1. Evaluate the definite integral of the function f(x) = eCubeRoot(x) x-2/3 over the x-interval ranging from 1 to 8.
a) None of these b) e2 - e c) 3( e2 - e) d) 3e2
2. Evaluate the indefinite integral of the function cos(2t)/sqrt(1 + sin(2t)).
a) ln|1 + sin(2t)| + C b) sqrt(1 + sin(2t)) c) sqrt(1 + cos(2t))/2 d) sqrt(1+ sin(2t)) + C
3. Evaluate the indefinite integral of the function ln(2 sqrt(t))/t.
a) ln(2t) + C b) ln(2sqrt(t)) + C c) ln(2 sqrt(t))2/2 + C d) None of these
4. Use Simpson's Rule with n = 4 in order to approximate the value of the definite integral of the function e1/x over the interval [1,2] to six decimal places.
a) 2.020651 b) 2.017234 c) 2.032147 d) None of these
5. Evaluate the derivative of the function defined by the integral of e-t2 over the variable range from sqrt(x) to sin(x).
a) e-sin2(x) - e-x + C b) e-cos2(x) sin(x) - e-x/(2 sqrt(x)) c) e-sin2(x) cos(x) - e-x/(2 sqrt(x)) d) 2 (e-sin2(x) - e-x) sqrt(x)
6.Evaluate the definite integral of the function tan(u) between the limits 0 and Pi/4.
a) ln(2) b) ln(2) / 2 c) ln(2) + C d) None of these
For answers click the adjoining box: 1. c ...Let u = x1/3... 2. d ...Let u = 1 + sin(2t) ... 3. c ...Let u = ln(2 sqrt(x)) ... 4. a ...Use Simpson's Rule 5. c ...Use Leibnitz's Rule 6. b ...Let v = cos(u) ...