STAT 2509 A Assignment #4

SOLUTION

// 65

1. [19 marks]

[**3**] (a)

[4.5] (b)

[1]

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	74.830	5	14.966	110.496	<.001 ^b
	Residual	1.219	9	.135		
	Total	76.049	14			

- a. Dependent Variable: sales
- b. Predictors: (Constant), x1x3, adds expenditure, x2, x3, x1x2

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$$

$$H_a: \text{ at least one of the } \beta' s \neq 0$$
[1]

test-statistics: F = 110.496

<u>R.R.</u> we reject H_0 if *p-value* < α [1] (or if $F > F_{\alpha;(k,n-(k+1))} = F_{0.05;(5,9)} = 3.48$)

Since *p-value* < 0.001 < 0.05 **[1/2]** (or F = 110.496 > 3.48), <u>we reject</u> H_0 **[1/2]** and conclude that at 5% level of significance we have enough evidence to conclude that the full model is useful, i.e. it can be used. **[1/2]**

[7] (c)

$$H_0: \beta_4 = \beta_5 = 0$$
 , [1] $\alpha = 0.05$ $H_a:$ at least one of β 's $\neq 0$

Full model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \varepsilon$$

Reduced Model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

ANOVA for the full model (above in part b)) produced following: SSR_f = 74.830, df = 5 $SSE_f = 1.219$, df = 9

ANOVA for the reduced model is below:

ANOVA ^a	[1]
Model	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	<mark>73.784</mark>	3	24.595	119.445	<.001 ^b
	Residual	<mark>2.265</mark>	<mark>11</mark>	.206		
	Total	76.049	14			

a. Dependent Variable: sales

b. Predictors: (Constant), x3, adds expenditure, x2

[1/2] if correct SPSS values were used in the calculation of test statistics

test-statistics: [1/2]
$$F_{drop} = \frac{[SSE_r - SSE_f]/[df_{SSE_r} - df_{SSE_f}]}{[SSE_r - SSE_f]/[n - 4 - (n - 6)]} = \frac{[SSE_r - SSE_f]/[n - 4 - (n - 6)]}{[SSE_r - SSE_f]/[n - 4 - (n - 6)]}$$

test-statistics: [1/2]
$$F_{drop} = \frac{[SSE_r - SSE_f]/[df_{SSE_r} - df_{SSE_f}]}{MSE_f} = \frac{[SSE_r - SSE_f]/[n - 4 - (n - 6)]}{SSE_f/n - 6}$$
$$= \frac{(2.265 - 1.219)/(11 - 9)}{1.219/9} = \frac{1.046/2}{1.219/9} = \frac{0.523}{0.13544} = \frac{3.8615}{1.219}$$
 [1/2]

(1/2 mark for each correct d.f.)

or equivalently
$$F_{part} = \frac{[SSR_f - SSR_r]/[df_{SSR_f} - df_{SSR_r}]}{MSE_f} = \frac{(74.830 - 73.784]/(5 - 3)}{1.219/9}$$
$$= \frac{1.046/2}{1.219/9} = \frac{0.523}{0.13544} = \underline{\frac{3.8615}{1.219/9}}$$

R.R. we reject
$$H_0$$
 if F_{drop} (or F_{part}) > $F_{\alpha;(2,n-6)} = F_{0.05;(2.9)} = 4.26$ [1]

Since F_{drop} (or F_{part}) = 3.8615 \Rightarrow 4.26 [1/2], we <u>do not reject</u> H_0 [1/2] and conclude that at 5% level of significance there is evidence that the interaction terms are not needed. [1/2]

[4.5] (d)

Coefficients^a [1] if they used reduced model for the coefficients

		Unstandardized	l Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
	(Constant)	4.610	.321		14.367	<.001
	adds_expenditure	.870	.083	.546	<mark>10.501</mark>	<.00 <mark>1</mark>
	x2	2.240	.287	.469	7.805	<.001
	x3	4.520	.287	.946	15.750	<.001

a. Dependent Variable: sales

$$H_0: \beta_1 = 0$$
 $\alpha = 0.05 \Rightarrow \alpha/2 = 0.025$ $A_a: \beta_1 \neq 0$ [1]

test-statistics: t = 10.501

R.R. we reject
$$H_0$$
 if p-value < α [1] (or if $|t| > t_{\alpha/2;n-(k+1)} = t_{0.025;11} = 2.201$)

Since *p*-value < 0.001 < 0.05 [1/2] (or t = 10.501 > 2.201), <u>we reject</u> H_0 [1/2] and conclude that at 5% level of significance we have enough evidence to conclude that the 'advertising expenditure' is useful in predicting 'total weekly sales'. [1/2]

<u>NOTE:</u> students can also use F_{part} (or F_{drop}) with the full model from part c) and the reduced model without x1.

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	<mark>51.077</mark>	2	25.539	12.272	.001 ^b
	Residual	<mark>24.972</mark>	<mark>12</mark>	2.081		
	Total	76.049	14			
			<u> </u>	<u> </u>	<u> </u>	

a. Dependent Variable: sales

b. Predictors: (Constant), x3, x2

[1/2] if correct SPSS values were used in the calculation of test statistics

[1/2] if correct d.f. were used in the calculation of test statistics

[1/2]
$$F_{part} = \frac{[SSR_f - SSR_r]/[df_{SSR_f} - df_{SSR_r}]}{MSE_f} = \frac{(73.784 - 51.077]/(3 - 2)}{2.265/11} = \frac{22.707/1}{2.265/11} = \frac{22.707}{0.205909} = \frac{110.2768}{110}$$

R.R. we reject
$$H_0$$
 if F_{drop} (or F_{part}) > $F_{\alpha;(1,11)} = F_{0.05;(1,11)} = 4.84$ [1]

Since F_{part} = 110.2768 > 4.84 **[1/2]**, <u>we reject</u> H_0 **[1/2]** and conclude that at 5% level of significance we have enough evidence to conclude that the 'advertising expenditure' is useful in predicting 'total weekly sales'. **[1/2]**

2. [6 marks]

[2] (a)

Variables Entered/Removed^a [1].

1	Model	Variables Entered	Variables Removed	Method
1	→ 1	х3		Forward (Criterion: Probability-of-F-to-enter <= .050)
2-	-) 2	adds_expenditure		Forward (Criterion: Probability-of-F-to-enter <= .050)
ъ3	→ ³	x2		Forward (Criterion: Probability-of-F-to- enter <= .050)

a. Dependent Variable: sales

Hence, the best model is with variables x1, x2 and x3 [1].

[1.5] (b)

ANOVA								
Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	73.784	3	24.595	119.445	<.001 ^b		
	Residual	2.265	11	.206				
	Total	76.049	14					

a. Dependent Variable: sales

b. Predictors: (Constant), adds expenditure, x3, x2

Can be used

no variables were removed

Variables Entered/Removed^a

	Variables	Variables	ĺ.	
Model	Entered	Removed	C	Method
1	adds_expenditu			Enter
	re, x3, x2 ^b			

a. Dependent Variable: sales

b. All requested variables entered.

Hence, the best model is with variables x1, x2 and x3 [1/2]

[2.5] (c)

Variables Entered/Removed ^a		ved ^a [1	/2].
		Variables	
Model	Variables Entered	Removed	Method
1	х3		Stepwise (Criteria: Probability-of-F-to-enter <= .050,
			Probability-of-F-to-remove >= .100).
2	adds_expenditure		Stepwise (Criteria: Probability-of-F-to-enter <= .050,
			Probability-of-F-to-remove >= .100).
3	x2		Stepwise (Criteria: Probability-of-F-to-enter <= .050,
			Probability-of-F-to-remove >= .100).

a. Dependent Variable: sales

Excluded Variables^a [1/2].

					Partial	Collinearity Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
1	x2	.469 ^b	2.455	.030	.578	.750
	adds_expenditure	.546 ^b	4.290	<mark>.001</mark>	.778	1.000
2	x2	.469 ^c	7.805	<.001	.920	.750

a. Dependent Variable: sales

b. Predictors in the Model: (Constant), x3

c. Predictors in the Model: (Constant), x3, adds expenditure

Hence, the best model is with variables x1, x2 and x3 [1/2]

all 3 p-values are < 0.05, hence we keep all 3 x's

Hence, the best model is with variables <u>x1, x2 and x3</u> [1/2], which confirms the results in Q1 [1/2].

3. [40 marks]

<u>C.R.D.</u>

Assume: 1) 4 independent random samples of swamp plants (given) [1/2]

2) 4 normally distributed swamp plants populations [1/2]

3) with equal variance, σ^2 (?) [1/2]

• to check the assumption of equal variance using <u>Hartley's test</u>, we need s_i^2 's for i = 1, 2, 3, 4, where $n_1 = n_2 = n_3 = n_4 = 6$

$$k = 4, \overline{n} = 6, [\overline{n}] = 6, n = 24$$

i.e.
$$s_1^2 = \frac{\sum_{j=1}^{n_1} y_{1j}^2 - \frac{\left(\sum_{j=1}^{n_1} y_{1j}\right)^2}{n_1 - 1}}{n_1 - 1} = \frac{217.47 - \frac{\left(36.1\right)^2}{6}}{5} = \underline{0.053667}$$
 [1/2] \leftarrow min

$$s_2^2 = \frac{\sum_{j=1}^{n_2} y_{2j}^2 - \frac{\left(\sum_{j=1}^{n_2} y_{2j}\right)^2}{n_2 - 1}}{n_2} = \frac{192.31 - \frac{\left(33.9\right)^2}{6}}{5} = \underline{0.155} \quad [1/2]$$

$$s_3^2 = \frac{\sum_{j=1}^{n_3} y_{3j}^2 - \frac{\left(\sum_{j=1}^{n_3} y_{3j}\right)^2}{n_3 - 1}}{n_3 - 1} = \frac{172.57 - \frac{\left(32.1\right)^2}{6}}{5} = \underline{0.167} \quad [1/2] \quad \leftarrow \text{max}$$

$$s_4^2 = \frac{\sum_{j=1}^{n_4} y_{4j}^2 - \frac{\left(\sum_{j=1}^{n_4} y_{4j}\right)^2}{n_4 - 1}}{n_4 - 1} = \frac{80.35 - \frac{\left(21.9\right)^2}{6}}{5} = \underline{0.083}$$
 [1/2]

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$
 [1]
 $H_a:$ at least one of the σ^2 's \neq ; $\alpha = 0.05$

test-stattistic: [1/2]
$$F_{\text{max}} = \frac{s_{\text{max}}^2}{s_{\text{min}}^2} = \frac{0.167}{0.053667} = \underline{3.111801}$$
 [1/2]

R.R.: we reject H_0 if $F_{\max} > F_{\max(k, [\overline{n}]-1); \alpha} = F_{\max(4,5); 0.05} = 13.7$ [1]

Since $F_{max} = 3.11 > 13.7$ [1/2], we <u>do not reject</u> H_0 [1/2] and conclude that at 5% level of significance there is no evidence to say that the variances are not equal (i.e. we have equal variance). [1/2]

... we may proceed with the main test:

[1/2]
$$TSS = \sum_{i=1}^{4} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{\left(\sum_{i=1}^{4} \sum_{j=1}^{n_i} y_{ij}\right)^2}{n} = \frac{662.7 - \frac{(124)^2}{24}}{24} = 662.7 - 640.6667 = \underline{22.03333}$$
 [1/2]

[1/2]
$$SST_r = \sum_{i=1}^4 \frac{T_i^2}{n_i} - \frac{\left(\sum_{i=1}^4 \sum_{j=1}^{n_i} y_{ij}\right)^2}{n} = \left[\frac{\left(36.1\right)^2}{6} + \frac{\left(33.9\right)^2}{6} + \frac{\left(32.1\right)^2}{6} + \frac{\left(21.9\right)^2}{6}\right] - \frac{\left(124\right)^2}{24} = 660.4067 - 640.6667 = 19.74 [1/2]$$

[1/2]
$$SSE = TSS - SST_r = 2.293333$$
 [1/2]

[1/2]
$$MST_r = \frac{SST_r}{k-1} = \frac{19.74}{3} = \underline{6.58}$$
 [1/2]

[1/2]
$$MSE = \frac{SSE}{n-k} = \frac{2.293333}{20} = 0.114667$$
 [1/2]

[1/2]
$$F_T = \frac{MST_r}{MSE} = \underline{57.38372}$$
 [1/2]

Source	d.f.	SS	MS	F
Treatments	3	19.74	6.58	57.38372
Error	20	2.293333	0.114667	
Total	23	22.03333		
'	[1/2]	[1/2]	[1/2]	[1/2]
			1	

(1/2 mark for each column, if values are entered correctly)

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$
 ; $\alpha = 0.05$ $H_a: at least one of the $\mu's \neq 0$ [1]$

test-statistics:
$$F_T = \frac{MST_r}{MSF} = \underline{57.38372}$$

R.R. we reject H_0 if $F_T > F_{\alpha(k-1,n-k)} = F_{0.05(3,20)} =$ 3.10 [1]

Since F_T = 57.38372 > 3.10 [1/2], <u>we reject</u> H_0 [1/2] and conclude that at 5% level of significance there is an evidence to say that the mean leaf length of swamp plants differ between the 4 swamp locations. [1/2]

Which treatments (i.e. swamp locations) differ? Tukey's h.s.d.

1) Calculate
$$\binom{k}{2} = \binom{4}{2} = 6$$
 pairs of $|\overline{y}_i - \overline{y}_j|$ for $H_0: \mu_i = \mu_j$ vs $H_a: \mu_i \neq \mu_j$, for $i, j = 1, 2, 3, 4$

2) [1/2] h.s.d. =
$$q_{\alpha}(k, n-k)\sqrt{\frac{MSE}{2}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)} = q_{0.05}(4, 20)\sqrt{\frac{0.114667}{2}\left(\frac{2}{6}\right)} = \frac{3.96\sqrt{0.019111}}{[1/2]} = \frac{0.547444}{[1/2]}$$
 [1/2]

$$\overline{y}_1 = \frac{T_1}{n_1} = \frac{36.1}{6} = 6.01666$$
, $\overline{y}_2 = \frac{T_2}{n_2} = \frac{33.9}{6} = 5.65$
 $\overline{y}_3 = \frac{T_3}{n_3} = \frac{32.1}{6} = 5.35$, $\overline{y}_4 = \frac{T_4}{n_4} = \frac{21.9}{6} = 3.65$

3)
$$|\overline{y}_{1} - \overline{y}_{2}| = 0.36666 \neq 0.547444 \Rightarrow \mu_{1} = \mu_{2}$$

$$|\overline{y}_{1} - \overline{y}_{3}| = 0.66666 > 0.547444 \Rightarrow \underline{\mu_{1} \neq \mu_{3}}$$
 [1/2]
$$|\overline{y}_{1} - \overline{y}_{4}| = 2.36666 > 0.547444 \Rightarrow \underline{\mu_{1} \neq \mu_{4}}$$
 [1/2]
$$|\overline{y}_{2} - \overline{y}_{3}| = 0.3 \neq 0.547444 \Rightarrow \mu_{2} = \underline{\mu_{3}}$$

$$|\overline{y}_{2} - \overline{y}_{4}| = 2 > 0.547444 \Rightarrow \underline{\mu_{2} \neq \mu_{4}}$$
 [1/2]
$$|\overline{y}_{3} - \overline{y}_{4}| = 1.7 > 0.547444 \Rightarrow \underline{\mu_{3} \neq \mu_{4}}$$
 [1/2]

i.e. [1/2] there are differences between swamp locations (I & III), (I & IV), (II & IV) and (III & IV).

Non-parametric Analysis (Kruskal-Wallis test)

Assume: 1) C.R.D. [1/2] (4 independent random samples from 4 treat't populations) with 2) approximately the same shape[1/2] and spread[1/2]

First we need to rank the observations from smallest to the largest:

Site I	Site II	Site III	Site IV
5.7 (15.5) 6.3 (24) 6.1 (21) 6.0 (19) 5.8 (17) 6.2 (22.5)	5.3 (11) 5.7 (15.5) 6.0 (19) 5.2 (9.5) 5.5 <u>(13)</u>	5.4 (12) 5.0 (8) 6.0 (19) 5.6 (14) 4.9 (7) 5.2 (9.5)	3.7 (4) 3.2 (1) 3.9 (5) 4.0 (6) 3.5 (2) 3.6 (3)
•	- N ₂	2] $T_{R_3} = 69.5$ [1/2] and $\sum_{i=1}^{4} T_{R_i} = 119 + 90.5$	14

$$H_0: Md_1 = Md_2 = Md_3 = Md_4$$
; $H_a: at least one of the Md's \neq$ [1]

test-statistics:

[1/2]
$$H = \frac{12}{n(n+1)} \left[\sum_{i=1}^{4} \frac{T_{R_i}^2}{n_i} \right] - 3(n+1) = \frac{12}{24(25)} \left[\frac{\left(119\right)^2}{6} + \frac{\left(90.5\right)^2}{6} + \frac{\left(69.5\right)^2}{6} + \frac{\left(21\right)^2}{6} \right] - 3(25) = \frac{12}{24(25)} \left[\frac{1}{6} + \frac{1}{$$

$$= 0.02(4\ 603.75) - 75 = 92.075 - 75 = 17.075$$
 [1/2]

R.R: we reject
$$H_0$$
 if $H > \chi^2_{\alpha:(k-1)} = \chi^2_{0.05:(3)} = 7.815$ [1]

Since H= 17.075 > 7.815 [1/2], <u>we reject</u> H_0 [1/2] and conclude that at 5% level of significance there is an evidence to say that the medians of leaf length of swamp plants differ between the 4 swamp locations. [1/2]

> Which treatments differ? Dunn's procedure

1) Calculate
$$\binom{k}{2} = \binom{4}{2} = 6$$
 pairs of $|\overline{R}_i - \overline{R}_j|$ for $H_0: Md_j = Md_j$ vs $H_a: Md_j \neq Md_j$,

for
$$i, j = 1, 2, 3, 4$$

 $i \neq i$

2) Critical range =[1/2]
$$z_{\frac{\alpha}{k(k-1)}} \sqrt{\frac{n(n+1)}{12} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)} = z_{\frac{0.05}{4(3)}} \sqrt{\frac{24(25)}{12} \left(\frac{2}{6}\right)} = z_{0.004167} \sqrt{16.66667} = (2.635)*4.082483 = 10.75734$$
 [1/2]

$$\overline{R}_1 = \frac{T_{R_1}}{n_1} = \frac{119}{6} = 19.8333$$
, $\overline{R}_2 = \frac{T_{R_2}}{n_2} = \frac{90.5}{6} = 15.0833$

$$\overline{R}_3 = \frac{T_{R_3}}{n_2} = \frac{69.5}{6} = 11.5833$$
, $\overline{R}_4 = \frac{T_{R_4}}{n_4} = \frac{21}{6} = 3.5$

3)
$$|\overline{R}_{1} - \overline{R}_{2}| = 4.75 < 10.75734 \Rightarrow Md_{1} = Md_{2}$$

 $|\overline{R}_{1} - \overline{R}_{3}| = 8.25 < 10.75734 \Rightarrow Md_{1} = Md_{3}$
 $|\overline{R}_{1} - \overline{R}_{4}| = 16.3333 > 10.75734 \Rightarrow \underline{Md_{1} \neq Md_{4}}$ [1/2]
 $|\overline{R}_{2} - \overline{R}_{3}| = 3.5 < 10.75734 \Rightarrow Md_{2} = Md_{3}$
 $|\overline{R}_{2} - \overline{R}_{4}| = 11.5833 > 10.75734 \Rightarrow \underline{Md_{2} \neq Md_{4}}$ [1/2]
 $|\overline{R}_{3} - \overline{R}_{4}| = 8.0833 < 10.75734 \Rightarrow \underline{Md_{3} \neq Md_{4}}$ [1/2]

i.e. [1/2] there is a difference in medians of swamp locations (I & IV) and (II & IV).

SPSS outputs: (1 mark for each output table and ½ mark if the highlighted/verified the SPSS values with those calculated by hand)

Note: Total 5.5 marks for SPSS part

LeafLength [1]

SwampSite	Mean	N	Std. Deviation	Median	Variance
Site I	6.017	6	.2317	6.050	.054 s.2
Site II	5.650	6	.3937	5.600	.155 522
Site III	5.350	6	.4087	5.300	.167 \$32
Site IV	3.650	6	.2881	3.650	.083 542
Total	5.167	24	.9788	5.450	.958

ANOVA [1]

LeafLength

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	19.740 SSTr	3	6.580 MSTr	57.384 FT	<.001
Within Groups	2.293 SSE	<mark>20</mark>	.115 MSE		
Total	22.033	<mark>23</mark>			

Post Hoc Tests

Multiple Comparisons

Dependent Variable: LeafLength

Tukey HSD [1]

		Mean Difference			95% Confiden	ce Interval
(I) SwampSite	(J) SwampSite	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Site I	Site II	.3667	.1955	.270	181	.914
	Site III	.6667*	.1955	.014	<mark>.119</mark>	1.214 L. +M3
	Site IV	2.3667*	.1955	<.001	<mark>1.819</mark>	2.914 My
Site II	Site I	3667	.1955	.270	914	.181
	Site III	.3000	.1955	.437	247	.847
	Site IV	2.0000*	.1955	<.001	<mark>1.453</mark>	2.547 M2 7 M4
Site III	Site I	6667 [*]	.1955	.014	<mark>-1.214</mark>	119
	Site II	3000	.1955	.437	847	.247
	Site IV	1.7000*	.1955	<.001	<mark>1.153</mark>	2.247 U3 ± M4
Site IV	Site I	-2.3667 [*]	.1955	<.001	<mark>-2.914</mark>	-1.819
	Site II	-2.0000*	.1955	<.001	<mark>-2.547</mark>	<mark>-1.453</mark>
	Site III	-1.7000*	.1955	<.001	<mark>-2.247</mark>	<mark>-1.153</mark>

^{*.} The mean difference is significant at the 0.05 level.

Homogeneous Subsets

LeafLength

Tukey HSD^a

		Subset for alpha = 0.05		
SwampSite	N	1	2	3
Site IV	6	3.650		
Site III	6		5.350	
Site II	6		5.650	5.650
Site I	6			6.017
Sig.		1.000	.437	.270

Means for groups in homogeneous subsets are displayed.

NPar Tests

Kruskal-Wallis Test

optimal

a. Uses Harmonic Mean Sample Size = 6.000.

Ranks [1]

	SwampSite	N	Mean Rank
LeafLength	Site I	6	19.83 T
	Site II	6	15.08 T
	Site III	6	11.58 7
	Site IV	6	3.50
	Total	24	

Test Statistics ^{a,b} [1]			. 1
	LeafLer	ngth	\mathcal{H}
Kruskal-Wallis H	<mark>17.127</mark>		
df	3		
Asymp. Sig.	<.001		1 100
a. Kruskal Wallis Test		1	produe < 0.05
b. Grouping Variable: Sv	wampSite		all haipal is