STAT 2509 A Assignment #5

SOLUTION

// 48

1. [31 marks]

[14.5] (a)

[1/2]
$$TSS = \sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}^2 - \frac{\left(\sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}\right)^2}{bk} = 1006 - \frac{(150)^2}{24} = 1006 - 937.5 = 68.5$$
 [1/2]

[1/2]
$$SST_r = \sum_{i=1}^{3} \frac{T_i^2}{b} - \frac{\left(\sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}\right)^2}{bk} = \left[\frac{(50)^2}{8} + \frac{(60)^2}{8} + \frac{(40)^2}{8}\right] - \frac{(150)^2}{24} = 962.5 - 937.5 = 25$$
 [1/2]

[1/2]
$$SSB = \sum_{j=1}^{8} \frac{B_j^2}{k} - \frac{\left(\sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}\right)^2}{bk} =$$

$$= \left[\frac{(14)^2}{3} + \frac{(22)^2}{3} + \frac{(18)^2}{3} + \frac{(19)^2}{3} + \frac{(23)^2}{3} + \frac{(17)^2}{3} + \frac{(18)^2}{3} + \frac{(19)^2}{3}\right] - \frac{(150)^2}{24} = 956 - 937.5 = \underline{18.5}$$
[1/2]

[1/2]
$$SSE = TSS - SST_r - SSB = 25$$
 [1/2]

[1/2]
$$MST_r = \frac{SST_r}{k-1} = \frac{25}{2} = \underline{12.5}$$
 [1/2]

[1/2]
$$MSB = \frac{SSB}{b-1} = \frac{18.5}{7} = \underline{2.642857143}$$
 [1/2]

[1/2]
$$MSE = \frac{SSE}{(b-1)(k-1)} = \frac{25}{14} = \underline{1.785714286}$$
 [1/2]

[1/2]
$$F_T = \frac{MST_r}{MSE} = \underline{6.999999999}$$
 [1/2], [1/2] $F_B = \frac{MSB}{MSE} = \underline{1.48}$ [1/2]

Source	d.f.	ss	MS	F
Treatments	2	25	12.5	6.99999999
Blocks	7	18.5	2.642857143	1.48
Error	14	25	1.785714286	
Total	23	68.5		
	[1/2]	[1/2]	[1/2]	[1/2]

(1/2 mark for each column, if values are entered correctly)

$$H_0: \mu_{\rm I}=\mu_{\rm II}=\mu_{\rm III}$$
 ; [1] $\alpha=0.01$ $H_a:$ at least one of the μ 's \neq

test-statistics:
$$F_T = \frac{MST_r}{MSE} = \underline{6.999}$$

R.R. we reject
$$H_0$$
 if $F_T > F_{\alpha(k-1,(b-1)(k-1))} = F_{0.01(2,14)} = 6.51$ [1]

Since F_T = 6.999 > 6.51 [1/2], we reject H_0 [1/2] and conclude that at 1% level of significance there is an evidence to indicate that mean toxic effects of the 3 chemicals differ. [1/2]

[3.5] (b)

$$H_{0}: \beta_{1} = \beta_{2} = \beta_{3} = \beta_{4} = \beta_{5} = \beta_{6} = \beta_{7} = \beta_{8}$$
 ; [1] $\alpha = 0.0$ $H_{a}: \text{ at least one of the } \beta's \neq$

test-statistics:
$$F_B = \frac{MSB}{MSF} = \underline{1.48}$$

R.R. we reject
$$H_0$$
 if $F_B > F_{\alpha(b-1,(b-1)(k-1))} = F_{0.01(7,14)} = 4.28$ [1]

Since F_B = 1.48 \neq 4.28 [1/2], we do not reject H_0 [1/2] and conclude that at 1% level of significance there is not enough evidence to indicate that there are differences between rats (or differences between blocks). [1/2]

[2] (c) Which chemicals differ? Tukey's h.s.d.

1) Calculate
$$\binom{k}{2} = \binom{3}{2} = 3$$
 pairs of $|\overline{y}_i - \overline{y}_j|$ for $H_0: \mu_i = \mu_j$ vs $H_a: \mu_i \neq \mu_j$, for $i, j = 1, 2, 3$

h.s.d. = [1/2]
$$q_{\alpha}(k,(b-1)(k-1))\sqrt{\frac{MSE}{b}} = q_{0.01}(3,14)\sqrt{\frac{1.785714286}{8}} = \frac{(4.89)(0.472455591)}{[1/2]} = \frac{2.310307}{[1/2]}$$

$$\overline{y}_{II} = \frac{T_1}{b} = \frac{50}{8} = 6.25$$
, $\overline{y}_{III} = \frac{T_2}{b} = \frac{60}{8} = 7.5$, $\overline{y}_{III} = \frac{T_3}{b} = \frac{40}{8} = 5$

2)
$$|\overline{y}_{I} - \overline{y}_{II}| = 1.25 \neq 2.310307 \Rightarrow \mu_{I} = \mu_{II}$$

 $|\overline{y}_{I} - \overline{y}_{III}| = 1.25 \neq 2.310307 \Rightarrow \mu_{I} = \mu_{III}$
 $|\overline{y}_{II} - \overline{y}_{III}| = 2.5 > 2.310307 \Rightarrow \mu_{II} \neq \mu_{III}$ [1/2]

i.e. there are differences between chemicals (II & III).

[8] (d) Non-parametric Analysis (Friedman-Rank test)

Assume: 1) R.B.D. (given) [1/2]

- 2) in each chemical-rat combination we have populations with approximately the same shape [1/2] and same spread [1/2]
- 3) no interactions [1/2] between chemicals and rats

First we need to rank the observations from smallest to the largest within each block:

Rat Number

Chemical	1	2	3	4	5	6	7	8	_
1	6 (3)	9 (2.5)	6 (2)	5 (1)	7 (1)	5 (1.5)	6 (2)	6 (1.5)	$T_{R_1} = 14.5$ [1/2]
II	5 (2)	9 (2.5)	9 (3)	8 (3)	8 (2.5)	7 (3)	7 (3)	7 (3)	$T_{R_2} = 22$ [1/2]
III	3 (1)	4 (1)	3 (1)	6 (2)	8 (2.5)	5 (1.5)	5 (1)	6 (1.5)	$T_{R_1} = 14.5$ [1/2] $T_{R_2} = 22$ [1/2] $T_{R_3} = 11.5$ [1/2]

Check:
$$\frac{bk(k+1)}{2} = \frac{24(4)}{2} = 48$$

 $\sum_{i=1}^{3} T_{R_i} = 14.5 + 22 + 11.5 = 48$

test-statistics:

[1/2]

$$F_R = \frac{12}{bk(k+1)} \left[\sum_{i=1}^{3} T_{R_i}^2 \right] - 3b(k+1) = \frac{12}{24(4)} \left[\left(14.5 \right)^2 + \left(22 \right)^2 + \left(11.5 \right)^2 \right] - 3(8)(4) =$$

$$= 0.125(826.5) - 96 = 103.3125 - 96 = 7.3125$$
 [1/2]

R.R. we reject
$$H_0$$
 if $F_R > \chi^2_{\alpha;(k-1)} = \chi^2_{0.01;(2)} = 9.210$ [1]

Since F_R = 7.3125 \Rightarrow 9.210 [1/2], we do not reject H_0 [1/2] and conclude that at 1% level of significance there is not enough evidence to say that the medians of 3 different chemicals differ. (i.e. there are no differences between treatments) [1/2]

No need for follow-up analysis.

[**3**] (e) [1]

Tests of Between-Subjects Effects

Dependent Variable: toxicity

•	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	43.500 ^a	9	4.833	2.707	.046
Intercept	937.500	1	937.500	525.000	<.001
chemical	<mark>25.000</mark>	2	<mark>12.500</mark>	<mark>7.000</mark>	.008
rat	<mark>18.500</mark>	7	<mark>2.643</mark>	<mark>1.480</mark>	.252
Error	<mark>25.000</mark>	<mark>14</mark>	<mark>1.786</mark>		
Total	1006.000	24			
Corrected Total	<mark>68.500</mark>	<mark>23</mark>			

a. R Squared = .635 (Adjusted R Squared = .400)

Post Hoc Tests [1]

Multiple Comparisons

Dependent Variable: toxicity

Tukey HSD

	Mean			99% Confid	ence Interval	
(J) chemical	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Chemical II	-1.25	.668	.184	-3.56	1.06	
Chemical III	1.25	.668	.184	-1.06	3.56	
Chemical I	1.25	.668	.184	-1.06	3.56	
Chemical III	2.50*	.668	.006	.19	4.81	\sum_{n}
Chemical I	-1.25	.668	.184	-3.56	1.06	MIJTU
Chemical II	-2.50	.668	.006	-4.81	19) '/-
C	hemical III hemical I	hemical III 2.50* hemical I -1.25	hemical III 2.50* .668 hemical I -1.25 .668	hemical III 2.50* .668 .006 hemical I -1.25 .668 .184	hemical III 2.50* .668 .006 .19 hemical I -1.25 .668 .184 -3.56	hemical III 2.50* .668 .006 .19 4.81 hemical I -1.25 .668 .184 -3.56 1.06

Based on observed means.

The error term is Mean Square(Error) = 1.786.

or (either the plot on top or on the next page)

^{*.} The mean difference is significant at the .01 level.

toxicity

Tukey Ba,b

		Subs	et
chemical	N	1	2
Chemical III	8	5.00	
Chemical I	8	6.25	6.25
Chemical II	8		7.50

My + Min

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 1.786.

- a. Uses Harmonic Mean Sample Size =
- b. Alpha = .01.

Friedman Test

Ranks

		8 . 10	= 14,4	3 = 17.
Rank	To	SIFO		22 11
1.81	11<1	2 75	×85	- 10 m
2.75	I In	ر مر مر		11.52
1.44	1 55	Lu L	*8 =	1.0
	1.81	1.81 2.75 1.44	$ \frac{Rank}{1.81} $ $ \frac{2.75}{1.44} $ $ \frac{Rank}{1.81} $ $ \frac{1.81}{1.82} $ $ \frac{1.81 \times 8}{1.82} $ $ \frac{1.81 \times 8}{1.82} $ $ \frac{1.81 \times 8}{1.83} $ $ \frac{1.81 \times 8}{1.83} $	1.81 2.75 144 1 TR= 2.75 x 8 = 1

Test Statistics^a

N	8			- 4 2125
Chi-Square	8.357	26	202 - x	(To = +, 5/2)
df	2	1	Kappox. to	
Asymp, Sig.	.015		100001	

a. Friedman Test

2. [8 marks]

a = 2, b = 3, r = 2 and ab = 6, Factor A = Foreman, Factor B = House Design

$$A_1 = R_1 = \sum y_{1jk} = 82.8, \quad A_2 = R_2 = \sum y_{2jk} = 70.4$$

$$B_1 = C_1 = \sum y_{i1k} = 41.8, \quad B_2 = C_2 = \sum y_{i2k} = 47.5, \quad B_3 = C_3 = \sum y_{i3k} = 63.9$$

$$(AB)_{11} = \sum y_{11k} = 21.3, \quad (AB)_{12} = \sum y_{12k} = 23.9, \quad (AB)_{13} = \sum y_{13k} = 37.6,$$

$$(AB)_{21} = \sum y_{21k} = 20.5, \quad (AB)_{22} = \sum y_{22k} = 23.6, \quad (AB)_{23} = \sum y_{23k} = 26.3$$

$$G.T. = R_1 + R_2 = 82.8 + 70.4 = 153.2 \quad (= C_1 + C_2 + C_3)$$

[5] (a)

ANOVA [1]

Tests of Between-Subjects Effects Dependent Variable: Profits

•	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	97.927 ^a	5	19.585	50.219	<.001
Intercept	1955.853	1	1955.853	5015.009	<.001
Foreman	<mark>12.813</mark>	1	<mark>12.813</mark>	<mark>32.855</mark>	.001
HouseDesign	65.822	2	32.911	84.387	<.001
Foreman * HouseDesign	19.292	2	9.646	24.733	.001
Error	2.340	6	.390		
Total	2056.120	12			
Corrected Total	100.267	11			

a. R Squared = .977 (Adjusted R Squared = .957)

$$H_0: (\alpha\beta)_{ij} = 0$$
 $\forall ij$ (or Foreman and House Design do not interact), $\alpha = 0.05$ $M_a: \text{at least one } (\alpha\beta)_{ij} \neq 0$ (they interact)

test-statistic:
$$F_{AB} = \frac{MS(AB)}{MSE} = \frac{24.733}{MSE}$$
 [1/2] (or p-value = 0.001 [1/2])

R.R. we reject
$$H_0$$
 if $F_{AB} > F_{\alpha;((a-1)(b-1),ab(r-1))} = F_{0.05;(2,6)} = 5.14$ [1] (or if p-value < $\alpha = 0.05$)

-Since F_{AB} = 24.733 > 5.14 [1/2] (or since p-value = 0.001 < 0.05), <u>we reject</u> H_0 [1/2] and conclude that at 5% level of sign., we have an evidence that there is an interaction between Foreman and the House Design. [1/2]

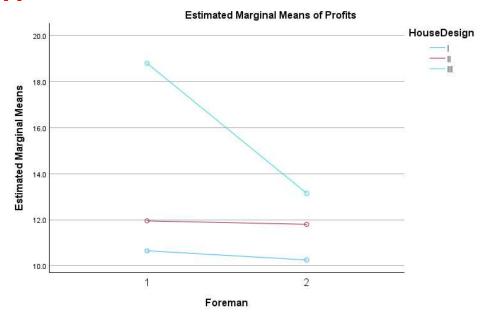
[1] (b)

[1/2] No, since we have significant interaction effect [1/2], we do not proceed with the tests for the main effect.

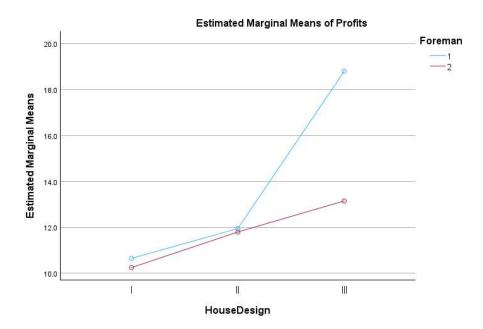
[2] (c)

Interaction plot (see below) suggests that there is a (mild) interaction present[1/2], which confirms [1/2] the results in part a).

[1]



or (either one of the plots is fine)



3. [9 marks]

*H*₀:
$$p_1 = p_2 = p_3 = \frac{1}{3}$$
, [1]; $\alpha = 0.05$
*H*_a: at least one p_i is different

- Assumptions: 1) a random sample [1/2] taken from
 - 2) populations distributed with Multinomial distribution [1/2]
 - 3) *n* is large enough for χ^2 to apply [1/2]

$$E_1 = E_2 = E_3 = np_i = 300(\frac{1}{3}) = 100$$
 [1.5] 1/2 mark for each E_i

$$\underline{\text{test-statistics:}} \quad \textbf{[1/2]} \quad \chi^2 = \sum_{i=1}^k \frac{\left(O_i - E_i\right)^2}{E_i} = \textbf{[1/2]} \frac{(85 - 100)^2}{100} + \frac{(93 - 100)^2}{100} + \frac{(122 - 100)^2}{100} = \underline{7.58} \quad \textbf{[1/2]}$$

R.R.: we reject
$$H_0$$
 if $\chi^2 > \chi^2_{\alpha;(k-1)} = \chi^2_{0.05,(2)} = 5.99147$ [1]

Since 7.58 > 5.99147[1/2], we reject H_0 [1/2] and conclude that at α = 0.05, there is enough evidence to say that the three coffee types don't sell equally. [1/2]

Coffee_Type [1/2]

	Observed N	Expected N	Residual
Latte	85	100.0	-15.0
Espresso	93	100.0	-7.0
Cappuccino	122	100.0	22.0
Total	300		

Test Statistics [1/2]

	Coffee_Type
Chi-Square	7.580°
df	2
Asymp. Sig.	<mark>.023</mark>

a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 100.0.