Differential Calculus

by Angelo B. Mingarelli, Preliminary Edition, August, 1998.

CHAPTER 1: Complete Solutions


Exercise Set 1, p.7

  1. tex2html_wrap_inline222 .
  2. tex2html_wrap_inline224 .
  3. tex2html_wrap_inline226 .
  4. tex2html_wrap_inline228 .
  5. tex2html_wrap_inline230 .
  6. 2x+h.
  7. tex2html_wrap_inline234 .
  8. (a) tex2html_wrap_inline236 , (b) tex2html_wrap_inline238 .
  9. (a) f(0)=1, (b) f(0.142857)=0.857143, (c) tex2html_wrap_inline244 .
  10. f(F(x))=x, F(f(x))=|x|.

Exercise Set 2, p.16

  1. tex2html_wrap_inline250 .
  2. All reals except tex2html_wrap_inline252 , ...
  3. tex2html_wrap_inline254 .
  4. |x|<2. (You can also write this as -2<x<2.)
  5. All reals except tex2html_wrap_inline260
  6. tex2html_wrap_inline250 .
  7. tex2html_wrap_inline250 .
  8. tex2html_wrap_inline250 .
  9. tex2html_wrap_inline268 .
  10. tex2html_wrap_inline270
  11. |x|>1. (That is, either x>1 or x<-1.)
  12. tex2html_wrap_inline278 . (You can also write this as tex2html_wrap_inline280 , or tex2html_wrap_inline282 .)
  13. The natural domain of f is tex2html_wrap_inline250 .
  14. tex2html_wrap_inline288 .
  15. tex2html_wrap_inline290 . (You can also write this as |x|<1, or -1<x<1.)
  16. displaymath188

  17. displaymath189

  18. displaymath190

  19. displaymath191

  20. displaymath192

  21. displaymath193

  22. displaymath194

  23. displaymath195

  24. displaymath196

Exercise Set 3, p.26

  1. Because -2<0.
  2. Because -1/2 is negative.
  3. Correction: tex2html_wrap_inline330 implies tex2html_wrap_inline332 .
  4. Correction: A>B>0 implies 1/A<1/B.
  5. Correction: A<B implies -A>-B.
  6. Correction: If tex2html_wrap_inline332 and B>0, then A<B.
  7. This statement is correct. There is nothing wrong!
  8. tex2html_wrap_inline348 . (Note: To complete our argument we need tex2html_wrap_inline350 , which is guaranteed by tex2html_wrap_inline352 .)
  9. It can be bigger than 4, but not bigger than 6.
  10. g is unbounded: it can be greater than (resp. less than) any given number.
  11. From x>1 we see that both x and x-1 are positive. Hence we can square both sides of the ineqaulity x>x-1 to arrive at tex2html_wrap_inline368 . (Alternatively, since both x and x-1 are positive, tex2html_wrap_inline374 .)
  12. From tex2html_wrap_inline376 we see that tex2html_wrap_inline378 . Since tex2html_wrap_inline380 (certainly this implies the positivity of x), we have tex2html_wrap_inline384 , or tex2html_wrap_inline386 . Now tex2html_wrap_inline388 . So the last inequality can be rewritten as tex2html_wrap_inline390 . We can multiply both sides of this inequality by tex2html_wrap_inline392 because tex2html_wrap_inline394 guarantees that tex2html_wrap_inline392 is positive.
  13. Since both x and tex2html_wrap_inline400 are tex2html_wrap_inline402 , we can apply the AG-inequality to get tex2html_wrap_inline404 . Since tex2html_wrap_inline406 , we have tex2html_wrap_inline408 . So tex2html_wrap_inline410 .
  14. Yes. Under no further condition.
  15. Since tex2html_wrap_inline412 and tex2html_wrap_inline414 , we have tex2html_wrap_inline416 , or tex2html_wrap_inline418 , which gives tex2html_wrap_inline420 . Taking reciprocals, we get tex2html_wrap_inline422 . (The last step is legitimate because both tex2html_wrap_inline424 and |x| are positive.)
  16. |v|<c.

Chapter Exercises, p. 28

  1. tex2html_wrap_inline430 .
  2. tex2html_wrap_inline432 .
  3. tex2html_wrap_inline434 .
  4. tex2html_wrap_inline436 .
  5. From tex2html_wrap_inline438 we see that x must be positive: x>0. So we can rewrite it as 3>6x, which gives tex2html_wrap_inline446 . Thus the solution is tex2html_wrap_inline448 .
  6. tex2html_wrap_inline450 .
  7. tex2html_wrap_inline452 .
  8. tex2html_wrap_inline454 . In other words, either tex2html_wrap_inline456 or tex2html_wrap_inline458 .
  9. tex2html_wrap_inline460 . That is, tex2html_wrap_inline462 .
  10. tex2html_wrap_inline464 . That is, x can be any real number.
  11. tex2html_wrap_inline468 . (Note: For general p, tex2html_wrap_inline472 is defined only for z>0.)
  12. tex2html_wrap_inline476 . Or tex2html_wrap_inline478 .
  13. displaymath197

  14. displaymath198

  15. displaymath199

  16. displaymath200

  17. displaymath201

  18. displaymath202

  19. displaymath203

  20. tex2html_wrap_inline500 for all x. (Note that tex2html_wrap_inline504 is always tex2html_wrap_inline402 .)
  21. displaymath204

  22. tex2html_wrap_inline510 for all x.
  23. From tex2html_wrap_inline514 we have tex2html_wrap_inline378 . So tex2html_wrap_inline518 gives tex2html_wrap_inline520 . Now tex2html_wrap_inline388 . Thus tex2html_wrap_inline390 . On the other hand, from tex2html_wrap_inline526 we have tex2html_wrap_inline528 . So we can multiply tex2html_wrap_inline390 throughout by tex2html_wrap_inline532 to arrive at tex2html_wrap_inline534 .
  24. 2, 2.25, 2.370370, 2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 2.58117, 2.59374.
  25. From tex2html_wrap_inline556 we have tex2html_wrap_inline558 and tex2html_wrap_inline528 . Thus we may apply the AG-inequality to get tex2html_wrap_inline562 . Multiplying both sides by tex2html_wrap_inline564 , we obtain tex2html_wrap_inline566 . Using tex2html_wrap_inline568 and tex2html_wrap_inline570 we will get the required inequality.


Angelo Mingarelli
Mon Sep 21 20:44:12 EDT 1998