Carleton University – School of Mathematics and Statistics STAT 2509 – Test 2 – **SOLUTION**

1. [22.5 marks]

[3.5] (a)
$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$$

$$H_a: \text{ at least one of the } \beta' s \neq 0$$
[1]

test-statistics: F = 26.510

<u>R.R.</u> we reject H_0 if *p-value* < α [1] (or if $F > F_{\alpha:(k,p-(k+1))} = F_{0.10:(7.12)} = 2.28$)

Since *p-value* < 0.001 < 0.10 [1/2] (or F = 26.51 > 2.28), we do reject H_0 [1/2] and conclude that at 10% level of significance we have enough evidence to conclude that the model is useful, i.e. it can be used. [1/2]

[6] (b)
$$H_0: \beta_5 = \beta_6 = \beta_7 = 0$$
, $H_a: at least one \beta \neq 0$

 $v = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_2 + \beta_4 x_4 + \beta_5 x_1 x_4 + \beta_6 x_2 x_4 + \beta_7 x_2 x_4 + \varepsilon$ Full model:

Reduced Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$ [1/2] if correct reduced model

$$= \frac{(16522.327 - 12873.373) / (15 - 12)}{12873.373 / 12} = \frac{3648.954 / 3}{12873.373 / 12} = \frac{1216.318}{1072.781} = \frac{1.133798977}{1072.781}$$
 [1/2]

[1/2] (1/2 mark for each correct d.f.)

$$F_{part} = \frac{[SSR_f - SSR_r]/[df_{SSR_f} - df_{SSR_r}]}{MSE_f} = \frac{(199077.177 - 195428.223]/(7 - 4)}{12873.373/12}$$
$$= \frac{3648.954/3}{12873.373/12} = \frac{1216.318}{1072.781} = \frac{1.133798977}{12873.373/12}$$

R.R. we reject H_0 if F_{drop} (or F_{part}) > $F_{\alpha:(3,n-8)} = F_{0.10:(3,12)} = 2.61$ [1]

Since F_{drop} (or F_{part}) = 1.3379 \Rightarrow 2.61 [1/2], we <u>do not reject</u> H_0 [1/2] and conclude that at 10% level of significance there is not enough evidence that the interaction terms are needed. [1/2]

[12] (c) Model we are using is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$

•
$$x_1$$
 (undergraduate degree GPA): $H_0: \beta_1 = 0$ $\alpha = 0.10$ $A_0: \beta_2 \neq 0$ [1]

t-test: t = 9.736

R.R.: we reject *Ho* if p-value < α [1/2] (or if $|t| > t_{\alpha/2:n-(k+1)} = t_{0.05:15} = 1.753$)

Since p-value < 0.001 < 0.10 [1/2] (or t = 9.736 > 1.753), we <u>reject</u> H_0 [1/2] and conclude that 'undergraduate degree GPA' affects the 'score on the entrance test'. [1/2]

•
$$x_2$$
 (age): $H_0: \beta_2 = 0$ $\alpha = 0.10$ $A_a: \beta_2 \neq 0$ [1]

<u>t-test:</u> t = 0.210

R.R.: we reject *Ho* if p-value < α [1/2] (or if $|t| > t_{\alpha/2;n-(k+1)} = t_{0.05;15} = 1.753$)

Since p-value = 0.836 > 0.10 [1/2] (or t = 0.210 \Rightarrow 1.753), we <u>do not reject</u> H_0 [1/2] and conclude that 'age' does not affect the 'score on the entrance test'. [1/2]

•
$$x_3$$
 (years of volunteer experience in a health field): $H_0: \beta_3 = 0$ $\alpha = 0.10$ $A_a: \beta_3 \neq 0$ [1]

<u>t-test:</u> t = 0.496

R.R.: we reject *Ho* if p-value < α [1/2] (or if $|t| > t_{\alpha/2;n-(k+1)} = t_{0.05;15} = 1.753$)

Since p-value = 0.627 > 0.10 [1/2] (or t = 0.496 > 1.753), we <u>do not reject</u> H_0 [1/2] and conclude that 'years of volunteering' does not affect the 'score on the entrance test'. [1/2]

•
$$x_4$$
 (undergraduate degree in health field): $H_0: \beta_4 = 0$ $\alpha = 0.10$ $A_a: \beta_4 \neq 0$ [1]

<u>t-test</u>: t = 4.339

R.R.: we reject *Ho* if p-value < α [1/2] (or if $|t| > t_{\alpha/2;n-(k+1)} = t_{0.05;15} = 1.753$)

Since p-value < 0.001 < 0.10 [1/2] (or t = 4.339 > 1.753), we $\underline{\text{reject}} H_0$ [1/2] and conclude that 'undergraduate degree in health field' affects the 'score on the entrance test'. [1/2]

[1] (d) the best model is: $\underline{y = \beta_0 + \beta_1 x_1 + \beta_4 x_4 + \varepsilon}$ [1]

2. [4.5 marks] Refers to Question 1.

Independent variables in the model	SSR	SSE	d.f.	_{SSE} MSE	R^2	Ср
no X's						174.422
X ₁	173136.755	38813.795	18	2156.322	0.8170	19.2376
X_2	35749.465	176201.085	18	9788.949	0.1690	143.9664
X ₃	790.594	211159.956	18	11731.109	0.0040	175.7043
X_4	69031.250	142919.300	18	7939.961	0.3260	113.7511
X_1, X_2	173311.462	38639.088	17	2272.888	0.8180	21.07899
X ₁ , X ₃	174492.432	37458.118	17	2203.419	0.8230	20.00683
X_1, X_4	195114.282	16836.268	17	990.369	0.9210	1.285022
X_2, X_3	36856.436	175094.114	17	10299.654	0.1740	144.9614
X_2, X_4	91023.541	120927.009	17	7113.353	0.4290	95.78514
X_3, X_4	69060.555	142889.995	17	8405.294	0.3260	115.7245
X_1, X_2, X_3	174687.460	37263.090	16	2328.943	0.8240	21.82977
X_1, X_2, X_4	195157.003	16793.547	16	1049.597	0.9210	3.246237
X_{1}, X_{3}, X_{4}	195379.568	16570.982	16	1035.686	0.9220	3.044178
X_2, X_3, X_4	91026.972	120923.578	16	7557.724	0.4290	97.78202
X_1, X_2, X_3, X_4	195428.223	16522.327	15	1101.488	0.9220	5.000006

[1] (a) Using $\max R^2$, the set [1/2] $\{X_1, X_3, X_4\}$ (or $\{X_1, X_2, X_4\}$) is selected as the best one. But because the set $\{X_1, X_4\}$ has R^2 very close to 0.9220 (0.9210) and only has 2 variables, we could also select the model with X1 and X4. (Please note that the full model gives the highest R^2 , however we prefer the second highest [1/2] one, other than the full model).

Note: we would accept either of the 2 models as the best model

[1] (b)

The best model is determined by the set [1/2] $\{X_1, X_4\}$ (since the *min MSE* and *max R*² should give the same answer). [1/2]

- [2.5] (c) Determine the subset of variables that is selected as best using **Mallows** C_p **criterion**. Give reason for your answer.
- We will select as the best-fitting model, the one with the smallest $|C_p p|$.
- Hence,

Independent variables	p	Ср	$ C_p - p $	
in the model			1 - 1	
no X's	1	174.422	173.422	
X_1	2	19.2376	17.2376	[1] mark if
X_2	2	143.9664	140.9664	
<i>X</i> ₃	2	175.7043	173.7043	$\left C_p - p \right $
X_4	2	113.7511	111.7511	or graph were used
X_1, X_2	3	21.07899	18.07899	
X_1, X_3	3	20.00683	17.00683	\
X_1, X_4	3	1.285022	1.714978	
X_2, X_3	3	144.9614	141.9614	
X_2, X_4	3	95.78514	92.78514	or using
X_3, X_4	3	115.7245	112.7245	graph
X_1, X_2, X_3	4	21.82977	17.82977	\
X_{1}, X_{2}, X_{4}	4	3.246237	<mark>0.753763</mark>	\
X_1, X_3, X_4	4	3.044178	0.955822	
X_2, X_3, X_4	4	97.78202	93.78202	ſ
X_1, X_2, X_3, X_4	5	5.000006	0.000006	И

The best model is determined by the set $[1/2]{X_1, X_2, X_4}$ (since the *Cp is closest to* p [1/2]), where p =4 [1/2] (other than a full model).

3. [2 marks]

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \mathcal{E},$$
 [2] where
$$x_1 = \text{distance between locations}, \quad x_2 = \begin{cases} 1, & \text{if the vehicle is a truck} \\ 0, & \text{if the vehicle is a car} \end{cases}$$

if truck:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 (1) + \beta_3 x_1 (1) + \varepsilon$$
,
or $y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_1 + \varepsilon$ [1/2]

$$\begin{split} \underline{\textbf{if car:}}_{-} \quad y &= \beta_0 + \beta_1 x_1 + \beta_2(0) + \ \beta_3 x_1(0) + \varepsilon \ , \\ \text{or} \quad y &= \beta_0 + \beta_1 x_1 + \varepsilon \quad \textbf{[1/2]} \end{split}$$

 $\beta_2 = (\beta_0 + \beta_2) - \beta_0$ = difference in y-intercepts between the lines for truck and car models [1/2] $\beta_3 = (\beta_1 + \beta_3) - \beta_1$ = difference in slopes of the lines for truck and car models [1/2]

4. [1 mark]

MSR will be an unbiased estimator of σ^2 , if $E(MSR)=\sigma^2$, i.e. if $H_0:\beta_1=\beta_2=0$ [1].