we have

d dy dy du
Ly = o2 ) 62 =62 - £ (322).
de dr  du dx

27, y—1=24(x — 2), or 24z — y — 47 = 0.

81  sin9
28, — — When w = 9 we have t = 9 also. We know that 9% = 4% . dt oo (342 _ ging) . —L_ =
du dt = du 2V
2 6
%(3 - (81) — sin 9) .
29.
dy dy dr 1 _ _
@ _voar (_T /2 4 3, 2) (3 —t~1/2),
dt dr dt 2

= (i(st —2¢1/2)y=1/2 | 334 — 2t1/2)*2) (3 —t1/2y,
2

2

30. Notice that, for & > 0 we have y(x) = @2 and hence y is differentiable at x with y’(z) = 2. Similarly, for @ < 0 we

2

have y(z) = —x? and hence y’ (¢) = —2ax. Finally, for © = 0 we have

y(h) —(0) _ hln|
h T oh

=|h| >0 ash — 0

and hence y is also differentiable at @ = 0 with y’ (0) = 0. From the above argument we see that y’ (z) = 2|x| for all z.
It is well-known that the absolute value function |x| is not differentiable at @ = 0. Therefore the derivative of y’ at 0 does

not exist. In other words, y'’ (0) does not eist.

3
31. —=. The derivative is 3z2 + 2xy’ + 2y + 2yy’ = 0. Set = = 1, y = 0 and solve for y' .
2

dy  3z2 — 242 dz  dxy — 4y3
82, — = — - @ - 7

dx dxy — 4y3 dy 322 — 292
39, Implicit differentiation gives =252 4+ 2242 + 222y’ = 0. So, at (0, 16), we have y' = —1.

f ¢ PN == ) ,16),

dy 3y2 +y

34. =

dx 5y4 — 6zy — z
35. The tangent line to the curve at (4, 0) is vertical. Here 2z + 2yy’ = 0 and we are dividing by 0 at © = 4.
36, y+1=2(x+1),or2z —y+1=0.

37. The vertical line through the origin: @ = 0 (or the y—axzis itself.) In this case, (x 4+ 2y)y’ + (24 y) = 0. The derivative
is undefined (or infinite) at @ = 0.

38. y

%(x — 4), or 5z — 2y — 20 = 0.

39. y=a. At (1,1) we havey’ = 1. Soy — 1 = 1(x — 1) and the result follows.

40. y = @ — w. The derivative is cosx + y’ cosy — 6yy’ = 0. Set z = 7, y = 0 and solve for y’.
1

41. =. Use L’Hospital’s Rule.
2

421

43. 0. Find a common denominator and use L’Hospital’s Rule.

2

44. 0. Divide the numerator and denominator by @2 and let & — —oc.

45. By L’Hospital’s Rule, we have
o /T % + Arctan x
lim @ (— + Arctan x) = lim —————

2

T — — o0

= lim -
T — — 00 2(1+a:2)

= +4oo.
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Solutions

Exercise Set 20 (page 173)

1. 2241
2. x
32% _ 4 P —x2, _ 2
32 2 — 2z . Note that logy (2%) + Llog4(16 )=z logya(2) — 2210g4(16)
2
z
== — 222,
2

4. 1 —logz(4)

5. 0, since 2T 27T = 1 for any .
—2 -1 0 1 2
6. The graph looks like Figure 76. Its values are: L 1 14 16

7. The graph looks like Figure 77. Its values are:

—2 —1 0
16 4 1

8. The graph is similar to y = /2% in Figure 80. Its values are:

9. log /5(1.6325) = V2

1
10. logo (—) = —4
16

1
11, logg (_) =2
9

12. f(z) = 2%
4

13. 3% =381
1\ —2

14. (—) —4
2
1\ —3

15. (—) = 27
3

16. a0 =1

17. V2VZ — 16325

16 "
18. @ = —, since loga(3z) = 4 means that 2% = 3.
3

3

19. @ ==, since 3 = & forces 3u + 3 = w, ete.
2

20. = = 42, since V20 = 22 — 1, or 22 = 2, ete.

21. @ = 2, since %*1 = x is equivalent to = = 2.

2
22. y = a2, sincey = loga(2%" ) = 22 logy(2) = 22 - 1 = 2.

Exercise Set 21 (page 179)

1.by = 0, by = 0.25, by = 0.29630, by = 0.31641, b = 0.32768, bg = 0.33490, by = 0.33992, bg = 0.34361,
bg = 0.34644, b1y = 0.34868,

2e —1= % ~ 0.3679. See the following ezercise.
3. Letw = 2, s0thatn = % and as n — oo we get @ — 0, then
n =
. a\n . a
olim (1+ ;) = Jlim (Qta)=
17a
- L:l:no (1+ ) z]
= % by Known Fact#5
PROTECTED BY COPYRIGHT DO NOT COPY
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Exercise Set 22 (page 189)

E 2
1. =, since y’' = 3,3 . Bvaluate this at z = 1.
1 2343
1
2. 3.-e3%loga + 3% . L
z
e (zlogaw — 1)
z(log )2
13 ,
4. =, sincey =2z +In(z + 6) andsoy’ =2 + . Bvaluate this at @ = 0.
6 z+6

5 ! 14 i
- a:+\/a:2+3 \/z2+3 '

4
6. .
42
z
7. s since In(y/22 4+ 4) = £ In(2? 4 4).
z2 4

Exercise Set 23 (page 192)

fap =n+2anday ) = (n+1)+2=n+3. Clarly n+3 > n+2 andso {an} is increasing and _lim _an

, noto (n+1)—1 L
a n = and a R e A . Consider a — an:
" " ntl (n+ 1) nt1 nl T o
n n—1 n2 — (n — 1)(n + 1)
nt1 n N n(n +1)
n2 — (n2 — 1)
N n(n +1)
1
= ——— >o0foralln >1.
n(n + 1)
Therefore ap, ] > an and the series increases.
lim_ap = lim_ (1 - ;) - 1.
, n-2 (n+1)((n+1)—2) n-—1
ap = = and a _nronnT oY
" . ntl (n +1)2 nt1
n—1 (n-2) n(n —1) — (n + 1)(n — 2)
a —ap = - =
ntl = AT . n(n + 1)
n2 —n— (n2 —n—2)
N n(n + 1)
2
= ——— >o0foralln>1.
n(n + 1)
Therefore a,, | > an and the series increases. Furthermore,
Jlim ap = lim (1 - ;) = 1.
n (n+1) n+1
4 an = andag g = —— 2 — .
n+3 (n+1)+3 n+4
n+ 1 n (n + 1)(n + 3) — n(n + 4)
apg1 — an = —— — =
n+d n+3 (n +3)(n + 4)
n2 4 4n 43— (n2 +4n)
B (n +3)(n + 4)
3
= — S O0forallm>1
(n+3)(n +4)
Thus {an} is increasing and _lim_apn = lim (1 - — )=
(n —1) (n+1)—1 n
5. ap=-——— andap4 = ———— = .
(n+1) (n+D+1 nt2
n n—1 n(n +1) — (n +2)(n — 1)
ang1 —an = - =
n+2 a4l (n+2)(n + 1)
n2 4+ n—(n24n-—2)
(n +2)(n + 1)
2
= — = S oO0forallm > 1.
(nt2(n+1)
o . . 2
So {an} is increasing and | lim _an = lim (1 - — )=t
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10.

11.

For n from 1 to 15, ap, runs like 0, 0.70711, 0.81650, 0.86603, 0.89443, 0.91287, 0.92582, 0.93541, 0.94281,
0.94868, 0.95346, 0.95743, 0.96077, 0.96362, 0.96609. You can guess that the limit must be 1. For the graph, see

Figure 81.
2 n
lim (1 - —) =2
R -

Apply the Box method to Fact # 5:

1 1
lim (14+2)% =e = lim (14+0)0 =e.
:E*»O( + x) DHO( +0)
Now let O = z2. Note that 22 — 0 as  — 0 and we are done.

1\n
Use n. = 2000 in the expression (1 + —) /X 2.7176. You don’t want to write down the rational number, though! The

n
numerator alone has about 11, 300 digits!!

The graph of y(z) = e2(Z=1) has the same shape as the graph of y = e® except for three minor differences: first, it is
steeper, second, it ‘shoots’ through (1, 1) instead of (0, 1), and third, it is a translate of the graph y = €2T by one unit to
the right.

a) 1, since e3 1T = 23,

b) 0

¢) 5

4 1

e) 0, since sinz + cos? x = 1.

) 0, sinceln1 = 0.
g) 22% =a®

h) In(z — 1)

i) @1

2
z 2
j) 0, since In (ee ) =€ lne=

12. 0. Use L’Hospital’s Rule twice.

13.

a) 0-38288 — 1 46650.
b) e—1:38629 — o 250000.
¢) 433217 — 76.1093.
d) e—2-86738 — 0 05685.

e) 242793 _ 17 33543,

14 f(o) = e(sine) Ina

15.

a) 4e2T,

b) —3.4e2.

¢) 30T In3. (—sinz) = —In3-sinxz - 3605 T,
6

d) ——. Be carcful, (e37)=2 = =6z
e

e) 1. The derivative is CI2 cosx + 21&12 sin x.
fle T(cosz — sin ).

9 a2 —2x)e” T,

h)2 = e2T (1 4 ).

i)— 2(1 4+ @)z Se 2T,

i) 1.2)T In(1.2).

Kz 06~ (1.6 — z).

Exercise Set 24 (page 198)

1 322 41
) — -
Ina @3 +ao+1
1 Inx 1
b) logg @ + — = — + —.
In3 1n3 In3
¢) % (lnx 4 1), since z* = TN T,
1 1 4
) — - L4 = .
In3 4z —3 In3- (4z — 3)
4
) ——.
In3

2
f) (3% n3)loga(a? + 1) +3% . — . ——.
In2 241

9) 1+ Ina.
e® = In(e®) x
h) ——(1 + @), sincelng(e”) = ———= = —.
In 2 In 2 In 2
1 1 3
i) — - .3 = .
In2 3z +1 In2- (3z 4 1)

)1(1 1 ) 1
R =
2 \ln2 a+1 2In2 - (z + 1)
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Chapter Exercises (page 199)

1. ap =n43anday ) = (n+1)+3=n-+4 Clarlyn+4 > n+3andso {an} is increasing and _lim _an

, n-s (n+1)—3 n-—2
. ap = and a - trJ- .
" . ntl (n+1) n+ 1
n—2 n-—3 n(n —2) — (n —3)(n + 1)
a —ap = _ =
ntl T T T . n(n + 1)
n2 —2n — (n2 — 2n — 3)
N n(n + 1)
3
= — >o0foralln>1.
n(n + 1)
Therefore a, | > an and the series increases. Furthermore,
Jlim_ap = lim_ (1 - ;) =1
, nn - -y (n+D((n+1)—1) n
9 apg = T da - =
n 2 n ntl (n + 1)2 (n+1)
n (n —1) n2 — (n+ 1)(n — 1)
a —ap = —— — =
ntl e T . n(n + 1)
n2 - (n?2 - 1)
N n(n + 1)
1
= ——— >o0foraln>1.
n(n + 1)
Therefore a,, | > an and the series increases. Furthermore,
1
Jlim_ap = lim_ (1 - ;) =1
n (n+1) n+1
4 anp = and a =— " = .
T nta T T4 n+ts
n+1 n (n 4+ 1)(n +4) — n(n + 5)
Apyl — an = . =
n+5 n+4d (n +5)(n + 4)

n2 +5n +4— (n2 + 5n)
(n+85)(n +4)

4
= — > o0foralln > 1.
(n +5)(n +4)

Thus {an} is increasing. Furthermore,
4
lim ap = lim (1 — =1.
nbo n-3o ot 4

5. Sketch this as in Figure 81. Note that

n—1 n 1 1 1 1
lim = lim 4 — — — = lim /- — — = —.
n—o0 2n n—=00 | an 2n MR 2 2n V2
6. a) x®
b) VT
7. a) €0-89032 — 5 43592

b) e—1:5314 — g 21623

c) €0-17328 — 1 18920

¢) —sin(ze®) - e®(1 + )
d) —8e~8, since (e1T)~2 = ¢—8%,
e) 0

f) e (in(sin ) + cot x)

g) 1

h) 2z(1 — z)e 2%

1
i) e 2% [ _2Arctana + —— .
1422

j) 2. Note that (x2)% = 2% = (2% Inx
: (In V& )

In vz + 1).
7

x

3

) 2% . In2-logy g(z3) + 2% -
ni.6

m) —37% .1In3logg 5(secz) + 377 -

- tanx
-

In0.5
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10.

11.

13.

Amount after t years is: A(t) = Pe”t, where P = $500 and r = 0.10, so A(t) = 50091t

(a) Thus after 5 years the amount in the account will be A(5) = 500e0-1X5 = $824.36
(b) Want t such that A = 3P = 1500 = 500e?-1% 503 = €01t giving in(3) = 0.1, therefore, t = 10.986 = 11
years.
A = Pe"t, where A = $2400 if r = 0.12, t = 8. S0 2400 = Pe0-12X8 — 2. 6117P. Thus P = % = $918.94
Sales after t months: y(t) = y(0)ekt =10, 000ekt. Att =4, 8,000 = 10,000e%¥, 50 0.8 = e4F, In(.8) = 4k,
andk = —0.0558. Thus, y(t) = 10, 000e~9-0558t 4ndwhent = 6 (2 more months), sales = 10, 000e —0-0558 X6 —
$7154.81
(a) Revenue at time t is : y(t) = y(0)eFt = 486.8eF?, taking 1990 as t = 0. In 1999, t = 9, so y(9) =
1005.8 = 486.8¢%%. Thus % = 9%, 50 ln% = 9k, giving k = %ln(ZOGG) ~ 0.08, so
y(t) = 486.8¢0-08t 1 2001, t = 11, so revenue = 486.8¢0-08X11 — §1173.62 million.
(b) Want t such that 1400 = 486.8¢0-08t 5, ln41846008 = 0.08t, and t = 13.2 years.
(a) limg_, o0 S = 30,000 = limy_, o, Cek/t = C. Thus, S = 30, 000e*/t. Whent = 1 S = 5000, therefore,
5000 = 30, 000e¥, so % = ek, and k = ln% — _1.79. Thus, S = 30, 000e—1-79/t,
(b) When t = 5, number of units sold is S(5) = 30, 000e—1-79/5 = 30,000 x 0.699 = 20,972.19 ~ 20, 972

units
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Solutions

Use your Plotter Software available on the author’s web site to obtain the missing graphs of the functions in the Chapter

Egercises, at the end.

Exercise Set 25 (page 206)

1. (= 1)(z+

1),

all Type I.

2. (z — 1)(22 + 1). One Type I and one Type II factor.

3. (z+43)(z — 2),
4 (@ =12z +1),

all Type I.

all Type I.

5. (z — 2)(= + 2)(x2 + 4). Two Type I factors and one Type II factor.
6. (2z — 1)(z + 1), all

(@+ 12z — 12,

(z + 1) (22 + 1). One Type I and one Type II factor.

Type 1.

all Type I.

Exercise Set 26 (page 214)

La ). 4%, -1 b 41, -3 ¢ -2, 1. d). 1. . 41
2. a)
G —(/3) [ GF/3) [ GID [ Signop@
(=0, —1) — - - =
1. -1/3) - - T T
(—1/3.1/3) - T T —
(i/3, %) T T T T

b) Note that 22 4+ 1 > 0 so it need not be included in the SDT.

G-D [ @D [ @i3 [ Signofa@
(—oo, —3) = = = =
s D - = T ¥
LD = ¥ ¥ =
() T + + T

c) Note that =2

+ @ 4 1 is a Type II factor. You may leave it out of the SDT if you want.

(x — 1) (z + 2) (2 + o+ 1) Sign of r(x)
(.2 - - T +
—2.D - T T —
[E=D) + + + T

d) Note that t3 — 1 = (t — 1)(t2 4 t + 1) and the quadratic is a Type II factor.

(t — 1) (t2 +t+ 1) Sign of p(t)
(S - T =
(1, c0) + + T

e) Note that

wl — 1= (w3 - (w3 +1) = (w— 1) (w2 +w+ 1)(w + 1) (w2 — w+ 1).

PROTECTED BY COPYRIGHT
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w — 1 w1 w2 f w1 w2 — w1 Sign q(w)
(=00, —1) - - + +
(=1, —1) - + + + —
(1, o0) + + + + +
3. p(x) = —(x — 3)(x + 3)(z — 4)(z + 4). Note the minus sign here, since 16 — 2 = — (22 — 16)!
214 ] «¥3 [ =-3 [ «—4 Sign of —p(@)”
() — = = = T
=2.-3 T = = = =
=3.3 ¥ ¥ = = T
G, D ¥ ¥ T = =
4, ) + + + T T
4. 2. This is because 2 + sin @ > 0 so it doesn’t contribute any break-points.

5. Note that 3+ cosx > 3 —1 = 2 > 0, since cosw > —1 for any real . So it doesn’t contribute any break-points. On the
other hand, x4 — 1 = (22 — 1)(22 4 1) and so 2 + 1 (being a Type II factor) doesn’t have any break-points either. Thus
the only break points are those of x2 — 1 = (x — 1)(x + 1) and so the SDT is equivalent to the SDT of 2 — 1 which is
easy to build.

6. First, we find the SDT of this polynomial, p(x). The only break-points are at @ = —1, 0, 1 since the quadratic is a Type I
factor. So the SDT looks like,

-0 | @+D [ = Sign of p(x)
(—oo, —1) = = = =
L0 - T = T
©.D - T T -
(T, =) T ¥ ¥ T

We can now read-off the answer: p(x) < 0 whenever —oo < @ < —1 or0 < & < 1.
7. —3<a< —1, or x> 1. Add an extra row and column to the SDT of Table 5.1.

8. All factors are Type I, so the SDT looks like,

z 1 z — 2 z—3 z + 4 Sign p(@)
—oo, ) - - = = T
(—4,-1) = = = * =
12 T - T T
@3 T T = T -
(3, =) ¥ ¥ T T T

The solution of the inequality p(z) < 0 is given by: —4 < o < —1, or2 < @ < 3.

9. Let p(z) = (x — 1)3(4 — 22)(22 + 1). The SDT of p(x) is the same as the SDT of the polynomial r(x) =
(z — 1)3(4 — 22). This factors as (x — 1)3(2 — x)(x + 2). Its SDT is given by:

(z — 1)3 z+2 | 2—= Sign of (x)
(—, 2 - - T T
2.0 - T T =
) T ¥ ¥ T
2. 0 T T = =

It follows that the solution of the inequality p(x) > 0 is given by solving r(x) > 0 since the exra factor in p(x) is positive.
Thus, p(z) > 0 whenever —oo < @ < 2, or1 < z < 2.

10.z> L, or, —1< a2 < —%. See Erercise 2 a), above.

Exercise Set 27 (page 220)

L&) 2. b). 1,2 o). 1,71—‘%@,7%@. d). 41 ¢ +1. f) 41,42

2. a) t = 2 is the only break-point. Its SDT looks like:

(t — 2) (t2 4+ 1) Sign of r(t)
[E=P) = T -
, ) - ¥ T

b) t =
leading coe

, t = 1 are the only break-points. Note that we factored out the 3 out of the numerator so as to make its

ient equal to a 1. Its SDT now looks like:

(t— %) (t—1) Sign of r(t)
(—, %) - - +
(3.1 + - -
(=) T T ¥

c) Write this as a rational function, first. Taking a common denominator we get that

1 t2 4t -3
42— P
t—1 t—1
Its break-points are given by t = 1 and, using the quadratic formula,
—1+ 13
. .
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The SDT looks like:

(t — (—‘9&)) (t—1) Sign (t)
(=5, —2.303) = = = =
(—2.303, D T = = T
(1, 1.303) ¥ = T =
{1.303, ) ¥ T ¥ T
-1 — /13
where we have used the approzimations: ~ —2.303, and
2
—14 V13
— "~ 41.303.
2

d) Write the rational function as

The factors of the numerator and denominator in this quotient are given by: t5 -+ 1

t3 4+

1

() = 5

= (¢t + D2 — t + 1) and

t3 — 1= (t — 1)(t2 + t + 1), where each quadratic is Type II, and so does not contribute any new sign to its SDT. The
SDT looks like the SDT for a polynomial having only the factors t — 1 and t + 1, that is:

G+ [ -1 Sign of ()
—=.-D — = +
1D T = =
D) ¥ ¥ ¥
€) This rational function may be rewritten as
t2 -2t 41 (t —1)2 t—1
t2 -1 (t—1)(t+1) t4+1
Its SDT is basically the same as the one for a polynomial having only the factors t — 1 and t + 1. See Ezercise 2 d), in this
Set.
£) The break-points are easily found to be: —2, —1, 1, 2. The corresponding SDT is then
t+2 [ t+1 [ -1 ] t-2 Sign r(8)
() = = = = T
2D T - - - -
1D ¥ ¥ = = ¥
D) ¥ ¥ T = =
(2, o) + + + + +

Use the SDT’s found in Ezercise 2 in this Set. From these we see that

14 t2
a) ——— < 0 only when —co < t < 2.
t—2
3t — 2 5
b) ——— > 0 only when —oco < t < 2, or1 < t < oo.
3 -1 =3 -
)t 42— >00nlywhﬁn#<t<l,or7—<%£<t<ac.
t4 1
t3 41
d) —— < 0 only when —1 < t < 1.
t3 —1
t2 —2t 41
©) —5——— > 0 onlywhen —c0 < t < —1, or1 < t < co. Youmay also allow ¢t = 1 in the reduced form of
12— 1
r(t).
4 ¢2
£) —— < Oonlywhen —2 <t < —1 orl <t<2
1t
a) Break-points: —4 only. This is because the numerator factors as @2 — 16 = (x — 4)(x + 4) and one of these

cancels out the corresponding one in the denominator. So, its SDT looks like the SDT of the polynomial @ + 4 only, and

this is an easy one to describe.

2

z2 — 16
x+ 4 —_— =z + 4
z—4
(=, —4) - -
(=4, +4) + +
(+4, +o0) + +
2 _ 16

x
The solution of the inequality > 0 is given by @ > —4.

z — 4

b) The only break-point is at @ = 0, since the other term is a Type II factor. Its SDT looks like:

z 3w+ 2
(—00,0) - -
(0, +o0) + +

5
so the solution of the inequality 3@ + — < 0 is given by @ < 0.
z

c) The break-points are at ¢ = 5, ++/5; Its SDT looks like:

z—5 z — V5 z 4+ V5

(—o0, —V5) - -
(=5, +V/5) - -
(+V/3,5) - +
(5, +o0) + +

A

PROTECTED BY COPYRIGHT

DO NOT COPY




So, the solution of the inequality > 0isgivenbyx >5 or —v/5 <z < V5.

d) The break-points are at —10, 2, since the numerator is a Type II factor. Its SDT is the same as the one for

2
z — 9 322 4 4z + 5 3z® fdwd5

=+ 10 221 8z—20
(—o0, —10) - - n 3
(—10, 2) + - T -
(2, +00) + + + +

322 442 + 5

So, the solution of the inequality ———— ~ < 0 is given by
z2 4 8z — 20

—10 < z < 2.

e) The break-points are at @ = 0, 1 only, since

2% + 22 @2 (x4 1) 2

A1 @ tDE+DE-D E-DE2+D

and the only non-Type II factor is @2 + 1. Its SDT is basically the same as the one below:
2

— 2 2 N
R = sy

(=00, 0) - + +
(0, 1) - + + -
(1, +o0) + + + +
3 4 22
So, the solution. of the inequality ———— > 0 is given by
—1

x
x > 1 along with the single point, x = 0.

£) The break-points are at 0, 2.

x| cosx

interval =2 z—2 |cosz|
T—2

(—00,0)  + - + -

(0,2) + - + -
(2, 4c0)  + + + +

2
The solution of the inequality I—‘Cf’—f‘- < 0 is given by = < 2.
5. a) The only break-points are at = = —1, 1 and so the SDT is basically like the one in Ezercise 2 d), above. Since z2+4 > 0
2
22 — 1

we see that the solution of the inequality > 0, is given by the set & < —1 or @ > 1. This can also be written as
Jz] > 1.

b) There are no break-points here since % + 1 > 0 and 2 + 1 > 0 as well, for any value of =. So, no SDT is needed.

2
z? 41
We sce that the solution of the incquality ———— > 0, is given by the set of all real numbers, namely, —oo < @ < oco.
z4 41
©) The only break-points are at @ = —3, 3 and so the SDT is basically like the one in Ezercise 2 d), above, with 1’s

replaced by 3’s. Since
12 —
22 4 @ 4+ 1 > 0 we see that the solution of the inequality —5———— <0, is given by the set —3 < @ < 3. This can
22 + 41

also be written as |x| < 3.

d) There are 2 break-points here, namely, at © = % 4. Since (z — 4)2 > 0 for any value of =, this term will not

contribute anything to the signs in the SDT. So, the only contributions come from the term 2z — 3 = 2(x — ). It’s now
a simple matter to see that the solution of the inequality % < 0 is given by the set w < 3.
-

©) The break-points here are at @ = —3, —2, —1, as this is easy to see. The SDT looks like:
z 41
(z+3) | (z4+2) | (@x+1) Sign of ———————
(x +2)(x + 3)
o3 - - - -
3.2 T - = T
(—2.-D T T = =
(=1, + - T T
41
So, the solution of the inequality ——————— > 0 is given by
(« +2)(x + 3)
—3<az< -2 0r—1<x< oo.
23 -1 (z—1)(z2 + x4 1)
£) The only break-points here are at @ = —1, 1. This is because the rational function factors as -
41 T+ 1
where the quadratic expression is Type II. So, the SDT looks like the one in Exzercise 2 d), above. It follows that the solution

of the inequality < 0 is given by —1 < @ < 1, or, written more compactly, as |z| < 1.

xz+1
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54 Chapter Exercises:

y=(x+1)?

-4 -3 -2 -1 1 2
X
Egzercise # 4

0.6
0.6
0.4
0.24

0f1 y =/sin 2

Egercise # 10

[N
Lot

3 2 E ) T,z 3

2
Ho_ xM1
2 YT x+3

Ewercise # 16

x -1

y ﬁ(x-l)(x+2 ;2

L3

Egercise # 22

Ewercise # 19

Use Plotter (page 250)

g
J Y= x2- 2x +1
o]
2
2 1 1 5 3 4
3
2]
]
y(x-2)i=1
A ] 1 ¥ 3
14
224
3
2
\
i 21 i3
— X +1 1
x2 +1
L2
ol
\ y=Ix-4|
g
2]
2 2 4 B g
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Chapter Ezercises: (cont’d.)

P
2 Injx
=e
5]
1]
2 R 1 2
kS
Ezercise # 28
Ezercise # 25
16, oy =l - 2?4201y 2@—1)3
‘ 2 +1° (z2+1)2 " (z2+41)3°
interval z 41 z4+1-vV2 a+14++vVZ (z—1)3 y y! y!!
(—00, =1 — V3) - E E - - =
(=1 -+v2,-1) - + -+ -
(=1, -1 +V2) + + + + o+ +
(=14 V2, +o0) + + + + + - +
19, y= 221 W = _—= g = 2@—1)
’ (z—1)(2+2)2 "’ (x+2)3" (x+2)1"
interval z 41 (x + 2)3 z y y! y!!
(—o0, —2) - - - - - =
. —2,-1) - + - -+ =
SDT: (=2,
(~1,0) + + -+ o+ -
(0, 1) + + + o+ - =
(1, +o0) + + + o+ -+
32. Profit P(z) = R(z) — C(x) = 32z — (5 + 352 — 1.6522 + 0.12%) = —5 — 3z 4 1.6522 — 0.123, 0 <« < 20.
For a local eatremum, £ = —3 4 3.30 —0.322 =0, 50 @2 —1124+10=0 , and (z — 10)(w — 1) = 0. Thus
z=1orz = 10. Now d—g = 3.3 — 0.6z . Thisis; 0 when x = 10 and 4 0 when © = 1. So = = 10 gives a local
=
mazimum of P(10) = —5—304165—100 = 30. Check end points: P(0) = —5, P(20) = —5—60+660—800 < 0.
A production level of x = 10 stereos per day yields the mazimum profit of $30 per day.
33. (a) Revenue R(z) = wp = 4z — 0.002z2. For a local mazimum, S = 4 — 0.004z = 0, so = = 1000. Checks:
2
‘; {l = —0.004, so & = 1000 is a local mazimum. Endpoints: R(0) = 0, R(1200) = $1920, R(1000) =
=

$2000. So a production of x = 1000, and hence price of p = 4 — 0.002(1000) = $2

will mazimize revenue.

(b

Nt

Profit P = R — C = 2.5z — 0.002z2 — 200. 42 = 2.5 — 0.0042 = 0 when = = 625. (625, P(625)) ,

2
where P (625) = 2.5(625) — .002(625)2 — 200 = 581.25 , is a local mazimum since ‘;—123 < 0. Now
x
P(0) = —200, P(1200) = 2.5(1200) — .002(1200)2 — 200 = —80, so a production level of = = 625
mazimizes daily profit.

(c) $581.25 from (b)
(d) marginal cost MC = % = 1.5. marginal revenue MR = % =4 — 0.004z

e) 4 — .004x = 1.5, therefore © = =23~ = 625 as in (c).
0.004

34. Average cost AC = (800 + .04z + .0002z2)/z = Sxﬁ + .04 4+ .0002z, =z > 0. For a local minimum, XAC) _

dx
2
=800 4 0002 = 0, s0 0.0002z2 = 800. Thus = = 2000 cabinets. (Check: %“;—Cl = 1690 5 0 forz > 0, so
x x xv
x = 2000 gives a local minimum.)
35. (a) 45 = Cel000k 434 40 = Cel200k . Diyiding gives % = =200k o n % = —200k, and k =
—.0005889 &~ —.0006. Thus, 45 = Ce—-0006X1000 _ 5.—.6 7y ¢ = 4566 ~ 82.

(b) Revenue, R = xp, where p = 82¢~-0000% g0 () Thus, R = 82xe—-00062 4,4 dB 82¢ 0006z _

.0006(82)ze-00062 = g2c—-00062 (1 _ 0006z]. 4E =0 for1 — .0006z =0, so = = 1666.7.

e— 0006z 1 — .0006z R/ (x)
(—o0, 1666.7) - - +
(1666.7, o0) - - -

So magimum revenue occurs when © & 1667, and hence p = 82¢ —-0006(1667) _ g3q 14,
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Solutions

Exercise Set 28 (page 268)

1. —5x + C. Use Table 6.2 with r = 1,0 = x

o

2. xz + C.
3. C. Use Table 6.2 with r = 1, 0 = 0.

L 21.6 4 ©. Use Table 6.2 with » = 0.6, 0 = x.

~
-

T.6
3.2

5. S224cC

6. La?-z+oC

7. %a:g + @ + C. See Ezample 266.
2.3 1.2 _

s 2284 d22 —wqto

9 %ﬁ + C. (Actually, this is the same as Ezercise 5 above.)

10. 2% + 22 — 1.314 @ + C. See Ezample 266.
1. w2320

12, 2@z +4)3/2 4o

19, —2(01 - 2)3/2 4 C. See Brample 267.

14 T2 +1)3/2 4 c.

15—t -2202)3/2 o
5
16, g4+ 22)17 4.
17 te+a33/3 1o
18, —gr(a+924)3/2 4+ C. See Brample 271.

19. e+ a2H3/2 4 o
20, F(z) = +sintz - 1.

21, F(z) = %(1 — cos3 z).
22, F(z) = $(e72 - e722),

yi@) o .
23. —_— = — 4+ . See Example 272.
3

1
4

Exercise Set 29 (page 276)

2 (1 2
L2 /13“1:1 D
2 Jo 2 |, 2 2
, 1 /0 o — 22 |0 _ 1
2" Joa o2, 2
0
vt —o. . .3
3. 0 /711 do = — B = 0; (note: @3 is an odd function.)
23 2 3
4. L /2(12721)@:—7:2 :(2—722)70:75
3 Jo 3 3 3
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

2
2
16. / (4 - 42%)dz = 42 — o2 = 16.
2 L
! /2 /2 d sin2e |7/2 1
L. / sin:rcos:rda::/ sinz [ — sinz | do = -
o o de 2|, 2
P
2. LetO = cosz. Then DO = —sinz. So, F(x) = — % cos® @ + C and, by dﬁﬁnztzon,/ cos? zsine do =
: : o
cos3z [T 1 ( 1) 2
3 |, 3 3) 3’
e sind |72 1
- / sin® z cosz do = [
14 Jen 4 4
—r

—0.26. (Notice that the upper limit 1.2 of the integral is less than the lower one, namely 1.5; nevertheless we can proceed

1.2 5 5 @3
in the usual way.)/ 2z — 22) do = 22 — — = —0.26.

1.

5 3lis

1
B 1 1 s B
—. / dr = Arcsin | = — — 0= —
2 0o /1_ 2 2
0
1 2 d 121 1
—(e —1) / ze® dz = e’ — de = —e® l = —(e —1).
0 da 2 0o 2
2(1 — e %)
2 1 2/ d
/4“*1 dz = /2e*”” 22 dz
0 da
= 277 l =201 -e %

2 , » 37 1 . 3% |1
— . If we set f(z) = 3% then f(x) = 3% In3. so/'s de = — + C. Thus/ 3% do = —| =
In3 In3 0 n3lg
3 1 2

In3 In3 In3
3 (32 - e39).

/0A5 x 4
— dx
0 1_ 22

We know that D(a”) = a® D(0)1n a, where D as usual denotes the operator of taking derivative. It follows

0.5
0.1340. = —(1 - 12)1/2| =1 - V0.75 ~ 0.1340.
0

In 2

g do ab 5
/a — dx = — + C. Now, settinga = 2,0 = x2 + 1, and DO = 2, we see that
da Ina
2 1
1 2 1 2r7H1 2 1 1
/ 22 e = - | = - — = —.
0 2 In2 In2 In2 In2
0
V2 -1
—
/2
I = /\/_/ z sec(x?) tan(x?) da
0
/21 d
- v/ — — sec(z?) da
0 2 da
1 vT/2 1 ™ 1
= —scc(:tz)l - - (scc - 7scc0) = —(vV2-1).
2 0 2 1 2

2 So DO = 2a and the antiderivative looks like

1 1 do

LB

2 1+ 02 do
which reminds one of the derivative of the Arctangent function. In fact,

1 z 1 _
/ —  dz = - tan lx2|
—1 1424 2

0. LetO ==

1 1
= “(tan~ "1 —tan" ' 1) = 0.
-1 2
(Notice that 0 is the ezpected answer because the integrand is an odd function.)
d a2 2 d
Following the hint, we have — / et dt = e — 22 = 2ze%
da Jo da
These identities can be seen from the respective symmetry in the graph of f. Here is an analytic argument. Assume that f
is cven: f(—z) = f(w). Let F(z) = [§ f(t)dt, (—oo < @ < 00). Then Hk F(x) = f(w) and

/jx f(t)ydt = /:)I F(eydr + /Dx Feyat
- 7/071 F(t)dt + /Dx Feydt = —F(—) + F(a).

Thus we will have [T f(t)dt = 2 [§ f(t)dt if we can show —F (—x) = F(x). Let G(x) = —F(—z). We are going
to show G = F. Now

d d d
—g(2) —(—F(-a) = - (—f(—x))
dx dx dx

—(F'(=2) - (-1) = F'(=w) = f(—w) = f(=).

Thus, by the Fundamental Theorem of Caleulus, G(z) = [& f(t) dt + C for some constant C, or G(z) = F(z) + C.
Now G(0) = —F(—0) = —F(0) = —0 = 0, which is the same as F(0) (= 0). So C must be zero. Thus G = F.
Done! (The second part of the exercise which involves an even function f can be dealt with in the same manner.)
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10.

11.

12.

13.

14.

15.

Exercise Set 30 (page 283)

=1
9 X 9 . 8 .
(e SRR DI G LR DI G S
i=1 i=1 i=0
5
> sinim.
=1
i=1 "
—0.83861
0.19029.
0. Note that sin nm = 0 for any integer n.
50 x 51
142434 +50=—— = 1275.
2
52 o 5 100 x 101 x 201
12 422 ... 41007 = — "~ — 338350
6
Z": i 12":_ 1 nn+1) n+41
[ j=_. T T
Zin on n 2 2
n i\ 2 6 o4 6 nn+1)2n+1) (n+1)2n+1)
6| — = it = — . = .
5 >t .
= \n n n n
This is a telescoping sum:
6
> (a;—a;_1) = (a1 —ag) + (ag —a1) + -+ - + (ag — a5) = ag — ag-
=1

The final expression stands for what is left after many cancellations.

We prove this identity by induction. For n = 1, we have

1
LHS = » (a; —a;_1) = ay —ag = RHS.
=1

Now we assume SK_| (a; — a;_1) = ap, — aq, that is, the identity holds for n = k. Then, forn = k + 1, we have

k+1 k
Do(aj—a;_1) = Y (a;—a;_1)+ (apyy —ap)
i=1 i=1

= (ap —ag) —(ag41 — ag) = ag41 — Q-

So the identity is also valid for n = k 4+ 1. Done.
Indeed,

Zn:i(i)z _ (i)% ii2:(i)3w
" i=1

i=1 n n n 6
1 2 1) 1 1 1 1

_ ZMM_:(H_)(H_) L

n n n 6 n n 6

It follows that

For convenience, we write

We have to show that limp— 00 An = In2. We know that [2 L do = In 2. Divide the interval [1, 2]

into n subintervals

of the same length 1/n by means of subdivision points z; = 1 + L (i =0,1,2,...,n — 1) and form the corresponding
Riemann sum Sy, for the function f(z) = 1/x:
n—1 n—1 4 n-1 . 1 m—1 4
Spo= 3 flz;) Azy = — Az = - — = -
i=0 i=0 i i=o n+i n  j—p n+i

Since f is continuous on [1, 2], from the theory of Riemann integration we know that limy— oo Sn =
show that limpn— o0 (Sp, — Ap) = 0. Now

n—1 3
1 n
Sp—An =Y ( —7>

n+i  nt4ind +pp

In 2. It suffices to

i=0
_ "f (nt +ind 4+ pp) —nS(n i) Tt Pn
0 (nd +ind £ pn)(n +4) —o (n*+ind +pn)(n+1)
Thus
n=l pp
0< Sp — Ap < = pn/nt

(dropping something positive from the denominator of a positive expression would diminish the denominator and hence would
increase the size of this ezpression.) By the Hint, we have pn, < 36n Inn. It is well-known that Inz < x for all z > 0.

So pp, < 36n2 foralln > 2. Thus 0 < Sy — Ap < pp/nt < 36n2/n = 36/n2 forn > 2. Now it is clear that

Sy — Ap, tends to O as n — oo, by the Sandwich Theorem of Chapter 2.
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Chapter Exercises (page 298)

1
1. — (x+1)27 4 C. Use Table 6.5, 0 = = + 1, r = 26.
27
2. Lsin2z +C.
3. Lo+ 13/2 10
! 2,3/2 2
4. —— (1 —422)3/2 4 C. Use Table 6.5,0 = 1 — 422, r = 1/2.
12
5. —cosx +sinx + C.
6. —L(5 —22)3/2 o
1
7. —= cos(2x) + C. Use Table 6.6, 0 = 2a.
2

8. 0.4 225 4 0.625 cos(1.6z) + C.

9. 3tanxz + C.

1
10. — (22 +1)100 4 ¢, Use Table 6.5,0 = 22 + 1, r = 99.

200
1. —4esese 4 C.
1 2
12. —= =32 4 C. Use Table 6.5,0 = —3z2.
6
1
15, —— e kT 4 .
k
sin k @
14, ——— + C. Use Table 6.6, 0 = ka.
k
cos ka
15, ———— 4 C.
k
1 2 1
16. 2. /(2x+l)da::a: +z| =2
0 0
17. 0. Note that f(z) = @3 is an odd function.
2.2 3, 2 2
18. 10. 1:/(395 +2¢ — 1) de = 2> + 22 — x| =10
0 0
1 w2 g sin®a |72 1
19. . / sin? @ cosa do = =2
5 0 5 5
0
2
1 1 22 1 3% 1 5
20. — / 2z 3% do = ———| = ——. Use Table 6.5,0 = 22, a = 3.
m3 Jo 2 In3 In3
1 1 1 1 11 1 1
21. —/ 2*””011:7_2*””‘ :7_(_71): = —.
ma Jo In 2 0 In2 \2 2In2 In4
2w cosBa |7 (-1)3 1 2
22 —A/cobxsinxd::— = (- 7(—):—A
3 Jo 3|, 3 3 3

8
23. . Note that f(z) = x2 + 1 is an even function.
3

0.5

™ 0.5 1 ™
24 —. / —— dx = Arcsin z =—.

6 Jo _ 22 6

VJi—= o
25. Use Table 6.5, 0 = x2.
2 2 12 n(n+1)2n +1)  2(n+1)(2n + 1)
26. - = - . _ )
n2 n2 6 n
27. Consider the partition
O=zpg <z] <a9 < ---<aTp =1
_ i i il o
with z; = L, which divides [0, 1] into n subintervals [L, L] of the same length 1/n, (i =0,1,2,...,n = 1). In

cach subinterval [L, L] we take c; to be the left end point L. Then the corresponding Riemann sum for the function

flz) = e is

n—1 n—1 el i n—1 1
S o flei)(ziqpr —x) = > GI/"( *—): > et/m

i=0 i=0

But we know from the definition of Riemann integration that

n-—oo

. L o e
lim kglf(ck)(:tk Ikil)i/{) f(a:)dasf/o eTde =e — 1.

Now the assertion is clear.
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28. Indeed,

7(1) = nff(ci)(mi),

=0

once we choose the c; as
approaches 0 and, by the re

= @; = i/n and f as in the Hint. Neat, we let n — oo so that the norm of this subdivision

lts of this Chapter, the Riemann Sum approaches the definite integral

101
/ — da,
0 1+ a2

™
= Arctan 1 — Arctan0 = —.
4

1
plim 'Zo flep)Am;

n—
i

29. Method 1 First we interpret the integral fol dx (whose value is %) as the limit of a sequence of Riemann sums

Sy, defined as follows. For fized n, we divide [0, 1] into n subintervals of length 1/n by z; = i/n (0 < i < n) and we

take c; to be w;. Then the corresponding Riemann sum for f(z) = 42 is
1—x
n—1 n—1 1 N
Sno= Y flej)(wipg —x) = >, ————=— .
i=0 i=0 \/1— (i/n)2 n2 — 42
For convenience, let us put Ay, ; = n® — i2n8 4 2ipn — p2. It is enough to show that Sp — ST

n — oo. Now, for each n and each i,

) S A E Ay = nS(n? — i2)
Vn2 —i2 Ani Vn2 =2, [a, (n2 = i2) [A, 4+ Ay iy/n2 - i2

The denominatoris too bulky here and we have to sacrifice some terms to tidy it up. But we have to wait until the numerator
is simplified:

2

g

Ay —n%m? —i2) = 08 — 2008 4 2ip, — p2) — (n® —i%n8) = 2ipp — p

Now we drop every thing save A, ; in the denominator. Then within

i

Ay =08 —in8 4 2ipp — p2 = n8(n? = i) + 2ipn — 2

n,i =

we drop the positive term 2ipy and the factor n? — i2 which is > 1. (We still have to keep the burdensome —p2 because
it is negative.) Ultimately, the denominator is replaced by a smaller ezpression, namely nS — p2 . Recall that pp < 36n?

forn > 2; (see Ezercise 15 in the previous Exercise Set.) Using this we see that

nb —p2 > nb —36n2 = n2(n? - 36).
Thus, for n. > 2, n2(n% — 36) is a lower bound of the denominator. Newt we get an upper bound for the numerator:

|2ipn — p2 | < 2ipn + p2 < 2npn + p2 < 2n(36n2) + (36n2)2 = 72n3 4 1206n%.

Now we can put all things together:

n=l n3 n—1 1 n3 72n3 + 12096n%
[sn - &

_ <n-
i=0 \/An,i i=1 \/n2 — 2 Ani n2(n4 — 36)

The last expression approaches to O as m tends to infinity. Done!

Method 2 Let f(z) = ,on [0, 1). Let P denote the partition with zg = 0, andw; = £, i =1,2,...,n.

It is clear that, as m — oo, the norm of this partition approaches 0. Next, by Sierpinski’s estimate we know that

pn < 36n lnn.

Inn
But by L'Hospital’s Rule, lim  —— = 0. This means that
n=—oo 3
p 361Inn
lim — < lim -
oo 4 n—oo 3
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lim — =0
n—oo 4

by the Sandwich Theorem of Chapter 2. Okay, now choose our interior points t; in the interval (z;, ©;41), as follows:

Let
. i Pn

° n TL4

By what has been said, note that if n is sufficiently large, then t; lies indeed in this interval. By definition of the Riemann

integral it follows that this specific Riemann sum given by

n—1
nlim ZO ft;) Az,
i=

tends to, as n — oo, the Riemann integral of f over [0, 1). But

n—1 n—1
plimg 30 S Awp = lim o 30
=0 =0
n—1
1
= plimg X -
i=0 n

i

lim > .
T T 8 =206 — 2ipy, — pp2

The conclusion follows since the Riemann integral of this function f ewists on [0, 1) and

1 1
b ==

™
= Arcsin 1 — Arcsin 0 = Arcsin 1 = —

™

~
30. 2. / sinz do = —cosx| = 2.
0 0
81. 272 — 2. Notice that when  runs from O to /2, the cosine curve drops from 1 to O and the sine curve elevates from O
to 1. Between O and /2, the sine curve and the cosine curve mect at = = % . Hence
lcosa — sina| = § cosz—sine  #0 <o < /4,
COS® = SINTL =1 ging —cosaz  ifn/d < ax < w/2.

Thus the required integral is equal to
/4 /2
/ (cos @ — sinz) da +/ (sinz — cosz) da
0 /4
_ " sy /4 _ cosm — si /2 _ _
(sinw +cosa)|g/ " + (= cosw —sina)| 7)) = 2v2 — 2.
vz 7/8 cos2x /4
32, 1 — —. / — da :/ csc 2z cot 2z da
/6

2 7/12 sin2 2z

1 |Tf/8 ) V2

= — Zcsc2z —1- 2=
w/12 2
3,3/2 |1
4 2 1 1 (14 t3) 4 2
33, — V2 — —. / 2143 dt = - ——— 2 | = 23— 2. Use Table 6.5,0 = 1 + 3, r = 1/2.
9 9 Jo 3 3/2 0o 9° 9
1 1 S|t 1 w
34. / —— da = —Arctan = = — (Arctan 1 — Arctan 0) = —.
0 1+at 2 0o 2 8
d 22 sint sin(22) 2sin (z2)
35. —/ ——dt = S2m = —— 2 asx — O+.
dz J1 t3/2 z3 z2

96, As @ — oo, we have
d vz r - x3/2 1 x 1
da /ﬁ AL -1 T G2 DE/2 -0 2vF 2@ -1 2

d a2 _,2 et 22 z a2
7. — / e dt = 2ze —e =2—F —e the first of which has the indefinite form 22 when x — oo,
do Jz e
while the second term tends to zero. By L’Hospital’s rule and the fact that e® — +00 as @ — +00 we see that 2—Zr — 0
oz

as x — oo as well.

2y 27 27 4z 4

d 7 sin(y?) sin(v/x@2) 1 sin 1
1?8.—/ L dy=—Y =T, sz —o0.
da J1

d rsinaz Int
lim —/ — a4t
z—0t dz J1 In(Arcsin t)

In(sin @)
= lim (— % . cosz—0],

z—071 \In(Arcsin (sin z))
In(sin @)
= lim — . coswz
z—0t Inx
In(sin @)
= lim ——— ) -cosO
z—0t Inx
cot @
= lim
z—0tT \ 1/z
= lim z cotz = lim cosw = (1)(1) = 1.
z—0 z—0T sinx
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40. Indeed, as t — 0,

d [274ct sinw sin(27 4 ct) sin(2m — ct) sin 27
— da = ce— (=¢) — —— =0
dt J2m—ct  ca c(2m + ct) c(2m — ct) ™
41.
d (1 rz+h Vo Fh (1) — V& — R (1)
lim — [ — / VEdt) = lim R
h—0+ dxz \ h h h—0+ h
VeFh—VT—h 2h
lim = lim
h—0+ h h—0+ h(vVzFh + Vo —h)
2 1
lim @ —— = —
h—=0+ Vz Fh+vVz —h T
1 rz 1 2sinx
42, lim — cost dt = lim —(sin @ — sin(—x)) = lim ——— = 1. [Remark: Actually, for every continuous
z—0 22 J—x z—0 2z xz—0 2
function f defined on the real line, we have
=7 5(0)
lim — t) dt = f(0).
z—0+ 22 J—x
Do you know why?]
45 4 1
48 — = 4 .
5 4 5

44. sin(y(z))+cosx = C is the most general antiderivative. Buty = 7 /2 when @ = 0. This means thatsin(w/2)+cos0 =
C, or C = 2. So, the solution in implicit form is given by sin(y(x)) + cos = = 2.

1 B
45. y=tan |=(e2® — 1) + —|.

2 4
46. y:2:1:4+%:1:3+:1:.

(z) = C1 + Cox 4+ Cga? — a? is the most general antiderivative. Now, the initial conditions y(0) = 0, y’ (0)

47y =
0, "/ (0) = —1 imply that C1 = 0, Cg = 0, Cg = —1/2. The required solution is given by
y(z) = — =22 — 2%,
2
48 y =
49 y= 24 2.

y _dc _ 40
50.  Since marginal cost = 42 = 60 + 7.

(a) total increase in cost as @ goes from 20 to 40 is

40 40 40
/ 60 + —— | da = [60z + 40in|z + 40| |53
20 z + 10

— 60 X 40+ 40 In(50) — [60 X 20 + 401n (30)] = 1200+ 40(In 50 — In 30) = 1200 +40In(5/3) = $1220.43
51. Let I(t) be value of investment at time t, t in years. = (500eV*t)//t] thus

500e V't

200¢ 4t = s500eVE 4 C.
VE

I(t) =

When t = 0, I = 1000, so 1000 = 500 + C, and C = 500. Therefore, at t = 4, I = 500e2 + 500 =
$4194.53.
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Solutions

Exercise Set 31 (page 317)

10.

11.

12.

13.

14.

15.

16.

5e5 (22 — 1100 4 C.

6.1
1
R

e
6.1
1 s 1 @e+n~t [t
I:/ Be+1) Pde==. —T 2 | ~o.0830.
0 3 —4
0
I 2, _ -1 __t
= [(e-—1)2dz2=-(z-1)"14c= +c
1—=z

/4 ™/4 In 2
// tanz dz = — In | cosz| = In | sec z| =Inv2—-Inl= —.
0 0 2

4/3

3
—Z(2-2) +C.
4

=

sin 8 &~ 0.49468.

1 d(1 + sin t)
I:/—.idtzln\l+sint\+c.
1+ sint dt

- 2 +o0.

%ln\yz + 2y + C. Let u = y2 + 2y, du = 2(y + 1) dy, etc.

sec? z da (4 tane) do
1:/ :/ =21t tanz + C.
T T tanz T T tanz
/4 1 dcosx 1w/
I= 7/ - e = l = V32 — 1. Alternatively,
0 cos? dx cosz o
/4 /4
I:/ tan zsecx dr = secx = V2 -1
0 0

Hard! Very hard! The function sec @ + tan a in the hint seems to be extremely tricky and unthinkable; see Ezample
364 in §8.5.2 for manipulating this integral according to the hint. Here is a slightly more natural way (although just as
unthinkable): Try to put everything in terms of sines or cosines. Let’s begin. Don’t feel bad if you find this still too slick for
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1 cos x 1 dsin
/sccxda: = / da::/ da::/ . da
cos cos2 z cos?2 da
1 dsin @ 1
- / . do = / du (u = sina)
1—sin2z da 1— w2

1 1 1 1
- /7@:/_{ " ]du
(1 —u)(1l+ u) 2 [1—wu 14w

1 1 1+u
= —[-In|l—u|+In|l4+u|]]+C=—1In
2 2 1—u
1 1+sina
= —In|——|+C
2 1—sina
1 (1 + sin x)2
= -In|— |4 C
2 (1 — sina)(1 + sin z)

1 (1 + sin z)2
= —In|l———|+¢C
2

COS2 @

1+ sina
— |4+ C=In|seca + tanz| + C.

cosx

17. One way to do this is to multiply out everything and then integrate term by term. But this way is very messy! Observe that
423 + 1 is nothing but the derivative of 2% + z. So we have an easy way out:

d 1
1:/(z4+z)4-—(z4+z) dz = —(z* + 2)° 1 c.
dz 5

18. —Arctan(cos z) + C. Let u = cosz, du = — sinx da, etc.

1 NI
19. I = = Arctan(t )| [

2 0
20. %sin4(x2 4 1)+ C. Let w = 2 + 1 first, then v = sin u as the next substitution.
21. % In(x2 + 1) — Arctan = + C. (Since 22 + 1 is always positive, there is no need to put an absolute value sign around it.)

2
e2 1 dlnz €

22. 1:/ —  —— dz =1In(lna =In2—Inl=1In2.

e Inz da .

23. L (Arctan 2)3 + C.
24. I = [cosh(el) . et dt = sinh(e?) 4+ C. (Recall that D sinhD = coshD DO and D coshO = sinh0 DO.)

25. % Arcsin bs + C.

_ 2
AVE ar
dz = 2sin

= 2(sin 27 — sinw) = 0.

2
A
26. I = / cos VT - 2
w2 dx
2

28. —/ y2 + Arcsin y + C. Split this integral up into two pieces and let u = 1 — y2, ete.
29. sec(lnx) + C. Let u = In x, etc.

d
30. I = /sin*2/3 z-—sinz dz = 3sinl/3 2 + C.

da
1
1 .t det t
31. I:/ e . dt = e€ e€ —e.
0
dt o
1 2 2
2. — 157t Lo =1.233161.5% T 4 C.
21n(1.5)

Exercise Set 32 (page 340)

1. Using the normal method, we have:
d
I= /:E—sin:r dz = :Esin:rf/sin:t dz = zsinz + cosx + C.
da

2. —wcosm +sinx 4+ C.
—1/2.

4. Using the normal method, we have:

d
/12 sin e de = /12—(7 cos z)d
dz

=  —z? cosx+/2x-cosx dx

R d
[ — cosx+/2x—sinxd:
de
= 7x2cos:r+2:rsin:rf/2sinxda:

= —az?cosz+ 2zsina + 2cosx + C.

Now you can see the advantage of the Table method over the above mormal method: you don’t have to copy down some
expressions several times and the minus signs are no longer a worry!
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

ztan @ + In |cos x| + C.

zsecw — In | sec @ + tan @| + C. (Here you have to recall the answer to a very tricky integral: [ secx de = In | sec @ +
tan x|. See Ezercise Set 32, Number 16.)

(22 — 22 4 2)e® + C.

oo 2
= . Notice that here we have used the fact p(x)e >

: 27 0 27

x — +oo, where p(x) is any polynomial, that is, the exponential growth is faster than the polynomial growth. Alternately,

use L’Hospital’s Rule for each limit except for the last one.

1 1
—2P e — —2% 4 C.
5 25

2 3z —3x 2 3z
e —e

2
+ —xe -
9

x

I = ——z —— 0 as

1 2 2
7—(13+I2+—I+ —)e*31+c.
3 3 9

zsin"la 4/ 2 4c.

ztan~la — (1 +22) + C.

Let u = Inw. Thenx = e% and do = e%¥du. Thus the integral can be converted to [ uBe2%e¥ du = [uPe3¥ du.
Using the Table method to evaluate the last integral, we have
1 5 20 20 40 40
/u5e3“ du = 3% (—u57—u4+—u37—u2 —u— —)+C
3 9 27 27 81 243
Substituting u = In @ back, we get the answer to the original integral [ @2 (In @)% da:
1 5 20 20 40 40
=3 (—(ln:t)5 —Zna)*+ —(na)® - —(na)? + —Inx — —) +C.
3 9 27 27 81 243

® 1
Zsec o —\/z2 —14C, ifz>o0.
2 2

Use the Table method for this problem.

/(xf 12sine de = —(z — 1)2 cosa + 2(x — 1) sinx + 2cosx + C.

1
— —(2sin 3z + 3 cos3z)e 2%

13

+C.
1

— (cos 4z + 4 sin 4z)e® + C.

17

1 1 1
— — cosbx — — cosa + C, or — — (2sin 3z sin 2z + 3 cos 3z cos 2z) + C.
10 2 5

1
Use the identity sin A cos B = — (sin(A + B) 4 sin(A — B)) with A = 3z and B = 2x and integrate. Alternately,

this is also a three-row problem: This gives the second equivalent answer.

1 1 1 3 1
—— cos6x + — cos2x + C, or —=—cos" 2z + — cos2x + C, or
12 4 3 2

— (4 sin 2z sin 4z 4 2 cos 2z cos 4z) + C. This is a three-row problem as well. See the preceding exercise.
12

1 1 1
— sin 7z + —sinx + C, or — (4cos 3z sin 4z — 3 sin 3z cos4x) + C. Use the identity
14 2 7

1
cos Acos B = — (cos(A + B) + cos(A — B)) with A = 4z and B = 3z and integrate. Alternately, this is also a
2

three-row problem: This gives the second equivalent answer.

0p /1 15 5, 15 15

e (—x e —z - —) + C. For this exercise you really should use the Table method, oth-
4 2 4 4

erwise you will find the amount of work overwhelming!

x
Z(coslna + sinlnx) + C. See Ezample 331.
2

Exercise Set 33 (page 344)

_34
z 41
322 + o +3
z3 + 22 41
1 2 7/3
Ll 2,5
3 3 322 -1
2
22 14—
z2 41
2 4 2% 4222 f 20 p 24 —
z—1
13z + 15
Zle—14
6z2 + 6z + 3
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Exercise Set 34 (page 362)

1
1v/ i d::/(l+ )da::a:«#ln\a:fl\«FC.
z—1 z—1

z 41 1
2/ d::/(l+—) dz = + In|z| + C.
x

x

22 da 4 22
;/ :/ z—2+ de = — —2x +41ln |z + 2| + C.
x4+ 2 x + 2 2

22 da 1
4_/_:/ 1— ——) de == — Arctan = + C.
z2 + 1 z2 + 1

5. Since the denominator and the numerator have the same degree, we have to perform the long division first

z2 z2 1
I = / d::/ dz:/ 14+ — dx
(x — 1)(x + 1) z2 —1 z2 -1
1 1 1 1 1
= /1+7 d::/ 14— — — — dx
(z+ 1)(z — 1) 2 z—1 2 z4+1
1 1
= 2+ —-In|lz—1] — —ln|z+ 1| +C.
2 2
2z A B
6. Put — = Then 2z = A(xz — 3) + B(z — 1). Setting © = 1 we have A = —1 and
(z — 1)(z — 3) z—1 -3
setting © = 3 we have B = 3. Thus the required integral is
—1 3
/ + de =3In|z — 3| —In|z — 1| + C.
x —1 x — 3
322 A B c
7. . Then

f————————— = + +
(z—1)(z—2)(z—3) =z—-1 -2 -3

322 = A(z — 2)(z — 3) + Bz — 1)(z — 3) + C(z — 1)(= — 2).
Setting © = 1, 2, 3 respectively, we have A = 3/2, B = —12 and C = 27/2. Thus
322 dx 3 27
/—: Zinjz—1] —12In|e — 2| + — In |z — 3] + C.
(z — 1)(z — 2)(z — 3) 2 2

8. We start with long division:

123 -1 1/ 4 2
I = /—da::/ 22 —w 41— dx
0 z+1 0 41
23 22 T 5
- — — taz—2llz+1]] =—-—=41-2In2-0= — —In4.
3 2 3 2 6
0
9. Here we perform a small trick on the numerator of the integrand:
3z 3(z — 1)+ 3
/— doz = /7 da
(z —1)2 (z —1)2
3 3
- /— dx +/ dx
(z —1)2 z—1
= 31-a2)" Y 43Ijz—1]+C.
10. Put
20 — 1 A B c
(z — 22z +1) a4+1 z-2 (z—2)2
Then 20 — 1 = A(z — 2)2 + B(z — 2)(z + 1) + C(z + 1). Setting = = —1, we have —3 = A(—3)2 and hence
A = —1/3. Setting x = 2, we have 3 = 3C; so C = 1. Comparing the coefficients of =2 on both sides, we get
0= A + B, which gives B = —A = 1/3. Thus
20 — 1 da 1 1 1 1 1
[—— - [(-= o —
(x —2)2(z + 1) 3 z4+41 3 x-2 (z—2)2
1 1 1
- +—Injz—2/— —1Inle+ 1]+ C.
2—a2 3 3
z4 41
11. By long division, we get ——— = x . So
z2 41
— @ 4 2 Arctan @ + C.
12. 2| the integrand becomes
1 1 1

/ de 1/ de 1/ de
(22 + (22 +4)  3J) 2241 3/ 2244

1 1 x
= — Arctan & — — Arctan — 4 C.
3 6 2
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13. Put
1 A B fe] D

- - 4= 3 .

z2(x — 1)(z + 2) x z2 z—1 a+2

The we have
1= Aa(z — 1)(z +2) + B(z — 1)(x + 2) + Cz2(z + 2) + Da(z — 1).

Setting © = 1, 0, —2 respectively, we have C = 1/3, B = —1/2 and D = —1/12. Comparing coefficients of =3 on
both sides, we have 0 = A + C + D, or A + % — 112 = 0 and hence A = 7% Thus
/ dx 1 rde 1 pdz 1 / dx 1 dx
22(z — )z +2)  4) =z 2/ 22 3 2—1 12J 242

1 1 1 1
——lnje|+ — + —In|z — 1| — — In |z + 2| + C.
4 20 3 12

14. Put
2% 41 A B c D Ez + F
= = + .
z(z — 2)(z — 1)(z + 1)(z2 + 1) x z—-2 x—1 a+1 z2 41
Using the method of “covering” described in this section, we get A = 1/2, B = 11/10, C = —1/2 and D = 0. By
using the “plug-in method” described in the present section we have E = — 110 and F = f—o Thus the partial fraction
decomposition for the integrand is
11 11 1 1 1 1 x 3 1
2z 10 z-2 2 z-—1 10 z241 10 2241

Thus the required integral is

1 11 1 1 5 3
—ln|z|+ —In|z — 2| — —In|e — 1| — — In(a” 4+ 1) + — Arctan @ + C.
10 2 20 10

15. Putting
2 A B c Dz + E

2z —1)2@2+1) =z =z-1 (z-12 2241
we have 0 5 ) ) )
2= Az — D22 + 1) + Ba(z — 1)(22 + 1) + Ca(2? + 1) + (Dz + B)a(z — 1)2.

Setting © = 0, we obtain A = 2. Setting © = 1, we get C = 1. Next we set x = 2. This gives us an identity relating the
unknowns from A to E. Substituting A = 2 and C = 1 in this identity and then simplifying, we get a relation

5B +2D + E = -9
relation:

between B, D and E. Setting x = 3 will give us another such a

5B+ 3D + E = —9.

From these two relations we can deduce that D = 0 and 5B + E = —9. Finally, setting @ = —1 will give us yet another
relation among B, D and E:

B+ D—E = —3.
Now it is not hard to solve for B and E: B = —2, E = 1. (Remark: if you are familiar with complex numbers, you can

find D and E efficiently by setting @ = i to arrive at 2 = (Di+ E)i(i — 1)2, which gives Di+ E = 1 and hence D = 0
and E = 1, in view of the fact that D and E are real numbers.) We conclude

2 2 2 1 1
_— = — b —_—
z(z — 1)2 (22 + 1) x z—1 (x—1)2 z2 41
So the required integral is equal to
2 da
/7:2“1\1\72“1\171\7 + Arctan @ + C.
z(z — 1)2 (22 + 1) z—1

PROTECTED BY COPYRIGHT DO NOT COPY




41

Exercise Set 35 (page 371

1.L etu = cos3x so that du = —3 sin 3z dz and sin23z =1 — u

)

2

/sin3 3z dr = /sin2 3z - sin 3z dx

2. Let u = sin(2x — 1) so that du = 2cos(2x — 1) dz andcos?(2z — 1) =1 — u

/c053(2a: —1) da

cos 3z

3

C033

9

3z
+ C.

3

2

Ja-u? cymau=-=+ = +c
3 9

/c032(2a: — 1) - cos(2z — 1) da

1 w
- /(17u2)-—du:_7
2 2

sin(2x — 1) sin®(2x — 1)
- +

3

I
—+c
6

= C.
2 6
8. Let w=sinz sothat du = cosz dz. Notice thatw =0 = u = 0 andz = & = u = 1. Thus
3 5\ |1
/2 1 u u 2
/ / sin2xcossxda::/ W21 - wPdu = [ — - — - =
o o 3 5 15
0
4. Letu = cos(z — 2). Then du = — sin(z — 2) dx and
3 5
u u
/cos2(a: —2)sin®(z — 2) de = /u2(l ) (mdu) = —— + — 4 C
3 5

14 1,
——cos3(z — 2) + — cos®(z — 2) + C.
3 5

5. Let uw = sinxz. Then du = cosz dx. Also,z =n/2 =>u=1landz =7 = u = 0. So

1'r 0
/ sin® x cos x dz = / ud du =
1

/2

The negative value in the answer is acceptable because cos @ is negative when 7 /2 < © < .

6. Set u = x2. Then du = 2z dz. So

/ zsin? (a2 ) cos? (¢2) dw

7. We use the “double angle” formulae several times:

/sin4 zcostx dz =

8. Letu = sinx. Then du = cosx dz and cos? x

/sin4xc035:tda: — /u4(17'u.2)2 du =

9. Use the “double angle formula” twice:

/cos4 20 doe =

PROTECTED BY COPYRIGHT

1 1
- /sin2 ucos? u du = — /sin2 2u du
2 8

1 1 — cosdu
- [(——) au=
8 2

22

16

sin (4z

2
)+CA

64

u

16

sin 4u

64

1
/sin4 2z do = — [ sin? 2z sin? 2z dz

/(1 — 2cosdz + cos? 4z) dx

/(

sin

2

1
4a:+—/
64

1
sin 4z +
1024

1+ cosda 2
— ) de

2

1+ cos 8z
—_— dz

sin 8z 4 C.

1
- /(1 + 2cosdx + cos? 4z) dz
4

x

4
3z

8

sin 4z

8

sin 4z

cos

8x

1,14
+—/—da:
4

sin 8z

8

DO NOT COPY
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10. Let u = sin . Then du = cos @ dz and cos? ¢ = 1 — u2. So

5 5 5 5 uwb w sinz  sin®a
/sin‘xcos‘xd::/u‘(l—u Ydu = — - — +C = — — —— + C.
6 8 6 8
11. Setu = cosa. Then du = —sin @ da and sin? z = 1 — u2. So
/sin5 zcosta dz = /sin4xcos4x -sin @ do = /(1 —u?)2u? (—du)
= /(711.4 +2u8 — u8) du
1 2 1
= -+ W T oWy
5 7 9
2
= —ZcosPx+ Zcos”w— =cos®z+C.
5 7

12. We use the “double angle formula” several times.

6 1 — cos2z\3
/sin z de = / ") d=
2

1 2 3
— —/(173cos2x+3cos 22 — cos® 2z) da
8

x 3 3 1+ cosda
= —7—sin2x+—/—da:7
16 8 2

8
1 5 d [sin2z
—/(lfsin 2z) - — da
8 da 2
5 1 1 3 3
= —a — —sin2z 4+ — sin® 22 + — sindax + C.
16 48 64

18. Let w = sin . Then du = cosz da and cos® z = (1 — sin? 2)3 = (1 — «2)3. So

/cos7xda: — /(17u2)3du:/(173u2+3u47u6)du

3

3

. R
5
3

1
- - 4cC
7

3 .5 1.7
= sinz —sinz + —sin"z — —sin’ z + C.
7

Exercise Set 36 (page 380)

1.— In|cosz| + C =1In|secax| + C. Letu = cosw, du = —sinz da.
1

2. —tan(3x 4+ 1) + C. Let u = 3 + 1.
3

3. seca 4 C, since this function’s derivative is sec x tan .

tan? @ 5
4. —— 4+ C. Let u = tanz, du = sec? z da.
2
tan® @ 5
5, —— 4+ C. Let u = tan =, du = sec? z da.
3
tanb z 5
6. —— + C. Let u = tan =, du = sec? z da.
6
SCCS x
7. ——— —seca + C. Case m, n both ODD. Use (8.59) then let u = sec @, du = secx tan z dz.
3
tan®z  tan” z 5 5
8. ——— 4 = 4 C. Case m, n both EVEN. Solve for one copy of sec® @ then let u = tan @, du = sec? z dz, in
7
the Temaining.
SCC5 x SCCS x
9. —— — ——— 4 C. Case m, n both ODD. Factor out one copy of sec @ tan x, use (8.59), then let u = sec x, du =
3
sec® tanx dw in the remaining.
sec” 2z secP 2z secd 2z
10. - + + C. Let w = 2@ and use Ezample §75.
14 5 6
tan6 22 5
11, ——— 4C. Let u = 2z, du = 2 dw, anduse Ezercise 6, above or, more directly, let v = tan 2z, dv = 2sec? 2z dz.
12
tan? @ 5
12. ——— 4 In|cos x|. Solve for tan? @ in (8.59), break up the integral into two parts, use the result in Exzercise 1 for the

first integral, and let u = tan @ in the second integral.

1 5

18. = sec®w tanz + — sec3 @ tanz + — (secx tan x + In | sec x + tan z|). Use Ezample 373 with k = 7, and then
6 16
apply Ezample S76.

14. See Ezample 369.

1 1
15. =sec® z tanz — = (secx tanz + In |secx + tan z|). The case where m is ODD and n is EVEN. Solve for tan2 x

and use Ezample 378 with k = 5 along with Ezample 368.
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Exercise Set 37 (page 385)

1

1 1 ™
[f— de = Avetana | = L.
0 1+ a2 o 4
2 da 2 da
/ :/ — 2 Arctan (z — 1) + C.
z2 — 2z + 2 (x— 12 41
da 1 z—1
3. 1:/7:—““% +C.
(x —1)2 44 2 2

4. There is no need to complete a square:

dx dx
/1274x+3 - /<z—1)<z—3)
1 1 1
- /;(zfs,zfl)dz

1 1
= “lnlz—3——In|z—1| +C.
2 2

5. We need to complete the square in the denominator of the integrand:

4 4 da
[t - [t
422 4 42 + 5 2z 4+ 1)2 44
da 1
= /72 = Arctan (a:+ —) +C.
-3 ;

6. The minus sign in front of x2 should be taken out first.

dx dx
/41—12—3 - 7/<z—1)<z—3)

1 1
= “llz—1— —In|z — 3|+ C.
2 2

(For the last step, see the answer to Ezercise 4 above.)

7. We have
/ 1 da da
—  d4r = / :/
Vaz — 22 V(@2 — 4o +4 -1 Vi — (2 — 2)2
1 da z -2
= —/7 = Arcsin +C.
2 / (a: 2
8. We have
0 1 0 1
/ — 4 = / S S
—1 422 4 4z 4 2 -1 (22 +1)2 +1

1 0
—Arctan (2z + 1) = /4.
2 —1

da da -1
9. / :/ = Arcsin +cC
Voo — a2 41 V2 - (@ — 1)2 V2
da da 2 2@ 4 1
10. / = = —Arctan | ——— | + C.
22 + x4 1 (x 4+ 1/2)2 +3/4 V3 V3

11. The roots of ®2 + @ — 1 are (—1 + \/B)/2; (these interesting numbers are related to the so-called Golden Ratio and the
Fibonacci sequence.) We have the following partial fraction decomposition:

1 1 1 1 1

2 to—1 (I B (7145\/5)) (I B (71;\/5)) VA g—l;\/g) L g—l;\/g)

dx 1
sof = 2 {m bee
z2 o —1 V5

dx

(-1 + V5)
2

T —

. ‘ (1)
2

1
12. 1= / _— = —Arcsec 2z + 1)+ C,
2z + 1)/ (2z + 1)2 — 1 2

since |2z + 1| = 2@ + 1 fora > —1/2 (see Table 6.7).
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Exercise Set 38 (page 394)

1. Set x© = 2sin@. Then dx = 2cos @ df and 4/ = 2cos 0. So

e

/2(:039-2(:039 d9:4/cos29d9

20 4+ sin 20 + C = 20 4+ 2sin @ cos 0 + C

1
2 Arcsin (z/2) + —z\/4 — 22 + C.
2

2. Let © = 3tan6. Then /a2 + 9 = 3sec6 and dz = 3sec2 0 df. Hence

/\/:2+9da: =

(A constant from the In term is absorbed by C'.)

3. Let x = sec 0. Then

4. Letx — 2 = 2sin 6. Then do = 2 cos 6 db

So we have

SV e =

/35(:(:9-3scc29d9:9/scc39d9

9
{(tan 0sec @ + In | sec 0 + tan 0|} + C

2

9
i\/:2+9+—ln{\/z2+9+::|+cﬂ
2 2

= tan 6 and do = sec 6 - tan 6 d6. Hence

/scc9 tan? 0 do

1 1
—tan secO — —In|sec O + tan 6| + C
2 2

iz\/ﬁ —1— %ln‘z+\/z2 - 1‘ + C.

2

and

Vi —22 = /=22 — 4z +4—4) = \/1 — (= — 2)2 = 205 6.

/\/41 — z2 dz

/2cose-2cose-d9
260 + sin 26 + C
260 + 2sin fcos 0 + C

-2 -2
2sin 1 + Vaz — 22 4+ C.

2 2

5. Letx = 2sinu. Then dz = 2cos u du and (4 — 22)1/2 = 2 cosu. Thus

/@;ﬁ:/

1 1
= —tanu+C=— . —— +C = — -
4 4

2cosu du 1 5
Zoosmduw _ _/scc u du
23 cos3 u 4

1 sinu

4 cosu

6. Letx = 3sinu. Then dz = 3cosu du and (9 — 22)1/2 = 3 cosu. Thus

7. Let © = 2sec@. Then \/@2 —4 = 2tan 0 and de = 2sec6 tan 6 d6. Also

/

22 da 32sin2 u - 3 cosu du 5
e /7:/&“1 w du
(9 — 2)3/2 33 cos3 u
B 5 B _ sinu
= (sec®u — 1) du = tanu — u + C = —u+cC
cos u

o= -

1
4

x
— Arcsin — + C.
3

2sec 6 - tan 6 d6
4sec2 6 - 2tan 6

1 —cos264C

1
/cos@d@: —sinf 4+ C =
4

e

8
&
|

IS

= i«/17(2/1)2+c: —— +cC

4z

8. Let 2z — 1 = tan 0. Then 2 dz = sec? 0 df and

Therefore we have

\/4:274a:+2:

/\/412 — 4z +2

VeEr — 12 41 = tan2 0 + 1 = seco.

1
d::—/ccgede
2

1
— (tan @ sec § + In | sec @ + tan 0|) + C
4

1 1
—(2z — 1) 41274z+2+—1n|2171+\/41274z+2|+cﬂ
4 4
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9.

10.

11.

13.

Let # = 3tan 6. Then 9 + 22 = 9sec2 0 and dz = 3sec? 6 d6. So

/ da / 3sec20do 1 5
[ — = — [cos?0do
(9 4 z2)2 81secd 6 27
1 /60 sin20
= — |-+ +C
27 \ 2 4
11 z 1 x
= = {—Arctan — 4 —sin (2Arctan —)} +C.
27 L2 3 4 3

NOTE: It is possible to simplify the expression for sin (2 Arctan x/3) = sin 26:

sin 0 5 1
sin20 = 2sinfcosf =2—— . cos> 0 = 2tan 0 -
cos 6 sec2 6
2 tan 0 2. 2/3 6

1+tan20 14 (2/3)2 94 a2

The easiest way to solve this e

cise is to use the substitution uw = \/4 — 2. (This is highly nontrivial! At first sight one

would try the trigonometric substitution x = 2sin 8. This method works, but the computation involved is rather tedious and
lengthy.) Then w2 and hence 2u du = —2z dx, which gives u du = —z dz. Now

dr wdzr —udu u du

x 22 4— w2 w24

and hence

w du 4
= /u—:/ 14+ —— | du
u2 — 4 u2 — 4
1 1
= u+/ — du
w—2 u42

= wu4lnju—2/—Inlut2[+C
= w4 (n[2—ul+In[24u])—2In|2+u|+C

= w4n|a—u?| —2In|ut2|+C
= Va—2z242In|z| —2In|2+\/4—-22|+C.

Let x = 5tan 6. Then we have dz = 5sec2 0 do, (2 + 25)1/2 = 5sec 0 and (z2 + 25)3/2 = 53 sec3 6. Hence

/ dx / 5sec? 0 do
(=2 4 25)3/2 53 sec3 0
1
= — [cos0do
25
1 1 x
= —sin04+C=— +C.
25 25 /22 1 25
2cos 6 do. So
2 cos 0
- / 22 acos do
4sin2 @
— /cot2 0 do
2
= /(csc 60— 1)do = —cot0 — 0 + C
Let = = asin 6. Then do = a cos 6 d6 and hence
/ de / acosO do
wh /a2 — 22 a sind 0 - acos 6
do
a*4/ =a"4 /csc4 0 do
sind 6
a4 /(csc2 6 + csc2 0 cot? 6) do
4 cot3 0
= a —cotd — — | +C,
1 (a2 — 22)1/2 1 (a2 — 22)3/2
- . - +c
ot x 3a4 z3

14. Let @ = asecO. Then dx = asec® tan 6 and hence

/ asec tan 6 dO

4secd 9 - atan @

/ dz
24, /22 _ 42

1 3 1 2
— —/cos‘ 9d9:—/(lfsin 0) cos 6 do
G.4 G.4

1 sin3 0
= — (sine - +C
a 3

22 _ a2V1/2 1 (22 _ 42)3/2
(( ) 7;< 3) >+CA
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Notice that
sin 6 = (1 — cos2 0)1/2 = (1 — sec™20)"1/2 = (1 - —

forz > 0.

15. We have

Va2 + 2z -3
I = /*d:

x4+ 1

Jer? —a
[

where w = x + 1. Use the tricky substitution similar to the one in Ezercise 8 above: v = \Ju2 — 4 = (/a2 + 2z — 3.

Then v2 = u? — 4 and hence 2vdv = 2udu, or vdv = udu. Thus

du udu vdv

u w2 w244

Now we can complete our evaluation as follows:

v2dv 4
I = /_:/ 1— —— | dv
v2 44 v2 44

v
= v — 2Arctan — 4+ C
2

Va2 + 2z —
= 22 42z -3 — 2Arctan Y¥——— 1 C.

2
16. Let u = 22 4 2z + 5. Then du = (2z + 2)de and hence

/ (2z + 1) da _ /(2a:+2—1)da:

Va2 +2z +5 Va2 42z +5
du
= — —I=2yu—I=2/a2 +2z+5—1,

Vo

where

dx da
I:/ E/ .
\/:2+2a:+5 \/(z+1)2+4
Let @ +1=2tan0. Then dz = 2sec 0 dd and \/x2 + 2z + 5 = 2sec 6. So

2sec? 0 do
/7:/&“9 d6 = In | tan 6 + sec 8] + C
2sec O

= lnlz+1+\/x2+2x+5

+C,

where a factor of & inside the logarithm symbol is absorbed by the integral constant C. Thus our final answer is

+ C.

(2z + 1) da
/7:2\/12+2a:+571n|a:+1+\/a:2+2a:+5
Va2 +2z+5
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~

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S L %R

Exercise Set 39 (page 409)

Yes, @ = 0 is an infinite discontinuity.

No, the integrand is continuous on [—1, 1].

Yes, @ = 0 is an infinite discontinuity.

Yes, @ = 1 is an infinite discontinuity (and oo is an upper limit).

Yes, © = —1 is an infinite discontinuity.

No, the integrand is continuous on [—1, 1].

Yes, © = —m, 7 are each infinite discontinuities of the cosecant function.

Yes, oo are the limits of integration.
Yes, © = O gives an indeterminate form of the type 0 - oo in the integrand.

Yes, 0o are the limits of integration.

T _
2. This is because _lim 2~ 18 4z = lim +2) =2
T—oo Jo T—oo \ /T
T _—1/2 1/2
+o00. This is because _lim x dz = lim (2T —2v2) = +oo.
T—o0 J2 T — oo
1 2 dz 1 2 1 1

+oo. Note that lim  — / — = lim (—mm)‘ = lim (—ln27—lnT) = —(—oc0) = +oo.

T—0t+ 2 /T =z T—0t \2 T T—o0t \2 2
2. Use Integration by Parts (with the Table Method) and L’Hospital’s Rule twice.

T o2 _z T2 4+ 2T + 2
This gives _lim 22 e % dp = lim [2- ————— " | =2.
T—ooJo T 500 T

0. Use the substitution u = 1 + @2, du = 2x da to find an antiderivative and note that

oo z 0 b S0 z
/ —da::/ —da:+/ —— dz
—oo (14 22)2 —oo (14 22)2 0 (14 22)2
0 2z

2z T
= lim ————— dz + _lim —— dua,
T——oc JT (1+a:2)2 T —o0 JO (1+a:2)2
1 0 1 T
= lim - + lim [——— =—-14+0+0—(—1) =0.
T——0o 1+ 22 ‘T TSoo 1+ 22 ‘0 =D
—1. Note that the infinite discontinuity is at © = —1 only. Now, use the substitution u = 1 — 2, — dTu = @ dx. Then
0 z 0
/ ———— dz = lim (7\/177"2)‘ =—-1-0=—1.
-1 . [1 _ 22 T——1 T
Diverges (or does not exist). There is one infinite discontinuity at @ = 1. First, use partial fractions here to find that
1 1 1
22 -1 2 z-1 2 a+1
Next, using the definitions, we see that
2 2 1
/—da:: —dx+/—dx:
0 z2 -1 0 z2 -1 1 22 -1
T 1 2 1 1 1 T
= lim / ——— dz 4+ lim / ——— dz = lim (—ln\a:fl\f—ln\a:+l\)l +
T—1—J0 22 -1 To1+J/T 22 -1 T—1— \2 2 0
1 1 2
+ lim (—ln\a:fl\f—ln\a:+1\)l =
T—1+t \2 2 T
1 z— 1\ |T 1 z— 1]\ |2
= lim —ln‘ ‘ ‘ + lim —ln‘—‘ ‘ =,
T—1— \2 x+ 1 0 T—1+ \2 x+ 1 T
1 T-1 1 1 1 1 T -1 N
= lim —ln| |7—ln\71\ +  lim —ln|—|7—ln| | == (-0 -0+ (-3n3 -
T—1— \2 T+ 1 2 T—1+ \2 3 2 T+1
(—oc0) = oo — oo, and so the limit does not eist.
So, the improper integral diverges.
—oo. See the (previous) Ezercise 17 above for more details. In this case the discontinuity, © = 1, is at an end-point. Thus,
using partial fractions as before, we find that
2 2 2 1
/—da:: lim /—da::7 lim /—da::
1 1—a2 To1+ /T 1 — 22 T—1+ /T 22 —1
1 z — 1]\ |2 1
= — lim —ln| | | :—(——ln37(7oo)):—ocx
T—1+ \2 x4+ 1 T 2
%. Use Integration by Parts and the Sandwich Theorem to find that
oo T 1 T
/ e T sing de = _lim e™® sinz dzr = lim — (ﬂ:*x cosz — e~ T sin x) |
0 T—oo JO —0o0 2 0
1 cosT  sinT 1 1
T - 7(7_) -
T—oo \ 2 T eT 2 2
Recall that the Sandwich Theorem tells us that, in this case,
cosT 1
0< lim < lim _|:0,
TSoo| T Tooo | T

and so the required limit is also 0. A similar argument applies to the other limit.

+o0. The infinite discontinuity is a @ = 1. Use the substitution u = Inx, du = & Then
2 da 2 da 2
/ [ P — = lim  In(lnax)| =
1 zlna T—1+t JT zlnz T—1+ T
= lim (In(in2) — In(InT)) = —(—o00) = +oo.
T—1+
10 1 2/5 —3/5 _
— . The integrand is the same as 22/ 4 o da and so the infinite discontinuity (at @ = 0) is in the
7 -1
1 1 1 10 0
second term only. 30/ (12/5 +x*3/5) de = / 22/5 4z +/ 273/5 gz = = +/ z2=3/5 4z +
-1 -1 -1 7 -1
2/5
1 10 T 1 10 5T 5
/13/5da::—+ lim / +73/% 4z +  lim 27304 = — 4 hm [ Z—— 2] 4
0 7 T—o0— J-1 T—ot+ JT 7 T—o0— 2 2
5 5T2/5 10 5 5 10
lim (- - — == -2 4+=-=—.
T—0+t \ 2 2 2 2 7
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Solutions

16

14 2
y=x?+5x+6
12
0
.

Exercise Set 40 (page 418) 0
3

1.V ertical slice area = (0 — (22 — 1)) dax = (1 — 22) da. 4

2.H orizontal slice area /g ¥ 1 dy. .

3.V ertical slice area = (22 +5z+6) — (e2%)) do = (22 +5x+6 — e2T) da. Note that e2T is smaller than 2 + 5z + 6 02 01 U5 0% 1 T T

on this interval. See the figure in the margin, on the left. %

4.8 ketch the region bounded by these curves. You should get a region like the one below:

16
" yr=x+35x+6 Z

o 02 0.4 06 og 1 12 14

Now, using Newton’s Method with @ = 1.5 as an initial estimate, n = 3, and f(z) = a2 + 5z + 6 — €27, we
obtain the approzimate value of the zero of f as 1.3358. The common value of these curves at this point is given by

e2(1.3358) ~ 14.46. This represents the point of intersection of the curves x2 + 5z + 6 and 2%, in the interval [0, 2].

Beyond @ = 2 we see that these curves get further apart so they cannot intersect once again. Since we are dealing with
horizontal slices we need to write down the inverse function of each of these functions. For ezample, the inverse function of
y = a2 + 5z + 6 is given by solving for = in terms of y using the quadratic formula. This gives

-5+ VIF 4y
2 .

Tz =

Since @ > O here, we must choose the +-sign. On the other hand, the inverse function of the function whose values are
y = e2T s simply given by = (In y)/2. So, the arca of a typical horizontal slice in the darker region above is given by
Iny —5+4ITFdy
— T ") dy,
2 2

and this formula is valid provided 6 < y < 14.46.

If the horizontal slice is in the lighter area above, then its area is given by

Iny Iny
— —0) dy=(—) dy,
2 2

and this formula is valid whenever 0 < y < 6.

As a check, note that both slice formulae agree when y = 6.

5. The horizontal line y = 5 intersects with the graph of y = 2% at the point P = (1“25 ,5), approzmately (0.8047, 5).
Draw a vertical line through P. The area of a typical vertical slice on the left of this line is

((22 + 52 + 6) — 5) dz = (z2 + 5z + 1) dz.

On the right of this line we have

2x

(22 + 52 + 6 — %) da

instead.
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Exercise Set 41 (page 428)

1 2
1 Arca:/ (1 —2?) dz =
-1
2 5 2 32
2 Arca:/ 4 —2?) do = ==
o 3
—2
1
1 4 . 5 o e2T 28 €2
3 Arca:/(:t + 52+ 6 — e2T)da = + —22 4 62 — - = _
0 3 2
0
~ 5.63881.
1.3358 o .
4. Arca:/ (z2 + bz 4+ 6 — €2T) da ~ 6.539.
0
1 1
5. Area = / yeYdy = (yey - ey)| =1.
0 0
6. w2 — 4. This curve lies above the x— azis because sinx > 0 for 0 < x < . It follows that 2 sin © > 0 for0 < z < ,
and so the area is given by the definite integral
B
Area = / z2sing do = w2 — 4,
0
where the Table method of Integration by Parts is used to evaluate it. In particular, we note that an antiderivative is given
by
LTI 2 )
t2sint dt = —a2 cos @ + 2w sin @ + 2 cos x.
T cos3z|T 2
7. Area = / cos? xsinz dez = — ——| = —.
0 3 3
0
8. Using the Table method of Integration by Parts (since this is a three-row problem), we find
5 3
/sinS:E . cosbx do = — sin bz - sin 3z 4+ — cos 3z - cos ba + C.
16 16
Alternatively, this integral can be computed as follows:
1 1 1
/sin 32 - cos bz do = / —(sin 8z — sin 2z) do = — — cos 8z + — cos 2z + C.
2 16 4
(Don’t be fooled by its different look! This is the same answer as the above.) Notice that, for @ in the interval [x /10, 37 /10],
3x is in [37/10, 97 /10] and hence sin 3z is positive. However, for the same range of x, 5 is in [« /2, 37 /2] and hence
cos 3x is negative or zero. Hence the area of the region is the absolute value of
37/10 5 3 37/10
/ sin 3z - cos bx do = (—sin 5 - sin 3@ + —cos3x-cos5x)l
/10 16 16 /10
5 3 55
= -= (sln — 7 + sin —7\') = ——— ~ —0.35.
16 10 32
Here we use the facts that cos & = 0, cos 37" =0, sin % =1 andsi 37" = —1. It turns out that sin %7\' +
sin %7\' = 32@ which is very hard to prove!
9
9. =. Refer to the graph below:
2
3
('2)2)
2 —
=2-x
1
5 2 A
X &
;1)
F
/-72 =
xty=¢0
The points of intersection of these two graphs are given by setting y = —= into the expression « + y2 = 2 and solving for
x. This gives the two points, © = 1 and @ = —2. Note that if we use vertical slices we will need two integrals. Solving for
= in terms of y gives x = —y and x = 2 — y2 and the limits of integration are then y = —1 and y = 2. The coordinates
of the endpoints of a typical horizontal slice are given by (—vy, y) and (2 — y2, y). So, the corresponding integral is given
by
2 5 9
Area = / (2-y2 4 y)dy = —.
-1 2
10. The required area is
2
2, 76
[ @ = =5 = ==
—2 ., 3
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11. 4 units. Note the symmetry: Since, f is an even function, (see Chapter 5), its graph over the interval [—m, 7| is symmetric

with respect to the y— azis and so, since f is *

and this gives

12. 4+/2. The graph on the right represents the two curves over the interval |

-shaped and positive, the area is given by

Area = 2 X (area to the right of = = 0),

™
Area = 2/ (sinz) dz = 4 units.
0

Using the symmetry in the graph we see that

57 V2 57

since cos — = — — | sin — =

Area =

19_Tr].
4’ 4"

5w
2/ﬂ4 (sinz — cosx) dz = 4V2,
4

Exercise Set 42 (page 444)

2

1.U sing a vertical slice: [} wx? da;

using a horizontal slice [§ (1 — y) -

2. Using a vertical slice: [§(x — x2)

2ry dy.

- 27z dx;

using a horizontal slice: [} w(y — y?) dy.

3. Using a vertical slice: [ 3w x>

problem.)

4. Using a vertical stice: [& 2@ - 27a da;

using a horizontal slice: [} m(22 — (y/2)?) dy.

5. Using a vertical slice: [3 (22 — @) - 272 do = [} 27w

Using a horizontal slice:
2

3w 1 4 2 Y
— Y dy+/rr 1-—
4 Jo 1 4

6. w/3; m/6; 8w; 2—2n

who
3

dy.

2 dz.
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0.6
0.8
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Exercise Set 43 (page 455)

2
1.2 . Since y’ = 0, it follows that L = / V1de = 2.
0

4
2.4 /2. Since y' = 1, it follows that L = / 1+ 1 de = 4V2.
0

3.

10.

11.

12.

13.

14.

15.

16.

17.

1
2v/5. Here y' = 2, and so L :/ V1F+4dz=2V5.
—1
, 2
2v2. Now =/ (y) = 1. So,L:/ V2 dy = 3V2.
0

1
3V/2. This is the same as y = = + 3, so y’ = 1, and it follows that L = / V2 dz = 3V2.
—2

52 s :
22 Nowy'(2) = /& and so (if we set u = 1 + @, du = da) we see that L :/ VItzde =
3 0

1 1 1
—V5+4+ —In (\/E+ 2). In this case, L = / 1+ 422 dx. Use the substitution 2z = tan 6, 2 do = sec26 do,
2 0

and the usual identity to obtain an

1 1
antiderivative in the form — /scc3 6 d0. Now, see Ezample 368 for this integral. We have, — /scc3 0 do
L 2 2

1
— (tan @ sec 6 + In | sec 6 + tan 6]). But tan 6 = 2z, and so sec 0 = \/1 + 4a2. Thus, L = / V14422 dz =
4 0
1 1
—(2:1:\/1+4:1:2+ln\\/l+4x2+2x\)| =
4 0

1 2
V65 4+ — In (s + \/65). Use the method of Ezample 7 above. The arc length is given by L = / 1+ 1622 dx. Now
8 0

1
—. (2\/E+ In(2 + \/E)), and the rest follows.
1

1
use the substitution 4z = tan 0, 4 dz = sec20 d, and an antiderivative will look like — /scc3 6 d6. Finally, we see
4

that

2 1 2 1
L = / V141622 dz = — (41\/1 + 16x2 + In \\/1 + 162 +4x\) | = - (S\/GS + In(8 + \/65)), and the
0 8 0o 8

result follows.

1 1 1
—V17 + — In(4 + V17). See Ezercise 8, above. We know that L = / \/14 1622 dz. Use the substitution
2 8 0

4z = tan 6, 4 dz = sec26 d6, and the usual identity to obtain an antiderivative in the form

1 3

s /scc‘ 6 d6. Reverting back to the original variables, we get,

4
1 1 1 1

L = / 14 1622 dz = — (41\/1 +16x2 + In \\/1 + 162 +4x\) l = - . (4\/17+ In(4 + \/17)) =
0 8 0 8

1 1

VIT+ = In(4 + VIT).

2 8

181 1 1 1\2

— . Note that 1 + 3’ (z)% =1 + (167 . —) — (13+ —) .

9 2 166 47

3 1
It follows that the expression for the arc length is given by L = / (aﬁ + —3) da, giving the stated result.
1 4a°

27
47, Here, o' (t) = —2sint, y'(t) = 2cos t so that the length of the arc is given by L = / \V4sin2 t + 4cos? t dt =
0

27
/ V4-1ldt=2. 27 = 4m.
0

27
2m. Now, o' (t) = —sint, y’(t) = — cost so that the length of the arc is given by L = / \/sin2 t 4 cos? t dt =
0

27
Vidt =127 =2x.
0

1
V2. In this ezample, ' (t) = 1, y’(t) = —1 so that the length of the arc is given by L = / 1+ 1dt =
0

/01\/5011::\/5

%A Use the Fundamental Theorem of Calculus to show that y' (x) = \/12 — 1. Then, \/1 + (y/ ()2 = Va2 = x. So,
2 3

L= / zdo = —.
1 2

V2.  Once again, use the Fundamental Theorem of Calculus to show

that y' (z) = Vcos 2z. Then, \/1 + (y/ (2))2 = /1 + cos2z = V2cos2 z, by a trig. identity (which one?). So,

/2 /2
L= / 2cos2:rda::\/§/ / cosx do = V2.
0 0

10.602. See Ezample 476 except that we solve for @ in terms of y > O (because the given interval is a y—interval). The
length L is then given by doubling the basic integral over half the curve, that is,

4 — 3y2
dy =~ 5.3010.

/4 V14 22 B
S da.
1 x

We use a trigonometric substitution = = tan 0, dx = sec20 dO. Then, \/1 4+ 22 = sec 6 and an antiderivative is
given by

sec3o secd 5 secO
/ d9:/ (l+tan 9) d9:/ d9+/scc9 tan 6 do —
tan 6 tan 6 tan 6

41 - y?2)

3.3428. The length L is given by an integral of the form L =

/csc9 d6 + sec 0 = In | csc O — cot 0] + sec .

sec @ V1422

V1422
Since x = tan 6 it follows thatcsc 0 = —— = Y~ cot @ = —. So an antiderivative is given by/ Y dz =
tan 6 x x x
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Ji4+ 22 1 4 \/1 4 22 V1422 1 4
ln|—17—|+\/l+x2.anally,wﬁsﬁﬁthatL:/ Vo e = ln|—17—|+\/1+x2 |
x 1 x x x 1

x

= (mlmfilJr\/ﬁ) 7(lnl\/§71|+\/§) :\/1_7\/§+1n|E|—1n|\/§71|z3A3428A
4 4 4

18. In(1 + v/2) ~ 0.8813. Here, y’ () = tan z and so \/1 +y/(x)2 = \/1 +tan2 z = Vsec? @ = secw. So, the arc
length is given by

4 4
/"/ sccxd::ln\sccx+tanx\‘"/ — In(VEZ+1) — In(1 +0) = In(1 + V3).
0 0

1 1
19. $vB— L 1n(v/E—2). Sec Exercise 7, above for the evaluation of the integral. Note that —— In(v5—2) = — In(v5+2).
4 4

20. Follow the hints.

Exercise Set 44 (page 468)

. _ _ _ _ mjz]tmozg _
1.3 .75. Set my atxy = O and mg at xp = 5. Then T = —1—1—2—2m1+m2 = 3.75.

2. 1.33. Set mp at ] = 0, mg at x = 1 and m3 at 3 = 2. Then T = 1.33.

5 1 m,x; m;y;
3. (T.9) = (_, —). Note that T = X iy and g = X mivi where (x5, y;)
12 3 > omy m;
4.045-1 5 4.-140
are the coordinates of m;. In this case, T = —— = —. Similarly, § = ———— = —. Note that cven

12 1 12

though the system of masses is at the vertices of an isosceles triangle, the center of mas is not along the bisector of the
right-angle (which is the line of symmetry). This doesn’t contradict the Symmetry Principle since the masses are not all the
same!

4. () = (1, — ). As before, T = X miTi and § = X mivi where (x5, y;)
3 > my m;
0+6+3 0+0+3V3 V3
are the coordinates of m;. Here, T = ———— = 1. Similarly, § = ———— = ——. In this ezercise the

9 9 3
masses are all the same and the triangle is equilateral, so (by the Symmetry Principle) the center of mass must lic along the
line of symmetry (which it does), that is, it must lic on the line @ = 1 which bisects the base of the triangle.

©R2§
2

4R
5. (0, —) . The total mass m = since we are dealing with one-half the area of a circle and § is constant. This use

37

R
of geometry saves us from actually calculating the mass integral which looks like / VR2 — 22 § dz. Nest, the moment
—R

R R

about the y—azis is given by My = / Tylice 0 dA = & / z\/R2 — 22 dx. Now, let = = Rcos®6, etc. But
—-R —-R

even simpler is the remark that the integrand, z\/ R2 — 2, is an odd function defined over a symmetric interval and so its

R
integral must be zero. Either way, this gives My = & / z\/R2 — 22 do = 0 and so T = 0, i.e., the center of mass
—-R

lies along the awis of symmetry (which is the y—axzis, since § is constant).

R S (R, 5 o 5 4R
Similarly we find the moment about the —azis, Mg = / Totice § dA = — / (B2 —2?) do = =—— =
—R 2 J-R 2 3
2R35 My 2R3s 2 4R
. It follows that the y— coordinate, T, of the center of mass is given by § = —— = L=
m 3 wR28 37T
b h
6. | —, — ). Use of geometry shows us that the total mass is its area times its density, that is, m = bhS. Next, T =
2’ 2
/b s aA 1 b b b 5 aa 1 bk h
Tals dA = — zh dx:—ASzmzlarly,gz/g . dA = — —hé dz = —.
o "stice bhs Jo 2 o Ustice bhs Jo 2 2

2
7. (0, —). The region is an inverted triangle with a vertex at the origin and opposite side equal to 2 units. Its total mass is
3

its area times its density, which, in this case, is 5. So, m = §. Let f(z) = 1 and g(z) = 1 — |z|, over [—1, 1]. Note
that the region can be described by means of these two graphs. Also, f(xz) > g(x) and so we can use the formulae already

11 11 1 /0
derived for the center of mass. So, T = — / Tolice § dA = — / z (1 —|z|) 8 de = — / z (14 )6 det
s /-1 s /-1 s J-1

11 11 11 (14|l 11 R
—/a:(lfa:)éda::[)ANﬁzt,yz—/ ysliceédA:—/ = (17\95\)501@:—/ (1-=22) sda=
s Jo s J-1 s J-1 2 25 /-1

| v

11 1 1 1o
7—,—). The total mass is m :/ 5(z) da :/ (1—a)do = 2. Newt, T = — / Tolice § dA =
123 —1 —1 2 /o1
1
—/ @ (1—|z) (1 - 2) do =
2 J-1

é/flx(1+x)(1fx)dx+§ /Dlx(l—x)(lfx)dx:(%)-(%):—i

11 11 (14|l 11 R
Similarly, § = — / Telice 6 dA = — / L) e (1 - 2) do = = / (1-22)1-2)de =
2 J-1 2 /o1 2 2/

%
N W

©
TN W e

3 3 1 26
—, —) The total mass, m = & / Vz dz = —. So,
5 8 0 3
3 r1 3 1 3 1 3
:—/EsliceédA:—/a:\/;da::—/13/2da::—A
25 Jo 2 Jo 2 Jo 5
Furthermore,
3 r1 3 1V 3 1 3
g:_/gs”cead,q:_/£\/de:_/xdx:_A
25 Jo 2 Jo 2 1 Jo 8
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10. (—, —) The total mass,
2 10

/ Tslice 0 dA
25

Similarly,

2
0

3 /2 s aA 3 2 4 3

T= — Tali d / z% doe = —.

26 Jo Ystice 2.32 Jo 10

1 cos(ma) \ |1
1. . The graph of this function is positive on [0, 1]. The total mass, m = & / 2 sin(nz) do = 26§ - | =
0 ™ 0
T /1— 5 dA ”/1 2sin(wx) § d
T = — Tl = — z 2sin(rx x
15 Jo Tstice 15 Jo
T 1 1
=z / x sin(rz) do= —.
2 Jo 2
Similarly,
w1 w1 2sin(ra) LIRS U 7w 11— cos(2ma)
T=— / Tslice § dA = — " § 2sin(waz) do = — / sin?(rz) doe = — / — L dax =
L asJo 45 Jo 2 2 Jo 2 Jo 2
—. Note the symmetry about the line & = 1/2 so that the center of mass must lie along this line.
4
2(e2 —1) 3¢t 41 2 ® 2, 2
12, [ 222 2C T ) The total mass is m :/ z6e dz =36 / 2 e® do = (2 + 1)5. Next,
14 e2  8(1+ e2) 0 0
1 2 5 . 262 — 2
T=— / z? e® doe = ———— . Finally, one more application of
14+¢2 Jo 14 e2
Integration by Parts (or the Table Method)
_ 1 /2 . _8et 41
T=—— z e dp = —— .
2(1 +e2) Jo 8(1 4 €2)
11 1 1 ar
18. [0, ———— ). Since § = 2, the total mass is m = / Va—22 §de =2 / Va— 22 dz = 2V3 + —,
3V3 + 27 -1 -1 3
where we used the trig. substitution © = 2sin 0, etc.

The geometric area is not so easy to calculate in this case, so we return to the integral definition. Now, because of symmetry

about the line @ = 0 and since § is constant, we must have
T = 0.
Furthermore,
3 1 /4 — a2 3 1 2 3 22 11
7= / \/47122011:—/ A4-—zi)de = — . = —
6vV3+4ax J—1 2 6vV3+4ax J—1 6vV3+4x 3 3v3 + 27

6 2
4. (=, — —), see the solved example. The total mass is
5 5

2 5 1o 2 2 s
m = / (62 — 322) 22 do — 8. Neat, T — — / z (62 — 322) 22 do — —. Similarly,
0 s Jo 5

y:é /02¥(617312)2xd1:7§A
Chapter Exercises (page 470)
1. 2:/01”5’2 dy:/ol21'ra:(lfx) dz.
2. 2:/01"””2 dx:/olzny(lfy)dy

2 2
(1 — 422) da.

wla
I
—
3
<
[V
9
<
I
—
<

ar 1 2 2 y
4.—:/4171 d:r:/fr 1— — | dy.
3 0 0 4

5. 1—‘3,51 (you’ll need two terms if you use horizontal slices here).

167 2 5
= = /21737: de
3 o
37 2 o
i dy+1'r/ dy
4
8w 1 1
6. —:417/ y3/2dy:/ (1714) dx.
5 0 —1
w2 T 1
7, —:n/ sin :Eda::41'r/ y Arcsiny dy.
0 o

2
2 /2 1 2
8. w2 —2m =2m / zcosw do = 7 / Arccos 2y dy. This last integral is very hard to evaluate! Try the substitution
0

y = cosu, dy = — sinu du. Then use the Table method and then back-substitute. The first intergal in @ is evaluated
using the Table method.

1'r 1
9. Z(2 1) == / 222 dz. You can’t use horizontal slices here because it is almost impossible to solve for x in terms
1 0

of y in the expression for y = xe®. Use the Table method to evaluate the integral.

5 2
10. 2w (1 - _2) =2r / 22e™% dx. Use the Table method to evaluate the integral.
e 0
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3 1 1
1. L —x / (a: — 14) do = 2m / (y3/2 — ys) dy.
10 0 0

1
1—(13—31+1)2) do + = /1/3(1—16) da.

Please add a constant of integration, C, after every indefinite integral!

cos® z — sin? x = cos 2z. Use the identity cos(A + B) = cos Acos B — sin Asin B with A = B = =x.

4 gidl :
cos & — sin” & = cos 2x. This is because

2 2

& — sin? :r:)(c032 z + sin? z) = (cos“ z — sin? z)(1) = cos 2.

3ec4 r - tan4 = S.ec2 T <+ tan2

costz — sintz = (cos

x. Use the same idea as the preceding one except that now, sec2z —tan? z = 1.
x

v1+4cosx = V2 . cos(—), if —m < x < w. Replace = by x/2 in the identily W = cos? x, and then
2

extract the square root. Note that whenever —mw /2 < 0 < 7 /2, we have cos @ > 0. Consequently, if —m < 6 < m, then

cos % = 0. This explains that the positive square root of cos? % is Cos %

x
V1 —cosz = V2 - sin (—), if 0 <z < 2w. Replace © by /2 in the identity # = sin? z.
2

S5z
V1 + cos bz = /2 - cos (—) if —m < bz < . Replace = by 5x/2 in the identily LI_CQC'& = cos? z.
2

2
f (2z — 1) da = 2, since the function is linear (a polynomial of degree 1). In this case, the Trapezoidal Rule always
0

gives the Actual value.

4
(3:1:2 — 2z + 6) dx = 72, using Simpson’s Rule with n = 6. Once again, since the integrand is a quadratic function,
0

Simpson’s Rule is exact and always gives the Aclual value.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

28.

24.

25.

26.

27.

28.

29.

1'r
/ (cos? x + sin? x) dz = 2. The Trapezoidal Rule withn = 6 and the Actual value agree ezactly, since the integrand
—r

is equal to 1.

1'r
/ (cos? @ — sin? z) do = 0, using Simpson’s Rule with n = 6. The exact answer, obtained by direct integration, is
—r

0, since the integrand is equal to cos 2x. Note that the two values agree!

1,2
/ e dao & 1.4628, using Simpson’s Rule with n = 6. The Actual value is 1.462651746
0

2 1
/ —— da ~ 1.82860, using Simpson’s Rule with n = 4. The Actual value is ~ 1.94476. Don't try to work it out!
“11+4a
2 22
- dz ~ 1.221441, using the Trapezoidal Rule with n = 6. The exact answer obtained by direct integration is
2 14a
1.23352.

2
(Inz)3 dx ~ 0.10107, using Simpson’s Rule with n. = 6. The Actual value is 21n3 2 — 61n22 + 12In2 — 6 ~
0.101097387.

/ 3x+2d1:3(\/W)3A
9

Let u = 3z + 2.

1 1
/7@:7 .
z2 f 4z + 4 z+2
Note that 22 + 4z 4+ 4 = (z + 2)2.
Then let w = @ + 2, du = d=.

/ de 1
(22 —3)2  2(2z — 3)

Let w = 2z — 3, du = 2d=, and so dz = du /2.

/ dx 2\/a+b:t
Vafbz b
Let u = a + bz, du = bdx, and dz = du/b, if b # 0.
4 1
/(\/37 VD2 do = aw — 2 (Um3 4 La2,
3 2

Ezpand the integrand and integrate term-by-term.

Let u = a2 — 22, Then du = —2xdz and x do = —du/2.
2 3

/12\/13 +1de == (\/13 + 1) .
9

2

Let u = x3 + 1, du = 322 dz, so that 22 dox = du /3.

1 3 2
/Q(I;) dx:—(3(12+2:£+2)) .
Va2 + 2z +2 4

Letu = 22 + 22 + 2, du = (22 + 2) dz = 2(z + 1) dz. So, (x + 1) dao = du/2.
1

/(14 +az? + 12 (2 4 202) de = — (2 + 422 +1)°
12

Let u = x? + 422 + 1, du = (423 + 8z) dx = 4(2=3 + 2x) dx and so, (23 + 2z) do = du /4.

/1*1/3\/12/3 —1dx = (\/12/3 - 1)3.

Let u = 2/3 — 1. Then du = (2/3)z=1/3 dx, or 2=1/3 dz = 3 du/2.

2w de 1
/(395272)2 773(395272)

Let w = 322 — 2, du = 6z dz and so 2z dx = du /3.

de 1
/_:—1n\4x+3\
40 +3 4
Let u = 4z + 3, du = 4dw so that dw = du /4.
z de 1
/—:—ln‘2x2—l‘
2z2 — 1 4

Let u = 222 — 1, du = 4z dx so that x dz = du/4.

2
22 da 1

/—:—ln‘l+13‘
1+ a3 3

Letw = 1 + 3, du = 322 da so that 2 do = du /3.
(2x + 3) da 5

/7:&1‘1 +3x+2‘
z2 4+ 3z + 2

Let w = 22 + 3z + 2, du = (2z + 3) dz.
1
/sin(2:t +4) do = — = cos (2@ + 4)
2
Letw = 22 + 4, du = 2 da, and de = du/2.
1
/2(:03(41 +1) do = — sin (4 + 1)
2

Let w = 4z + 1, du = 4 dx, and do = du /4.
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32.

40.

41.

42.

48.

44-

45.

46.

47.

48.

49.

50.

51.

/\/1 — cos2z dz = V2cos .

Note that L=C98 2% _ ;12 o The result follows upon the extraction of a square root. In actuality, we are assuming that

Vsin2 z = | sin @| = sin @, here (or that sin © > 0 over the region of integration).

3z — 2 5 3z — 2
/sin—da::——cos _—
5 3 5

Let u = 3””;2, du = %A Then dx = %.

5 1 sin az?
/Icosax do = - 227
2 a

Assume a # 0. Let w = ax?, du = 2ax dx, so that © de = du/2a.
1

/:r:sin(a:2 +1) dz = — — cos (:2 +1)
2

Let w = @2 4+ 1, du = 2z dx. Then @ dz = du/2.

50 1
/scc — d6 = 2tan =0
2

2
Let w = 0/2, du = d0/2. The result follows since [ sec? u du = tan u.
de 1
/— = —tan36
cos2 36 3
The integrand is equal to sec? 30. Now let u = 360, du = 3d6.
de 1
/ T ot20
sin2 20 2
The integrand is equal to csc? 20. Now let u = 26, du = 2d6, and note that [ csc® u du = — cot u.
1
/:r:cscz(a:z) do = — —cot 2
2
Let u = @2, du = 2z dx, so that @ do = du/2. Note that [ csc® u du = — cot u.
3z +4 5 3z 44
/tan— dz = —In scc—l
5 3 5
Let u = %”—4, du = 3da/5 and so de = 5du/3. The result follows since [tanu du = — In | cos u| = In | secu].
dx 1
/— — ~ In|sin 22|
tan 2z 2

The integrand is equal to cot 2z. Let u = 2z, du = 2dx. Then, do = du/2, and since [ cotu du = In|sin u|, the
result follows.

/\/l+c035:r: de =

Use the identity in Exercise 6, above. Since /T T cosBz = V2 - cos (%) welet w = 22, du = 5dx/2. Then

dx = 2du /5 and the conclusion follows.

™ ™
/csc(:r: + 1) cot(x + 2) de = —seca

2 2
Trigonometry tells us that sin(x + §) = cosx, and cos(z + §) = — sinz. Thus, by definition, csc(x + §) cot(x +
%) = —secztanx. On the other hand, [ secx tan = dx = sec x.

1 1
/cosS:r: cosdx de = —sinxz + — sin Tz
2 14

Use the identity cos Acos B = % (cos(A — B) + cos(A + B)), with A =4z, B = 3z, and integrate the terms
individually. This is also a  three-row problem” using the Table method in Integration by Parts and so you can use this
alternate method as well.

1
/scc 50 tan 50 d6 = — sec 50

5
Let w = 50, du = 5d0. Then d6 = du/5 and since [ sec utan u du = sec u, we have the result.

cos x 1
— dz = —
sin2 sin @

The integrand is equal to cot @ csc @. The result is now clear since

——— = cscx.
sin

1
/332 cos(z® 4+ 1) de = = sin (:3 +1)
3

2 dx. Then 2 dx = du/3 and the answer follows.

Letu = o3 4+ 1, du = 3z
/scc9 (sec O + tan 0) dO = sec 6 + tan 6

Eapand the integrand and integrate it term-by-term. Use the facts

[sec? u du = tanu, and [ sec u tan u du = secu
1 cos 6
/(cscefcote)csced9:csc97cot9: -
sinf  sin 6

Ezpand the integrand and integrate it term-by-term. Use the facts
[esc?u du = —cotu, and [ cscucot u du = — csc u. Rewrite your answer using the elementary functions sine and
cosine.

/cos*4 @ sin(20) do = ——

cos2
Write sin 2z = 2sin @ cos@ and simplify the integrand. Put the cos® z-term in the denominator and then use the
substitution u = cos x,

du = —sinz de. Then —2 [ u ™3 du = w2 and the result follows.

tan2 \/z
==

Let w = T, du = == dz, which gives 2/F du = dx, or dz = 2u du. The integral becomes

3/E

2u tan? u 2 2
/7 du = /2tan u du = /2(scc w—1) du = 2tan u — 2u, and the result follows.
u

dz = 2tan vz — 2T
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53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

/l+sin2a: 1 1 sin 2z
do = it
cos? 2z 2cos2z 2 cos 2z
Note that the integrand is equal to sec? 2@ + sec 2z tan 2x. Let u = 2z, du = 2dz, or dz = du/2. Use the facts
[sec? u du = tan u, and
[ secutan u du = sec u. Now reduce your answer to elementary sine and cosine functions.
da 1
/ — = " In|sec3x + tan 3z
cos 3z 3

Let w = 3x, du = 3de, de = du/3, and use the result from Evample 367, with © = .
da 1
/7 = —1In|esc (3z + 2) — cot (3 + 2)|
sin(3z +2) 3

Note that the integrand is equal to csc(3z + 2). Now let w = 3z + 2, du = 3dx, dz = du/3. The integral looks like
(1/3) fescu du = (1/3)1In|cscu — cotu| and the result follows. This last integral is obtained using the method
described in Ezample 367, but applied to these functions. See also Table 8.9.

1+ sina
/ — —  dz = In|secx + tan x| — In |cos z|
cosw
Break up the integrand into two parts and integrate term-by-term. Note that — In | cos@| = In |sec @| so that the final

answer may be written in the form

In [sec z + tan z| + In |sec 2| = In [sec?  + tan x sec z.
/(1+scc9)2 d0 = 0 + 21n |sec 6 + tan 0] + tan 6

Ezpand the integrand and integrate term-by-term.

2

ese? z da 1
/7 = —Zln|l+2cota|
1+ 2cotx 2
2 2 d du
Letu = 1 4 2cotz, du = —2csez do. So, esc? do = — 4. The integral now becomes (71/2)/— =
u
—(1/2) 1n |u].

/e”” sece® dz = In ‘scc (ex) + tan (ex)‘
Let u = e%, du = e® dx, and use Ezample 367.

da
/ = In[In |
zlnz

Letu =1Inz, du = 92, The integral looks like [ % = In |u| and the result follows.

dt 1
/— = Arcsin —V/2t
V2 —t2 2

The integrand contains a square root of a difference of squares of the form \/a2 — u2 where a = /2, and u = t. Let

t =+/2sin0, dt = V/2Zcos 6 db. Since \/2 — t2 = /2 cos 0, the integral looks like [ d0 = 6 = Arcsin %

1 2
— Arcsin —V/3z

dx
[ s = e

The integrand contains a square root of a difference of squares of the form \/a2 — u2 where a = /3, and u = 2.

Let 2z = /3sin 0, 2de = /3cos® db. Since \/3 — 4x2 = /Bcos 0, the integral looks like [(1/2)d6 = g =

L Arcsin 2L | which is equivalent to the answer.
2 V3’ ?

2z 4 3) de 1
/% = —2y/4 — 22 4 3Arcsin —x
4 — 22 2

Break up the integrand into two parts so that the integral looks like

2z dz 3
Sy S .
Va4 — z2 Va4 — z2
Let u = 4 — 22, du = —2x dax in the first integral and @ = 2sin 0, dx = 2cos 0 d6 in the second integral. Then

\/4 — 22 = 2 cos 6 and the second integral is an Arcsine. The first is a simple substitution.

dx 1 1
/_ = = VBArctan —zvE
z2 +5 5 5

This integrand contains a sum of two squares. So let, = = v/5tan 0, de = VBsec2 0 df. The integral becomes

/ VBsec? 6 do
5sec2 6
dx 1 2

/— = —V3Arctan —/3z

422 4+ 3 6 3

The integrand contains a sum of two squares, a2 + u2 where a = /3 and uw = 2x. So let 2z = /3tan 0, 2 do =

V3sec2 0 dO. The integral becomes

/ (1/2)v3sec? 6 do

3sec2 6

V5
= — /d9 and the result follows since 6 = Arctan
5

V3 5
= — /d9 and the result follows since 6 = Arctan <& .
6 V3

1 x
—Arcsec —

/ dx B
z\/x2 — 4 T2

The integrand contains a square root of a difference of two squares, \/u2 — a2 where a = 2 and w = x. So let * > 2 and

z = 2secH, dv = 2sec§ tan 6 d6. Moreover,
/ 2sec® tan do

22 — 4 = 2tan 6. The integral becomes

1
ZSee wmT e _ /d9 and the result follows since 0 = Arcsec &.
(2scc0)(2tan0) 2

da x
/7 = Z Arcsec —

z\/4z2 —9 3
The integrand contains a square oot of a difference of two squares, \/u2? — a2 where a = 3 and u = 2x. So let * > 0

and set 2z = 3sec 0, 2dz = 3sec 6 tan 6 d6. Morcover, \/4z2 — 9 = 3tan 0. The integral becomes
/ (3/2) secO -tan 0 do

1
== /d9 and the result follows since 0 = Arcsec 2&
(3/2) sec 6 - 3tan 0 3

N
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67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

| &

\/I2+4:n 2

=1In ‘«/4 + a2 4 :r:‘ where the “missing” constants are absorbed by the constant of integration, C.

/ dx . 4+ 22 N

The integrand contains a square Toot of a sum of two squares, \/u2 + a2 where a = 2 and w = x. Set x = 2tan 6,
dz = 2sec? 0 dO. Moreover, \/x2 + 4 = 2sec 6. The integral becomes

2 sec? 6 do
/ (2sec 0)

dx 1 \4az2 +3 2z
1 =

/\/412”’2" N

=In !«/4:2 +3+ 2x|, where the “missing” constants are absorbed by the constant of integration, C.

= /scc 6 dO and the result follows from Example 367.

The integrand contains a square Toot of a sum of two squares, \/u2 + a2 where a = v/3 and u = 2z. Set 2z = V/3tan 6,
2 dz = V/3sec? 0 d. Moreover, \/4x2 + 3 = \/Bsec 0. The integral becomes
(V3/2)sec? 6 do
V3 sec

=(1/2) /scc 6 dO and the result follows from Ezample 367, once again.

=In ‘a: + /22 — 16‘, where the “missing” constants are absorbed by the constant of integration, C.

The integrand contains a square root of a difference of two squares, \/u2 — a2 where a = 4 and u = . Set © = 4sec 6,

\/z2 — 16 = 4 tan 0. The integral becomes

= /scc 6 dO and the result follows from Ezample 367.

dx = 4sec tan 6 d6. Moreove
/4scc9 tan 60 d6

4tan 6
z
e

/— dx = Arctan (ex)

14 e2z

1
Use a substitution here: Let u = eT, du = e% dx. The integral now looks like /—2 du = Arctan u, where
14w
u = EI.
1

/7 dx = Arcsec 2z

z\/4z2 — 1
The integrand contains a square root of a difference of two squares, \/u2 — a2 where a = 1 and u = 2x. So let x > 0

and set 2z = sec 0, 2dx = sec 0 tan 0 dO. Moreover, \/4x2 — 1 = tan 0. The integral becomes

(1/2) secO -tan 0 do

/ —_ = /d9 and the result follows since = Arcsec 2.
(1/2) sec 0 - tan 6

1 2z 422 — 9
| — 4+ = !2: + /422 — 9!, where the “missing” constants are absorbed by the

/ dx
[422 _ 9 2 3 3
constant of integration, C.

The integrand contains a square root of a difference of two squares, \/u2? — a2 where a = 3 and u = 2x. So let * > 0

and set 2z = 3sec 6, 2 do = 3sec 6 tan 0 d6. Moreover, \/4x2 — 9 = 3tan 6. The integral becomes

(3/2) sec 6 - tan 0 do
/ = (1/2) /scc 0 dO and the result follows since [ sec 6 dO = In | sec 0 + tan 0|,

3tan 0

1
/e*31 dz = ——e~ 3%

3
Let w = —3x, du = —3 do. Then do = —du/3.
/ dz 1 g,

E——
e2z 2
2a

Write the integrand as e ~ 2% and let w = —2x, du = —2 da.

1 1
/(ex —e )2 gz = —e2T _ 9z — —e72®
2 2

Ezpand the expression and integrate term-by-term using the two preceding ezercises.

1,2
=—Ze
2
, du = —2x da so that x do = —du/2.
sin 6 d6
— — 2T _—cos0
VI —cos@
Letuw = 1 — cos 6, du = sin 6 df. We now have an easily integrable form.

cos 0 d6 1
/ = Arcsin (— V2 sin 9)
2

2 —sin2 6
Write = . Let w = sin®, du = cosx da. The integral takes the form
/ du

V2 —u?

wouldn’t get it confused with THIS 0). Then du = /2 cos 0 d0 and \/2 — u2 = /2 cos 0 and the rest of the integration

Now set w = +/2sin 6. (This is why we changed the name of the original variable to “x”, so that we

is straightforward. (Note: If you want, you could set w = sin 0 immediately and proceed as above without first having to let
0= etc.)
2z
2% gz 1 -
T (1 +e )
14 e2z 2
Letu = 1 + 2%, du = 2e2% dz. Now, the integral gives a natural logarithm
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80.

81.

82.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

[ averan (%)

14 e2z
Let u = €%, du = e dx. Now, the integral is of the form

du
/ ——— and this gives an Arctangent.
14w

cos 6 d6 1 1
/— = = V2Arctan (—\/Esin 9)
2 4 sin2 @ 2 2

Write = @. Let w = sin®, du = cosx dax. The integral takes the form

du
/ ——— - Nowset u = V/Ztan 6. (This is why we changed the name of the original variable to “z”, so that we wouldn’t
24 u

get it confused with THIS 0). Then du = +/Zsec20 do and 2 + u2 = 2sec? 0 and the rest of the integration is
straightforward. (Note: If you want, you could set w = sin @ immediately and proceed as above without first having to let
0= etc.)

/ .3 .4
sin® z cosxz de = —sin~ =
4

Let u = sinz, du = cosx dz.
1
/cos4 5z sin 5z dz = —— cos® 5z
25
Let u = cos 5z, du = —5sin 5z dz or sin 5z = —du/5. The rest is straightforward.

/(cose+sin9)2 d0 = 0 — cos2 0

or, this can also be rewritten as 6 + sin2 @

Exzpand and use the identities cos2 6 + sin2 @ = 1, along with

$in20 = 2sin 0 cos 0. Then use the substitution u = 2z, or if you prefer, let u = sin 6, etc.
1

/singa: de = —=sin? wcosx — — cosx
3

This is the case m. is even (m = 0) and n is odd (n = 3) in the text.

3 1 5 1
/cos 2z do = — cos® 2@ sin 2@ + — sin 2z
6 3
Let w = 2x. The new integral is in the case where m is odd (m = 3) and n is even (n = 0) in the text.

1 2
/singcccos2a:da: = —Zsin?zcosd x — — cos®
5 15

This is the case m is even (m = 2) and n is odd (n = 3) in the text. To get the polynomial in cos m simply use the

identities sin2 @ = 1 — cos2 x whenever you see the sin2 —term and expand and simplify.

5 1 4 4 2 8
/cos zdz = = cos* wsinz + — cos? zsinz + — sinx
5 15 15

This is the case m is odd (m = 5) and n is even (n = 0) in the text. To get the polynomial in sin @ simply use the
identities cos? © = 1 — sin2 = whenever you see a cos2 z—term and then ezpand and simplify.

1 1
/sin3 40 cos® 40 d0 = — — sin® 40 cos? 40 — — cos? 40

24 48

Let w = 40. Then the new integral is in the case where m is odd (m = 3) and n is odd (n = 3) in the text.

cos? z da
/— — cosz + In |esc & — cot z|
sin @

Write cos2a = 1 — sin2 «, break up the integrand into two parts, and use the fact that /csc z dz = In |cscz — cot x|.

cosdzdz 1 o
/— — = cos? z + In |sin |
2

sin @
Write cos2z = 1 — sin2 x, break up the integrand into two parts. In one, use the fact that
cotz dz = In | sinz|. In the other, use the substitution uw = sin @ in the other.
1
/tan2 :Escc2 x der = — tanS T
3
Let u = tan =, du = sec? x da.
1
/scc2 :Etang xz de = — tan4 T
4
Let u = tan z, du = sec? z dz.
/ sin @ da 1
cos3 2cos2 z
Let u = cosw, du = — sinz dz.
sin2z de 1 3
/ i .
cosd 3

The integrand is equal to tan? z sec? x. Now let u = tan x.

4 1 2 2
/scc zdr = —tanaz sec® 4+ — tanx
3

3
3
This is the case m = 4, n = 0 in the text. Note that sec2x = 1+tan2 x. So, this answer is equivalent to tan x -+ mme
with the addition of a constant.
2

tan® z dox = tanxz — =

The integrand is equal to 1 — sec? z. Now break up the integrand into two parts and integrate term-by-term.
2 2

(1 +cot0)2 do = —cot 6 — In (1 + cot? 6
Expand the integrand, use the identity 1 + cot? 0 = csc? 0 and integrate using the facts that [ csc? @ do = — cot «, and
[cot @ do = In | sin@|. Note that the second term may be simplified further using the fact that
In (1 + cot? 9) =1Incsc20 = —Insin2 9 = —2Insin 6.
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1 1
99. /scc4 ztan® z dz = — tan? 2 sec? = + — tan &
6 12
This is the case m = 4, n = 3 in the test.
6 1 4 4 2 8
100. /csc zde = ——cscta cotx — — csc?a cotw — — cota
5 15 15
Use the same ideas as in the case o = 6, n = O in the secant/tangent case.

1 1
101. /tan3 z do = —tan®z — —In (1 + tan? :r:)
2 2

This is the case m = 0, n = 3 in the text.

2
cos2 ¢ dt 1 2
102. /— = ——csc?t cotdt — — cotS t
sin6 ¢
The integrand is equal to cot? @ csc? @, and this corresponds to the case m = 4, n = 2 in the secant/tangent case.

103. /tan 6csc 6 dO = In |sec 6 + tan 6]
The integrand is really sec 6 in disguise!
2 1 1
104. /cos 4z do = — cosdw sinda + —w
8 2

Use the identity cos? 0 = 1+€0820 ' p 0 — 4. Then use a simple substitution uw = 8z, and simplify your answer

using the identity sin 8z = sin(2 - 4z) = 2sin 4z cos 4x.
2 3 1
105. /(1 + cos0)2 do = —6 + 2sin 6 + — cos 0 sin 6
2 2

Brpand the integrand, use the identity cos® 0 = 1529820 4ng integrate term-by-term.

3 5 11 5
106. /(1 —sinz)? de = —@ + — cosa — — cosmsinx + — sin” x cosx
2 3 2

Ezpand the integrand, and integrate term-by-term using the identity sin2 @ = “zﬂ, and the case m = 0, n = 3 in
the text.
Recall that (1 — 0)3 =1 — 30 4+ 302 — 03
1 1.3
107. /sin zdr = ——sin® zcose — — coszsine + —=
4
This is the case m = 0, n = 4 in the test.
2 2 ! 3
108. /sin 2x cos® 2z dz = — — sin 2w cos® 2z + — cos 2z sin 2z + —a
8 16
Let w = 2 first. Then the new integral corresponds to the case m = 2, n = 2 in the text.
1 1 1 1
109. /sin49cos2 0 do = ——sin® 0 cos® 0 — = sin 0 cos® 0 + — cosOsin O + — 0
6 8 16 16
This is the case m = 2, n = 4 in the text.
6 1.5 3
110. /cos z dz = — cos® zsinz + — sin@ cos® @ + — cosasine + —a
6 24 16 16
This is the case m = 6, n = 0 in the test.
111. /cosa:sin 20 do = — = cos3x — — cos T
You can use either Table integration in a three-row problem or the identity
cos Asin B = —sin(A + B) — —sin(A — B) to find this integral.
2 2
1 1
112. /sin zcos 3z do = — — cosdx + — cos 2z
8 4
You can use cither Table integration in a three-row problem or the identity
1 1
cos Asin B = —sin(A + B) — —sin(A — B) to find this integral.
2 2
1 1
113. /sin 2¢ sin 3z do = — sin® — — sin 5=
2 10
You can use cither Table integration in a three-row problem or the identity
1 1
sin Asin B = — cos(A — B) — = cos(A + B) to find this integral.
2 2
1 1
114. /cos 2x cos 4z dz = — sin 2@ + — sin 6z
4 12
You can use either Table integration in a three-row problem or the identity
1 1
cos Acos B = = cos(A — B) + — cos(A + B) to find this integral.
2 2
5 1 1 1
115. /sin 2¢ cos 3z dz = —sin3x — —sinz — — sin Te
4
a2 _ l—cos20 _
Use the identity sin® 0 = — with O = 2x. Break up the integrand into two parts, and integrate using the

substitution u = 4a and the identity
1 1
cos A cos B = = cos(A — B) + — cos(A + B) to find the other integral.
2 2
116. /scca:csca: dz = In |tan z|
There are two VERY different ways of doing this one:

In the first proof we note the trigonometric identity (and this isn’t obvious!),

2

sec? z 1
. - —seczescx,

tan @ sin @ cos @
so the result follows after using the substitution w = tan z, du = sec? x dz.
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119.

122.

In the second proof we note that (and this isn’t obvious either!)

1 2

- = = 2csc 2z,

sinzcosz  sin 2z

Now use the substitution uw = 2z, du = 2dz and this new integral becomes
1

2. = /csc wdu =1In|cscu — cotu|. The answer is equivalent to

In | csc 2z — cot 2x| + C, because of the identity 1 — cos 2z = 2sin? x.

dx 1 z

/— =-—7F = —cot—.
1— cosa tan T 2

Use the identity 1 — cos 20 = 2sin2 O, with O = Z. Then m = %csc2 2. Letw = x/2, du = dz/2 and

use the integral

[esc? u du = — cotu and simplify.

da 1
/7 = Arcsin —V3 (z — 1)

V2 + 2z — 22 3
First, complete the square to find 2 + 2¢ — 22 = 3 — (z — 1)2. Neat, let a = /3, w = @ — 1. This integrand has a
term of the form \/a2 — u2. So we use the trigonometric substitution
uw=2xz—1=+3sin6, de = \/3cos 0 db.
Furthermore, \/2 + 2z — 22 = /3 cos 6. So, the integral now takes the form

V3 cos 6 do

- /d9 -0
ﬁcos 0

where 6 = Arcsin £ which is equivalent to the stated answer.

da 1 1
/7 - _Arcsin\/E(x - _)
V14 4z — 422 2 2
First, complete the square to find 1 4+ 4z — 422 = 2 — (2o — 1)2. Neat, let @ = V2, u = 2z — 1. This integrand has
a term of the form \/a2 2,

— w2, So we use the trigonometric substitution

uw=2c—1=+2sin6, 2dz = v/2cos 0 do

V2
or, do = — cos 6 d6.
2

Furthermore, \/1 4+ 4@ — 422 = /2 cos 0. So, the integral now takes the form
V2cos6 do 1 0
_/ == /d9 _Z
V2 cos 6 2 2
1

where 6 = Arcsin 2”\”/% which is equivalent to the stated answer.

= —\/_Arcsln —\/_(x —1)

/\/2+6a:7'§a:

This one is a little tricky: First, complete the square to find 2 + 6z — 3z2 = 5 — 3(z — 1)2. But this is not exactly a
difference of squares, yet! So we rewrite this as

5—3(z —1)2 =5 — (V3z — V3)?

and this is a difference of squares. Now let a = /5, u = /3x — /3. We see that the integrand has a term of the form

u2. So we use the trigonometric substitution

u=+V3z —V3=+V5sin6,
V3 dz = /5 cos 6 db

VE
or, do = — cos 6 d6.
V3

Furthermore, \/2 4+ 6@ — 322 = /B cos 6. So, the integral now takes the form

/\/_cosede . /d9 o
VBcos0 V3 V3

where ® = Arcsin 3@\/%5 which is equivalent to the stated answer.
dx Va2 + 6z +13 x+3

/ =1In + —

\/12 + 6z + 13 2 2

First, complete the square to find 2 + 6z + 13 = (x + 3)2 + 4. Nest, let a = 2, w = x + 3. This integrand has a term

of the form \/a2 + u2. So we use the trigonometric substitution

w=x+3=2tan0,
dz = 2sec? 6 d.

Furthermore, \/#2 + 6z + 13 = 2sec 0. So, the integral now takes the form

2sec? 0 do
/ 7/5cc9d9:ln\scc9+tan9\,
2sec

2462413

and tan 0 = EE3 which is equivalent to the stated answer.

dx 1 1

/7 = —V/2Arctan — (4z — 4) V2
2z2 —4z +6 4 8

First, complete the square to find 222 — 4z + 6 = 2(x — 1)2 + 4. The integral now looks like:

1 1 1 1
/ da::/ da::—/ida:
2z2 — 4z +6 2(z — 1)2 4 4 2/ (z—-1)2 42
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Next, let a = /2, uw = @ — 1. The previous integrand has a term of the form a2 + u2. So we use the trigonometric
substitution

w=z—1=+2tan6,
dz = /Zsec2 0 do.

Furthermore, 202 — 4z + 6 = 2sec2 0. So, the original integral now takes the form

1 V2Zsec20do V2 VZ z—1
_/7 = 229 = X2 Arctan
2 2sec2 @ 4 4
which is equivalent to the stated answer.
da 1
123. /— = — ~Arcsec
(1 —z)\/z2 — 22 — 3 2

2

First we complete the square so that 2 — 2z — 3 = (x — 1)2 — 4. A trigonometric substitution is hard here: Let’s try

another approach...

Let uw = @ — 1,du = da. Then the integral becomes (note the minus sign)

,/L
'u.\/'u.274A

Now we incorporate the number 4 into the square by factoring it out of the expression, thus:

Wi a5

Now we use the substitution v = %, 2dv = du. The integral in w now becomes

1
— — Arcsec v,
2

,/ﬁ,,i/d—”,
4vy/v2 — 1 T2 vy/v2 — 1 a

according to Table 6.7 with O = v. The answer follows after back-substitution.
(2z + 3) da 3 5
124. /7 =Zinje+3+=Inje — 1]
z2 42z -3 4 4
Use partial fractions. The factors of the denominator are (x + 3)(z — 1). You need to find two constants.
(z + 1) d= 1 5
125, [ ———— = —In|2® + 2z — 3
z2 42z — 3 2
Let u = 2 + 2z — 3, du = (2z + 2) dx so that
du = 2(x + 1) de. Now the integral in u gives a natural logarithm.
Alternately, use partial fractions. The factors of the denominator are (x + 3)(z — 1). You need to find the two constants.
(z — 1) dz 1 5 1
126. /7 = Z1In|42? — 42 4 2| — ZArctan (22 — 1)
422 — 4z + 2 8 4
The denominator is a Type II factor (it is irreducible) since b2 — dac = (—4)2 — 4(4)(2) < 0. So the expression is
already in its partial fraction decomposition. So, the partial fractions method gives nothing.
So, complete the square in the denominator. This gives an integral of the form
/ (z — 1) dz / (z — 1) dz
422 —az+2 ) @z -1)2 41
which can be evaluated using the trigonometric substitution,
w=2z —1, du = 2de or dz = du/2. Soling for = we get
o= sow — 1= Y5 The u—integral looks like
1 u—1
- / 2 g
2/ 14?2
Break this integral into two parts and use the substitution
v=1+u2, dv =2u du, udu = dv/2
in the first, while the second one yields an Arctangent.
z dz
127. /7 :\/1272x+2+ln|\/x272x+2+171
Va2 —2z 42

Completing the square we see that 22 — 2z + 2 = (z — 1)2 4 1. Nest, we set

z—1=tan6, dz =sec?6 do
z =1+ tan0,

Va2 —2z2 +2= /(e - D2 1 = scco.

The integral becomes

de

/ z dx / (1 + tan 0) sec? 6
\/12 — 2z 42

and this simplifies to

sec 6

/(scc9+scc9tan9) d6 = In | sec 6 + tan 6| + sec 6.

Finally, use the back-substitutions sec 0 = 4/ 2z + 2 and tan @ = = — 1.

1z +1) d 3 1
128. /w = /1 +4z — 422 + —Arcsin\/E(x - —)
V14 4z — 422 2 2

Completing the square we see that 1 + 4z — 4x2 = 2 — (2¢ — 1)2. The integrand has a term of the form /a2 — u?2
where a = /2, u = 2x — 1. So, we set
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129.

131.

132.

138.

134.

135.

137.

138.

139.

140.

2z — 1 = +/2sin6, 2dz = 2cos6 db
» = 1+V2sin0

2
4z + 1 = 3 + 24/2sin 6,
V14 4z — 422 = V/2cos 6.

The integral becomes

/\/(4x+1) dzx :/(3+2\/§sin9) \/Tgcosede

1+ 4o — 422 V2 cos 0

which simplifies to

1 3
—/(3+2\/§sin9) 46 = 26 — V/Zcoso.
2 2

om1 V1tdz—4a?
Finally, use the back-substitutions 0 = Arcsin =L and cos ¢ = . to get it in a form equivalent to the

V2

stated answer.

3z — 2) d=x Va2 +224+3 =z 41
/7:3\/x2+2x+3751n ;4
[22 § 20 + 3 o) o)

Completing the square we see that 2 + 2x + 3 = 2 + (x + 1)2. The integrand has a term of the form \/a2 + u2 where

a=+2, u=ax+ 1. So, we set

z+1=+2tan6, dx = 2sec?0 do
z=+2tan6 — 1,
3z — 2 =23v2tan 0 — 5 = 3v/2tan 6 — 5,

Va2 + 2z + 3 = V2sech.

The integral becomes

3z —2) d 3vZtan 6 — 5
/(1 ) de :/(\/_‘m )\/Escc29d9
\/12+2I+3 V2 sec 0

which simplifies to

3\/§/scc9nm9 d975/scc9 d0 = 3v2sec 6 — 51n | sec 6 + tan 0].

(22
z2 42243
Finally, use the back-substitutions sec § = Veit2eds

V2 ’
tan g = &L

s s togetitin a form equivalent to the stated answer.

e da 1 1
/7 = ZVZArctan — (2e”” + 2) vz
2% | 2¢% 13 2 4

Let w = €T, du = e® dax. The integral is now a rational function in w on which we can use partial fractions. The

denominator is irreducible, since b2 — dac = 4 — 4(1)(3) < 0. You need to find two constants.
2

z2 da 9 4
/7:1——1n\x+3\+—1n\172\
z2 + -6 5 5

Use long division first, then use partial fractions. The factors of the denominator are 2 + @ — 6 = (x + 3)(x — 2). You

need to find two constants.

/(:E+2)d:r

=2In|z| —In |1 + x|
z2 + o

Use partial fractions. The factors of the denominator are @2 + @ = x(x + 1). You need to find two constants.

(23 +22)dz 1 4
/7:—1 +4z —2In|z — 1| + 121n |z — 2|
z2 — 3z 42 2

Use long division first. Then use partial fractions. The factors of the denominator are z2 — 3z + 2 = (x — 1)(z — 2).

You need to find two constants.

de 1 1
/—:7ln\x\+—ln\171\+—ln\l+x\
z3 — 2 2

Use partial fractions. The factors of the denominator are @3 — z = x(x2 — 1) = z(xz — 1)(x + 1). You need to find

three constants.
(z — 3) dz

3 5
— = —“lnlz|— —Inje+2[+4In|l + 2|
z3 4 322 + 2z 2 2

Use partial fractions. The factors of the denominator are @5 + 3z2 + 2¢ = (22 + 3z + 2) = @(z + 1)(z + 2). You

need to find three constants.

(23 + 1) dx 1
/7 — 24 = —1In|z| +2Inz — 1|
z3 — 22 x
Use partial fractions. The factors of the denominator are 3 — z2 = 22 (z — 1). You need to find three constants.
= d 1
/ T +in|l+ o
(z +1)2 14
Use partial fractions.
(z +2) da 4
/ e +nz — 2|
22 — 4z + 4 z—2
Use partial fractions. The factors of the denominator are x2 — 4z + 4 = (z — 2)2. You need to find two constants.
(3z + 2) dz 5
-  —2n|z| - —— —2In|z — 1]
z3 — 222 4z z —1
Use partial fractions. Note that 23 — 222 4+ o = z(22 — 2z + 1) = x(z — 1)2. There are four constants to be found
here!
/ 8 da 2 2 L | |
— = — 4 X _mjz[+njz—2
z4 — 223 z2 x

Use partial fractions. Note that % — 223 = 23 (z — 2). There are four constants to be found here!
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141.

142.

143.

144.

145.

146.

147.

148.

149.

154.

155.

158.

dx 1 1 1 1
/ - iz -1 - — 4+ Zin|l + x|
(z2 — 1)2 4(x—1) 4 4(1+x) 4
Use partial fractions. Note that (z2 — 1)2 = (x — 1)2(x + 1)2.
3
1—a3) dz 1
/% = -z +mmlz| - = (22 + 1) + Arctan =
z(z2 + 1) 2

Use long division. first, then use partial fractions.
(z — 1) da 1
/7 :7ln\l+x\+—ln(12+l)
(z +1)(=2 +1) 2
Use partial fractions.

iz do 5
/—:ln\xfl\+ln\l+:r\fln(:r +1)
z4 —1

Note that 2% — 1 = (22 — 1)(22 + 1) = (x — 1)(x 4 1)(x2 + 1). Use partial fractions.

3(z + 1) da
/7( ) =2z~ 1~ (s + o +1)
z3 —1
Note that 23 — 1 = (x — 1)(22 + = + 1). Use partial fractions.
(zd + 2) de 1 1 1 5 V32 z
/7:—ln\172\7—1n\x+2\7—1n(1 +2) + ~= Arctan
z4 — 4 4 12 12 3

Use long division first, then use partial fractions.

2 4 1
/ T _ _Arctan @ + VZArctan — 3z
(2 4+ 1) (22 + 2) 2

The factors are (x2 4 2)(x2 + 1), both irreducible. Four constants need to be found. This is where the Arctangents come
from!

3 da 1 1
/ ————— = — —Arctan —x + Arctan x
z4 4522 44 2 2

The factors are (z2 + 4)(x2 + 1), both irreducible. Four constants need to be found. This is where the Arctangents come
from!

(z — 1) da 1 1 1
/ - — — _Arctana + —V2Arctan — (2z — 2) V2
(2 4 1) (22 — 2z + 3) 2 4 4
Use partial fractions. Watch out, as both factors in the denominator are Type II.
3
z3 da 2 1
/— = —+—ln(:t2+4)
(2 4 4)2 z2 +4 2

Use partial fractions.

/(14 +1) da

1
=lIn|z| + ——
z(z2 +1)2 J=] z2

+1

Use partial fractions.

2
(z2 4+ 1) dz 1 1 1
/ = — + = V2Arctan — (22 — 2) V2
(2 — 2z + 3)2 z2 — 2243 2 4
Use partial fractions. Note that (x2 — 2z + 3)2 is irreducible (Type II). Now you have to find the four constants!
z dz 2 3
/— :72«/x+1+—(\/x+1)
N 3

Letu =a+ 1, du = dz. Then © = u — 1, and the integral becomes easy.

[eviaas= E(E)Mz(m)%

5
Letu = — a, du = dz. Then © = u + a, and the integral becomes easy.
Vo F2
/— dz = 2y/x + 2 — 2Arctan \/z + 2
z+3

Letu = VT F2, u2 = o + 2. Then 2u du = dz and ¢ = u? — 2 which means that © + 3 = u2 + 1. The integral

2
takes the form [ %. This one can be evaluated using a long division and two simple integrations.
w

= 2Arctan y/z — 1

Let u=+vZ =1, u2 =2 — 1. Then 2u du = dx and so @ = 1 + u2. The integral takes the form [ % which
w(ltu

is an arctangent function...

1

dx
/7 = — 22
221/a2 _ 22 a2z
Letx = asin0, do = acos® d. Then sqrta® — a2 = a cos 0. After some simplification we find a =2 [ csc? 6 do =
—a"2cot 0.
1 3 2 3
/13\/12 + a2 do = —a? («/12 + a2) - —a? (\/12 + a2)
5 15
Let x = atan @, dz = asec2 0 dO. Then \/z2 + a2 = asec 6. After some simplification you’re left with an integral

with an integrand equal to sec2 6 tan> 6. Use Ezample 371.
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160.

161.

162.

165.

164.

169.

172.

178.

174.

177.

178.

179.

180.

dx 1
/7 = ——— /22 + a2

221/22 + a2 a2z
Let ¢ = atan®, de = asec2@ df. Then z2 + a2 = a2sec? 9. After some simplification you're left with an
integral with an integrand equal to csc @ cot 0. Its value is a cosecant function. Finally, use the fact that, in this case,

\/x2 + a2
x
/ﬁ :ln‘:ﬂ+\/:ﬂ2+a2‘

Letz = atan 6, do = asec2 @ dO. Then 22 + a2 = a2 sec2 0. After some simplification you’re left with an integral
of the form in Ezample 367.

2
d 1 1
/# = —ay/22 + a2 — a2 lnla: + /22 + a2|
[2 + a2 2 2

Letz = atan 6, do = asec2 @ dO. Then 22 + a2 = a2 sec2 0. After some simplification you’re left with an integral
of the form in Ezample 369.

2

z? da 1 x 1 x
/ - = 4+ — Arctan —
(2 4 a2)2 2 z2 + a2 2a a

csc @ =

2

Letz = atan 6, doz = asec? 6 df. Then z2 + a2 = a2 sec? 9. After some simplification you're left with the integral

of the square of a sine function...
/:r:cosa: dx = cosz + zsinz

Use Table integration

/:r:sina: do =sinz — zcosx

Use Table integration

/:r:scc2 z dz = x tan z + In |cos x|

2

Use Integration by Parts: Let uw = @, dv = sec? @ de. No need to use Table integration here.
/:r:scca:tana: dz = zsecw — In |secx + tan x|
Use Integration by Parts: Let uw = @, dv = sec a tana da. No need to use Table integration here.

/xzex do = z2e® — 2ze® + 2%
Use Table integration
1 1
/x4lnx dr = =2 Inz — —2P
5 25

Use Integration by Parts: Let w = Inx, dv = 2% dx. No need to use Table integration here.

2 1 2 1 2
/:3& do = —22e® — —e®
2 2

2 2
Write the integrand as @3 e® = z2 . ze®" . Then use Integration by Parts with w = z2, dv = xe® dz. Use the

substitution v = @2 in the remaining integral.
/sin’l @ dz = zAresinz + /(1 — 22)
Use Integration by Parts: Let uw = Arctan @, dv = dz, followed by the substitution u = 1 + 22, etc.
1
/tan*l z dz = zArctanx — — In (:2 + 1)
2
Use Integration by Parts: Let uw = Arctan @, dv = dz, followed by the substitution u = 1 + 22, etc.
/(x —1)?sinz dz = cosz — 2sinz + 2z cosw — z2 cosx + 2z sinw
Use Table integration
1 1
/\/1270.2 do = —z\/z2 — a2 — —a2ln‘a: 22 — a2
2 2
Let ¢ = asec @, do = asecO tan6 df. Then \/z2 — a2 = atan 6, ete.
1 1,
/\/12 4+ a2 dz = —z\/22 + a2 + —a 1n|x + /22 + a2|
2 2
Let z = atan 0, de = asec? 0 df. Then /22 + a2 = asec 6, etc.
2
22 dz 1 1
/— = Zzy/a2 — a2 + —a2ln|a:+ 22 — a2
[o2 _ a2 2 2

Let ¢ = asec 0, do = asecO tan6 df. Then \/z2 — a2 = atan 6, ete.

3 2
/e2”” sin 3z do = — — e2% cos 3z + — e2% sin 3z
13 13
Use Table integration
1 1
/e*x cosz de = ——e Tcosz + —e Tsinz
2 2
Use Table integration
1 1
/sinSa:cos2a: do = — — cosbz — —cos
10 2

Use a trig.. identity ... the one for sin A cos B, with A = 3z, B = 2.
S 3

/8 cos3(22) sin(22) do = —

0 32

Let u = 2a first, du = 2dax, and follow this by the substitution v = cos u, dv = — sin u du which allows for an ecasy
caleulation of an antiderivative.
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182.

184.

185.

187.

188.

189.

192.

198.

194.

195.

196.

4 2V
[
1 2y In2

Let uw = \/T. The result follows easily.

oo 3
/ 2372 dop = =
0 8

Use Table integration to find an antiderivative and then use L’Hospital’s Rule (three times!).

+oo
/ e 17l gz = 2

—co
Divide this integral into two parts, one where © > 0 (so that |x| = x), and one where @ < 0 (so that |x| = —x). Then
too jal [0 o 0 _g
e do = e dz + e ™% da and the integrals are defined by a limit.
—co —co 0
S
[
0 1424
Let uw = 2, du = 2z dz. The integral becomes an Arctangent.
5 4cosnw
/ 22 cos (nma) do = ————, when n > 1, is an integer. Use Table integration.
1 22

L /2,22 sin ("’2”5) dz = 0, when n > 1, is an integer. Use Table integration.

+/E, (- @) sin (BER) de = 2p9080E,
when n > 1, L # 0. Use Table integration.
8n272 cosnm — 16 cosnw + 16

2 3 nra

/ (z +1)cos(—) dz = 6
0 2

when n > 1, is an integer. Use Table integration.
1 2

/ (2@ + 1) cos (nma) do = — sinnw = 0,
—1 nw

when n > 1, is an integer. Use Table integration.

1 /L nra
—/ sina:cos( )da::f),
L/-L L

when n > 1, is an integer and L # 0. Use Table integration.

Total demand over 10 years is
10 _ 10 0 _
/ 500 (20 + t e 0‘“) dt = / 10000 dt + 500/ te Ot gg.
0 0 0

Now integrating by parts

/t e O gt = 10t e 7O 4 10/(:’0‘“ dt = —10t e 01 410 (710(:’0‘“) .

Thus total demand = [10, 000t + 500{—10t e~ 0-1t | 10(710(:*0‘“)}}[1)0 = [10, 000t — 5000te =01t _ 50, 000e—0-1t o

100, 000 — 50, 000e ~ 1 — 50, 000e ~1 — (0 — 0 — 50, 000) = 150, 000 — 100, 000e 1 = 113212.1 ~ 113212 units.

(a) Use partial fractions.
1 A B A(10 — y) + By

=4 =
y(y — 10) y 10 —y y(10 — y)

Ify =0, then 10A = 1, s0o A = % If y = 10, then 10B = 1, and B = % Therefore,

1 1 dy 1 dy
[ /2
y(y — 10) 10 y 10 10—y

1 1 1 "
= —lnly| - — In[l0 —y|+C = — In|—— |+ C
10 10 10 10—y
Thus
+C
Whent =0,y =1,500=25lnk +C =2.5(In 1 —1n9)+C =—2.5In9+C. Thus C = 2.5In 9 and
t = 2.5in +2.5ln 9 = 2.5In
- Y - Y
() Wheny =4, t=2.5ln % = 4.479 hours.
(c) From(a), ztg =in %ﬁ—y L so e2.5 = 10_9’1? L and (10 — )04t = 9y so 1004t = 9y 4 ye0-4% =
y(9 + 04ty Thus
10e0-4t 10
YTy 04t 14 o—0.4t
(d) Att=10, y= —L0 — —8.58 gm.

14+9e—4
Let I denote an antiderivative. Now let w = 3 + sin ¢, du = cos t dt. Then I is of the form [ du/u = In |u| 4+ C or in
terms of the original variables, I = In |3 + sin t| + C.
Let T denote the integral. Now let @ = 22, dw = 2z dz. Then use the trig. subs. z = tan 0/v/2 to get I = /& —
(1/+/2) tan—1(v/2Z) + C. (Note that another identical answer is given by I = @/2 — /T /2 + (1/2) In |1+ 23| + C.
Of course they have to differ by a constant)

I is as before. Let t = 23, dt = 322 dz. Use long division to simplify the rational function and the method of partial
fractions to get I = 3t2/3 /2 4 1n [¢1/3 4 1] — (1/2) In [¢2/3 —+1/3 1 1] — /Ftan—1 ((2t1/3 - 1)\/§/3) +C.

Use the identity sin 2t = 2sin t cost first, then the substitution u = cost, du = — sintdt to get an antiderivative
I = —2cost+4ln|2+ cost| + C. The definite integral is now given by 2 — 41n 3 + 41n 2.
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197.

198.

200.

201.

202.
203.

204.

205.

206.

208.

209.

210.

213.

214.

215.

216.

217.

218.

Let I denote the integral and @ = 22, do = 2z dz. Then use long division to simplify the rational function and the method

of partial fractions to get I = 23/T/3 — (4/9) In |2 4+ 3/Z| + C.

Write tan @ = sin @/ cosz and simplify the resulting expression of sines and cosines. Next use the identity cos? z =

2 & in the denominator and the substitution w = sin @ to reduce the integral into a rational function of w. Now use
the method of partial fractions to get

1 — sin

o B
I=——1In|sinz — | + —— In|sinz — 8| + C,
B -« a—B

where a = (1 + v/5)/2 and 8 = (1 — V/5)/2.

Reduce the integrand to sines and cosines. Nest, take a common denominator in both numerator and denominator and
simplify. Recombine the terms in the denominator so as to use the identity sin2 2
w = cost, du = — sin t dt. The denominator can now be written as a difference of two squares. Use partial fractions as

before to get T = (1//6) (m |cost — /3/2| — In | cost + \/3/2\) +C.

t = 1 — cos®t. Now use the substitution

Let I denote the integral and @ = 22, do = 2z dz. Then use long division to simplify the rational function and the method

of partial fractions to get I = —x + 8y/x — 161n |2 + /z| + C.
Multiply both numerator and denominator by /T + w and simplfy. Now let w = sin =, du = cos @ dx. The denominator

simplifies because of a basic identity and the rest is easily integrated to give I = sin— 1 (u) — \/1 — u2 + C.
Let u = /=, de = 2u du so that I = —2 cos /T + C.
I _ .4 _ 4.3 — _ 1/4 _

et © = 2%, de = 4z° dz and use partial fractions. Then I = (1/2) In |z| — 21n |z 1| + C.

Let 21/6 = 2, dz = 625 dz. The resulting rational funcion of z has a denominator of degree 9 so the method of partial
fractions will be tedious. The answer, when simplified, is I = 31n |1+x1/3|+3/(222/3) —1n |z| —32—1/3 —1/z+C.

Let 21/6 = 2, dz = 625 dz. Now use long division to simplify the rational function in z and integrate term by term.

Then I = 627/6 /7 — 625/6 /5 4 2/7 — 621/6 4 6tan—1(21/6) 4 C.

Let 21/6 = 2, do = 625 dz. As before use long division to simplify the rational function in z and integrate term by term.
Then
625/6  352/3
I=a+t ——+ " toyz+32/3 4621/ 61 |21/6 — 1]+ C.
5 2
Let #1/3 = 2, dz = 322 dz. Changing the limits we get the same limits in the z variables. Using long division and

simplifying we get an antiderivative I = 322 /2 — 3z + 31n |z + 1| and this gives us the answer 3(In 2 — 1/2).
plrjying g g

Let 21/12 — 2 do = 12211 dz. Another long division, simplification, integration and back-substitution gives
3 273 12 7/12 12 5/12 1/3 1/4 1/6 1/12 1/12
I=24%2/3 4 24 +2VF 4 —a +321/3 4 4al/? 4 62176 4122 +121n|a —1]+cC.
2 7 5
Let 21/2 = 2, do = 2zdz. Changing the limits we get the same limits in the z variables. Using long division and
simplifying we get an antiderivative I = 2z — 21n |z + 1| and this gives us the answer 2(1 — In 2).
Let z1/2 = 2, do = 22 dz. Now use the Table Method to integrate the resulting z integral. We get I = —2x cos \/T +
4cos /T + 4T sin /T + C.
Let x1/5 = w, do = 5u% du. Changing the limits we get the same limits in the u variables. Using long division and

simplifying we get 51n2 — 35/12.

Let = = tan(x/2) etc. The resulting z integrand looks like —2/(22 —4z —1). Now complete the square in the denominator
and use partial fractions. We get an antiderivative that looks like

1
I =—-— (In|tan(z/2) — 2 — V5| — In| tan(z/2) — 2+ V5]) .
\/g( | tan(z/2) | - In|tan(z/2) — 2+ V5])

Putting in the limits we get the answer

f(l VB -1 . \/§+2)
5\ VBr1 o VB-2)

Let z1/2 = 2, dz = 2z dz. Changing the limits we get the same limits in the z variables. The cubic 1 + 23 in the
denominator is easily factored. Now use partial fractions. Then (with coffees) evaluate the limit of the antiderivative at
infinity. Done correctly you’ll get the answer 47w+/3/9.

Let 2z = u, do = du /2. The new u limits become 0 and 7 /2. Now let z = tan(w/2) etc. The new z limits now become

0 and 1 and the new integrand looks like 1/(1 + 2z — 22). Factor the denominator using the quadratic formula and using

partial fractions you’ll find the answer
V2 V2 -1
— In|—— .
V241

4
Another tedious one! Let z = tan(x/2) etc. The new z limits now become O and 1. The resulting rational function can be
integrated using partial fractions to find the simple answer of /4.

Let z = tan(x/2) etc. The new z limits now become 0 and tan 7 /8. The resulting integral looks like

/tanﬂ'/S 2(1 + 22)
0 z4 4622 +1

which can be integrated using partial fractions (first complete the “square” in the denominator by rewriting it as (22 +3)2 —
(v8)2 and then factor the difference of squares as usual. Another few coffees should do the trick! The answer is

V2
2 tan— 1 V3.
2

Let z = tan(x/2) etc. An antiderivative is then found to be (v/2/2) arctan((v/2/2) tan(x/2)). Evaluating this between
the limits 0 and 47 we get (v/2/2)(0 + 27) — (V2/2)(0) = mV2.

Let z = tan(z/2) ete. An antiderivative is given by (2+/3/2) arctan((v/3/3)(2 tan(z/2) —1)). Evaluating this between
the\z/@m —m and 7 we get (2v/3/3)Arctan (+o0) — (2v/3/3)Arctan (—oo) = (2v3/3)(n/2) + (2v3/3)(7w/2) =
27/3/3.
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219.

220.

This time we let = = tan(z) ete. An antiderivative is (v/21/12) arctan((v/21/3)(tan(z))—a /4. Evaluating this between
the limits 27 and 57 we get (v/21/12)(Arctan (0) + 57) — 57 /4 —(+/21/12)(Arctan (0) + 7 /2) = (/21 — 3) /4.

Use the Table method and Rodriguez’s formula to show that

1 2

D@ - ™M+

D" (@ — ™) — ¢/ (@)
nl2n nl2n

[ 9@ Pn (@) de = g(2)

1
(z2 — )" dz.

1
+(-1)" L g(n D (q) D" (@ — 1)™) +/<71)"g<"J(I)

ni2n ni2n

Using this last equation we can evaluate the integrated terms over [—1, 1] and note that in every boundary term there is
always a term of the form (z2 — 1)™ left-over and this term becomes zero at the end-points. So, only the final integral

term on the right remains.
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Solutions to Problems in
the Appendices

APPENDIX A - Exercise Set 45 (page 485)

1. 32
2. 25
3. 26 —6a
4. 12
5. 45
6. 4a2 — y2
7. 22
2
[ ——
25
9. 2243
10. 1%
11. B
12. 8a
1
18—
212
14. 64
15. 6
212
16, —
27
17. 3
18. 8
19. 3t
20. 2
21. Eapand the right side, collect terms and compare the coefficients. Yow'll find that 1 = —a2 which is an impossibility since
the right side is always negative or zero and the left side is positive.
22. See Ezample 453 where you set r = x2.
23 1+a +a2° +.+a
24. Eapand the left-side and simplify.
25. Use the Power Laws and simplify
26. Since a” TS = aTa® we can set s = —r. Then a® = aTa ™" and since a® = 1 we get 1 = a”a "7 and the result
follows.
27. See the Introduction to this section for a similar argument.
_ _ 8 56
28. Letw =2,y = 3. Then 28 # 26,
x
29. Replace r by —r in Example 563 and then set + = — and simplify.
2
1 _1
a2 fa 2
30. Write x as @ = . Square both sides of this equality, use the Powers Laws, and then subtract 1 from the result.
2

Simplify.
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No. 26
4
J’lS
- u
|
No. 27
3
o)
/8
No. 28

APPENDIX B - Exercise Set 46 (page
493)

2
1. =
3
2
2. =
3
3. 3
4. y =3z — 10
5. y=a —1
6. y=—2x —5
7. y=—x — 10
8. y=——x+3
2
2 1
9. y=—=a + —
3 3

0. (-%.3)

11. There is no intersection whatsoever since the lines are parallel or have the same slope (= 1)
12, There is no intersection point either since the lines are parallel or have the same slope (= 1)
13. a) y=a —2

b) The altitude has length /32 = 4~/2. First, we find the equation of the line through (4, —6) having slope —1 as it
must be perpendicular to the line through (2, 0) and (6, 4) (i.e., y = @ — 2). This line is given by y = —x — 2.
The find the point of intersection of this line with y = = — 2. We get the point (0, —2). The base of the triangle
has length given by the distance formula in the ezercise applied to the points A and B. Its value is v/32. The altitude
has height given by the same distance formula, namely, the distance between the points C(4, —6) and (0, —2); its
value is /32 as well. The rest follows.

¢) Area = (1/2),/(32)/(32) = 16
14 y==
15y= —x+4

APPENDIX C - Exercise Set 47 (page
507)

1. 1/2
2. V3/2

3. V/3/3: tanw/6 = sinw/6/cos /6 = (1/2)/(v/3/2) = 1/v/3 = V/3/3

4. :gg cos(—B5m/4) = cos(5w/4) = cos(m + m/4) = cos(r)cos(r/4) —sin(rw)sin(r/4) = — cos(w/4) =

5. V/2/2: cos(7Tw/4) = cos(87/4 — w/4) = cos(27 — 7 /4) = cos(—=/4) = cos(w/4) = V2/2
6. —V/2/2: sin(57/4) = sin(w + m/4) = sin(w) cos(w/4) + cos(w) sin(n/4) = —sin(w/4) = —V/2/2
7. —~/3/2: cos(7Tw/6) = cos(w + 7/6) = cos(w) cos(w/6) —0 = —cos(w/6) = —V/3/2

8. —+/2/2: sin(—37/4) = —sin(37/4) = —sin(x — 7 /4) =
(=1)(—1) cos(m) sin(w/4) = (=1)(=1)(—1) sin(r/4) = —V2/2

9. —V/2/2: cos(3w/4) = cos(w — w/4) = cos(w) cos(w/4) + 0 = (—1) cos(w/4) = —v/2/2

10. —+/3/2: sin(57/3) = sin(27 — 7/3) = 0 — cos(27) sin(7w/3) = — sin(n/3) = —V/3/2

11. 0: cos(3m/2) = cos(2m — m/2) = cos(2n) cos(w/2) + sin(27) sin(w/2) =040 =0

12. —1:sin(37w/2) = —1

13. Undefined. tan(3n/2) = sin(37/2)/ cos(37/2) = (—1)/(0) = —oo or is undefined.

14. —1: Use No. 5 above; tan (7 /4) = sin(77/4)/ cos(7Tn /4) = sin(2r—n /4)/(V2/2) = — cos(27) sin(w/4)/(vV/2/2) =
-(vV2/2)/(V2/2) = -1

15. —1/2: sin(7w/6) = sin(7w + 7/6) = sin(x) cos(w/6) + cos(w) sin(w/6) = 0 — sin(w/6) = —1/2

16. \/2/2: Use No. 5 above again; cos(—7x /4) = cos(Tx /4)

17. V2/2: cos(17m/4) = cos(16m /4 + 7/4) = cos(4w) cos(mw/4) — 0 = V2/2

18. 0: cos(5mw/2) = cos(2w + 7/2) = cos(27) cos(w/2) — sin(27) sin(w/2) =0 — 0 =0

19. V/3/2: cos(11m/6) = cos(12m/6 — 7 /6) = cos(27) cos(w/6) + 0 = cos(w/6) = V3/2

20. V/3/2: cos(—137n/6) = cos(137/6) = cos(127/6 + w/6) = cos(2) cos(w/6) = cos(w/6) = V/3/2
21. —+/2/2: cos(225°) = cos(5w/4) and use No. 4.

22. V2/2: cos(405°) = cos(97/4) = cos(2w + w/4) = cos(w/4) = V2/2

23. —1/2: cos(960°) = cos(167/3) = cos(6m — 27 /3) = cos(2m/3)

24. 1/2: sin(—210°) = sin(—7n/6) = — sin(7x/6) = 1/2, see No. 15

25. —1: tan(—1125°) = tan(—25n/4) = — tan(257/4) = — tan(6n 4+ w/4) = — tan(x/4) = —1
26. Draw a picture. Note that sin ¢ = 4/5 and cos ¢ = 3/5. Thus, sec ¢ = 1/ cos ¢ = 5/3

27. Draw a picture. Observe that sinu = +/15/4 > 0 in Quadrant II. So, cscu = 1/sinu = 4/+/15 and tanu =
sinu/cosu = (vV15/4)/(—1/4) = —/15
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28.

29.

40.

Draw a picture. Here, cos ¢ = /8/3 by Pythagoras. Thus,

tan ¢ = (1/3)/(vV8/3) = 1/VE

Draw a picture. Now, tanv = —3/4 and v in Quadrant IV means that sin v = —3/5 and cos v = 4/5.

Draw a picture. This time sec ¢ = 2 and ¢ acute means that ¢ is in Quadrant I. Hence, cos ¢ = 1/2 and sin ¢ = /3/2.

It follows that tan ¢ = /3.

Draw a picture. Well, cscw = —3 means that sinw = —1/3 and so cosw = —+/3/3. Therefore, cotw =
cosw/ sin w =

sinz  cosz o sin? @ + cos? z

LHS = ( ) =
cosz  sinz cos z sin @
1 1
= (——)? = 12(—)2% =sec? wosc? @
cos z sin @ cosz  sinm

= sec?2z(l +ecot?x) =sec? o +sec?zcot? x

= sec?x +esca.
cos? 6
LHS =sin6 +cotfcosf = sin6 4+ ——
sin 6
sin2 6 4 cos2 0 1
s M S = csc 0
sin 0 sin 0
sin
) ’ . cosx + tan @ +
ns L cosThtana(l tsing) o
1+ sina 1+ sina
cos? z 4 tanz cos @ + sin? x 14 sinz
— — = secx
cos (1 + sin x) cos (1 + sin x)
sin2 y 5 5 1
LHS = —— —sin?y = sin?y(—— — 1)
cos2 y cos2 y
= sin?ysec?y — 1) = sin? ytan? y
sin @ + cos x
—= = __sinz
LHS = = Cosz fenaw
cos
sinz 4 cosz  cosw
N sin x cosx + sin =
= cotx
S 1 1
LH . —
g coso SnZ $ 1 cosZ ¢
cos$  siné cos ¢ sin ¢
1
= T
cos ¢ sin ¢
=  cos¢sin¢
z sin? z
) 2 2 .2
LHS = sin +cos? = cos?x +sinz=1
2 x COS2 x
cos? @ +sin? x 1
LHS = —
cos2 xsin2z cos2 zsin?
1 1
T sin2z(1 —sin2x) sin2c — sindx
LHS = (sin? ¢ — cos? ¢)(sin? ¢ + cos®2 ) = (sin? ¢ — cos? $)(1)
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41.

42.
43.
44
45.
46.
47.
48.
49.

50.

cos? u 4 sin? u

sin2 u 5 5
LHS = (1+ ——)(1 —sin?u) = ( )(1 — sin? w)
COS2 u COS2 u
1
= (——)(cos?u) =1
COS2 u
cos(m/2 + 0) = cos(m/2) cos 0 — sin(r/2) sin 0 = — sin 6
sin(m + ) = sin T cosz + cos wsinw = — sin x
cos(3m/2 + 0) = cos(37/2) cos 6 — sin(37/2) sin 0 = sin 0
sin(m — x) = sin ™ cos T — cos 7 sinz = sin @
cos(m — x) = cosmcosz + sin Tsinw = — cos x
sin(37/2 + 0) = sin(37/2) cos 0 + cos(37/2) sin § = — cos 0
cos(3m/2 — 0) = cos(37/2) cos 0 + sin(37/2) sin 6 = — sin 0
Using No. (43) we see that
sin(m + x) —sinz
LHS = tan(m +a) = =
cos(m + x)  cosmcosx — sinwsin x
—sinz
= — = tanux
—cosz
Using Nos. (45) and (46) we get
sin(m — z) sin z
LHS = tan(r —2¢) = —o " —
cos(m —x) —cosz
= — tan x

APPENDIX D - Exercise Set 48

[N

NS

10.
11.
12.
13.

14.

512)

(—o00, 00).

All reals except + I, i%ﬂ, i%ﬂ, ... (these are the points where cost = 0.)
2> -2

|@| < 2. (You can also write this as —2 < © < 2.)

All reals except 0, %, 27, .... (these are the points where sinz = 0.)

4/5
(—o0, 00). Note that t is defined for all values of t.

z Z

|
wl
.»l,_

|| > 1. (That is, either x > 1 or @ < —1.)

02 < 1. (You can also write this as [0] < 1, or —1 < O < 1.)
The natural domain of f is —oo < A < oo.

v > 0.

22 < 1. (You can also write this as |z| < 1, or =1 < z < 1.)
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Special Exercise Set (p. 528)

1. The car’s final (metric) speed is

miles 1 hr 1 min km m m
—_ —_ 1.61 1000 — = 26.83 R
hr 60 min 60 sec miles km sec

Its acceleration is therefore 26.83/3.05 = 8.8m/sec2. Its velocity, v(t), is therefore given by the formula v(t) = 8.8t
(basic physics). Its linear distance, x(t), is therefore given by x(t) = 8.81:2/2 + vgt + g, where xg = 0, vg = 0 is its

initial velocity at t = 0. Since x(t) = 4.4t2, its distance after 3.05 seconds is x(3.05) = (4.4)(3.05)2 = 40.9 meters.
Since this exceeds 25 meters and the motion is necessarily a continuous function of time, the result follows.

2.T his is easy by an immediate application of the IVT because every number between 0 and 8611 must lie somewhere on the
graph of every curve that starts at sea level 0, lies on the mountain, and ends at the peak!

3.R ecall that any three points determine a unique plane. Let’s label the legs A, B, C, D in a clockwise fashion. In this case,
three of the table’s legs will rest on a plane, say, A, B, C, and the plane must be the floor itself,- the end of the fourth leg,
D, must then be above the floor (or else there wouldn’t be a problem). Now start rotating the table clockwise while always
keeping A, B, and C touching the floor at the same time. What can happen? Well, at some point one of the legs A, B, C,
may be the ones that are above the floor! In this case, it’s because you can think of leg D as having gone “into” the floor.
So, if D is above the floor at the beginning of the rotation and “below” the floor at some other point during the rotation there

must be some rotation that will make leg D lie on the floor exactly, and so the table balances! This is a neat application of
the IVT.

4. W e know from basic physics that temperature varies continuously at any point of the room. Let A be the point at which the
temperature is 36° and let B be a point where the temperature is 14°. Take the straight line joining A to B as our function
(we’ll assume there are no obstructions between A and B). Then this is a continuous curve in the room, i.e., the function
defined by the line is continuous. By the IVT there must be some point along this line where the temperature is 20° (because
20 is between 14 and 36). That does it. (There may be many such points but we only need one.)

5.H ad you traveled from TO to NY at 65 mph ALL the time (and non-stop) then it would have taken you roughly 7.5 hours
to get there. But it only took you 6 hours. So, of course you had to have gone faster than 65 mph and so broken the law. If
you had never reached 81 mph and had gone, say, at speeds of only up to 80 mph, then you couldn’t have reached either city
from the other in exactly 6 hours (in fact it would have taken you at least 491 /80 = 6.13 hours to get to your destination.

6.L et f be a continuous function on an interval [a, b] with f(a)f(b) < 0. Let’s assume that f(a) > 0 and f(b) < 0. Then
by the IVT if we are given a point f(a) < z < f(b) then there is a point ¢ between a and b such that f(c¢) = =z. Let
z = 0 be given (clearly z = 0 lies between f(a) and f(b)). Then by the IVT there must be a point ¢ such that f(c) = 0,
which is what what we wanted to show. (Bolzano’s theorem is useful in finding roots of equation by approxrimation.)



Exercise Set 49 (page 521)

1.C orrection: If A < 0, then — A < B implies —1/A > 1/B.

2. T his is false. To see this, let A =1 and B = 0.

3.C orrection: 0 < A < B implies A2 < B2,

4.C orrection: A > B > 0 implies 1/A < 1/B.

5.C orrection: A < B implies —A > —B.

6.C orrection: If A2 < B2 and B > 0, themn A < B.

7.T his statement is correct. There is nothing wrong!

8.( 0, ). (Note: To complete our argument we need sin x > 0, which ts guaranteed by 0 < = < w.)

9.1 t’s values are less than or equal to 6. Actually, its largest value occurs when @ = 2 in which case f(2) ~ 5.8186.
10.g1 s unbounded: This means that it can be greater than (resp. less than) any given number. The problem occurs at x = 0.
11.Fr om x > 1 we see that both * and © — 1 are positive. Hence we can square both sides of the inequality * > = — 1 to arrive

at 2 > (z— 1)2 . (Alternately, since both © and = — 1 are positive, a2 e o (z—1) = 2 _ 2z +1 = (= — l)2 i

12.Fr omp < 1 we see that 1 — p > 0. Since x > 1 (certainly this implies the positivity of =), we have xl—P > ll_p, or

+1 > 1. We can multiply

z1—P > 1. Now z1—P — m_(p_l) = 1 So the last inequality can be rewritten as P
=

zP—1"
both sides of this inequality by sin © because 1 < = < 7 guarantees that sin = is positive.

2
18. Since both z and =2 are > 0, we can apply the AG-inequality to get E% > VT z2 = Vz3. Since x + z2 >0,

2
we have = -+ :.l:2 => ﬁ_;:— So = + $2 > 3. Yes, we can square both sides since © > 0, and so both terms in the

inequality are greater than or equal to 0.

14. Yes. Under no further conditions on the symbol, since it is true that (O — 1)2 > 0 for any symbol, O. Ezpanding the
square and separating terms we get that o2 > 20 — 1.

15. Sincel — p = 0 and |z| = 1, we have |:1:|1_p > 11=-p — 1, or |z| |z|™P > 1, which gives |x| > |=|P. Taking

reciprocals, we get I-}‘:| < II1|p . (The last step is legitimate because both |x|P and |z| are positive.)

16. |v| < e. This is because we need 1 — 1}2/c2 > 0. Now solve this inequality for v.

17. If n = 2, the result is clear, because 2 < (1.5)2 < 3. So let’s assume that n > 2, now. We use (1.12) with the quantity
“1/n" inside the boxr symbol (or replacing the box by 1/n, if you like). We'll see that

(1+ 1 )“ PRI IS RETCESSY BT TG ERTC ) Te0] I

T T T

=14k + 2O (Fy 4 2D W) (L,

Now, we regroup all the terms in the above display in the following way .... Note that the following term is not apparent in
the display above, but it IS there! See Equation (1.12 ).

aeiyezd) o (a)(252) (252)
- o (252) (252)
- (25 (252).
-(-3)(-3).
A similar idea is used for the other terms. Okay, so using this rearrangement of terms we can rewrite (1 + -711-)" as
(+3)" =
St (m R (- F) (=R
Fa-H) (- 2) (- 2) (-2 A

{where there are (n + 1) terms in the right hand side). Now, notice that for every integer n > 2, each term of the form
“l — (something)/n"” is less than 1 and bigger than zero, because we're subtracting something positive from 1. So,




2x2x1=22

31=3x2x1 >
4l =4x3x2x1 > 2x2x2x1=23
5l=5x4x3x2x1 > 2x2x2x2x1=2%
n! > 2n—l

Now since we must “reverse the tnequality when we take reciprocals of positive numbers” (Table 1.2, Table 1.3) we get that

for every integer n > 2,
et 1 i
nl > 2 implies — T —
n! an—1

Combining this estimate with Equation (1.1) we get a new estimate, namely,

(t+3)" <141+ g +3++m o
12
e =T

Now, the sum on the right above is a finite geometric series and we know that. if n > 2,

1—(&)n+!

1+§]1_+_2]§.+...+§Jﬂ-= i <1_1L=2.
2 2

Now you can see that, when we combine this latest estimate with (1.2) we find
.L)" L T e S
(1+ % E st T
< 14+2=3

which is what we wanted to show. Okay, this looks a bit long, but we did include all the details, right? Eventually, you’ll be
able to skip many of the details and do them in your head, so to speak, and the whole thing will get shorter and faster, you’'ll

SEE,



Exercise Set 50, p. 535

y(z) = 3z — 2 is continuous on [0, 2] and y(0) = =2 < 0, y(2) =4 > 0.

y(z) = 22 — 1 is continuous, y(—2) =3 > 0 and y(0) = —1 < 0.

y(z) = 2z2 — 3z — 2 is continuous, y(0) = —2 < 0 and y(3) =7 > 0.
y(z) = sinz + cos z is continuous on [0, «|, y(0) =1 > 0 and y(w) = —1 < 0.

y(mw) = —w < 0. But y(0) = 0; so 0 is already a root. Try another point instead of 0, say %: y(%) = %-O—I—l =0 B 1

So there is a root in [% , ™| and hence in [0, w| (besides the root 0.)

(This is hard.) In the proof we use several times the following basic fact in differential calculus: if the derivative of a function
is identically zero, then this function must be a constant. Let’s begin by applying this fact to the function y’’: its derivative
= implies that y""Ir is a constant, say y'' = a. Let u = y' — az. Then u' = y" — a = 0 and hence u 1s a

2

constant, say u = b, that is, y’ —arx=0b. Let v =1y — %m

a constant, say v = c. Thus y — %mz —bzx=¢c, ory = %mz 4+ bz + c. We can finish the proof by setting A = %,

B =band: = ¢,

— bz. Then v =y’ — -g* -2z — b = 0 and hence v is

7. From the assumption that g% + y(m)4 + 2 = 0, we know that % erists on (a, b), and y(x) is continuous on [a, b).
Assume the contrary that there are two zeros in [a, b], say x1, xo. Using the Mean Value Theorem, we see that there exists

some c between x1 and x9 (a fortiori, between a and b, such that %% (c) = 0. Thus y(c)4 +2 = 0. Impossible! So there

cannot be two zeros for y(x).

8. Consider the function y(x) = x — sin «. By the Mean Value Theorem we see that, for each @ > 0, there exists some
c between 0 and = such that y(z) — y(0) = y'(c)(z — 0), or ¢ — sinz = y'(c)z; (notice that y(0) = 0.) Now
y"(m) = 1 — cos z, which is always > 0. So, from > 0 and y’(c) > 0 we see that y' (c)z > 0. Thus ¢ — sinz > 0,

orsinz < z.

9. Use Rolle’s Theorem on [0, ] applied to the function f(z) = sinz. Since f(0) = f(mx) = 0, we are guaranteed that

there ezists a point ¢ inside the interval (0, w) such that ek (¢) = cosc = 0. This point ¢ is the root we seek.

10. Note that (sin m)f =cosz < 1. For any = in [0, &], the function sin = satisfies all the conditions of the Mean Value
Theorem on [z, IQL] So, there exists c in (o, .121'.) such that

This stament is equivalent to the stated inequality, since sin(w/2) = 1.

11. (a) f(Z%:g(U) — Bl 3 and f"(c) =2¢+ 1 =3 giveici=1.

i 2
(b) g(liig(ﬂ) = 413 =i andg!(c) =2¢c =1 givec = 12-
12. Let x(t) denote the distance travelled (in meters) by the electron in time t. We assume that (0) = 0 and we are given

that (0.3 X 10_8) = 1. Now apply the MVT to the time interval [0, 0.3 X 10_8}. Then,

£(0.3 x 10~8) — z(0) ,
=ur{e);
0.3x 108 -0

for some time t = ¢ in between. But this means that the speed of the electron at this time t = c is W]m—g = 3.3x108
L3 X107

m/sec, which is greater than 2.19 X 108 m/sec, or the speed of light in that medium!





