STAT 2509 A Assignment #3

SOLUTION

// 40

1. [11 marks]

[10] (a)
$$SSE = SSPE + SSLF$$

$$SSE = \begin{bmatrix} 1/2 \end{bmatrix} S_{yy} - \frac{S_{xy}^{2}}{S_{xx}} = \begin{bmatrix} \sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} \end{bmatrix} - \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n} \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 10742 - \frac{(344)^{2}}{12} \end{bmatrix} - \frac{\left[969 - \frac{(30)(344)}{12}\right]^{2}}{\left[90 - \frac{(30)^{2}}{12}\right]} = 880.66666667 - \frac{(109)^{2}}{15} = \underbrace{88.6 \begin{bmatrix} 1/2 \end{bmatrix}}$$

[1/2]
$$SSPE = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i})^{2} = 8.666667 + 8 + 12.66667 + 50.66667 = \underline{\underline{80}}$$
 [1/2]

Since [1/2]
$$SSE = SSPE + SSLF \implies SSLF = SSE - SSPE = 88.6 - 80 = 8.6$$
 [1/2]

$$H_{a}: model is appropriate \\ H_{a}: model is not appropriate \\ H_{a}: m$$

R.R. we reject
$$H_0$$
 if $F_{LF} > F_{\alpha(n-2-\sum_i(n_i-1),\sum_i(n_i-1))} = F_{0.05(2,8)} =$ 4.46 [1]

Since $F_{LF} = 0.43$ 4.46, we do not reject H_0 [1/2] and conclude that at 5% level of significance there is not enough evidence to say that a linear model is not appropriate (i.e. model is appropriate). [1/2]

[1] (b)

Lack of Fit Tests

Dependent Variable: cars

		[1]		1		
Source	Sum of Squares	df	Mean Square	F	Sig.	
Lack of Fit	<mark>8.600</mark>	2	4.300	<mark>.430</mark>	.665	
Pure Error	80.000	8	10.000			

2. [29 marks]

[3] (a) Model:
$$[1/2]$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$, $n = 20$

Assumptions: (i) X_1 , X_2 are observed without error [1/2]

(ii) y's (or ε 's) are independently distributed [1/2] with mean $E(y)=\beta_0+\beta_1x_1+\beta_2x_2$ [1/2] (or $E(\varepsilon)=0$)

 $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \text{ [172] (of } E(y),$ (iii) <u>variance</u> of y's (or ε 's) is <u>constant</u>, σ^2 [1/2] for all X_1 , X_2 (iv) $y \sim N(E(y), \sigma^2)$ [1/2] for any value of X_1 , X_2 (or $\varepsilon \sim N(0, \sigma^2)$ for any value of X_1 , X_2).

NOTE: Assumptions (ii) – (iv) can be summarized also as $y \sim N(E(y), \sigma^2)$ (or $\varepsilon \sim N(0, \sigma^2)$)

[3] (b)

Coefficients^a [1]

		Unstandardiz	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	<mark>17.349</mark>	11.060		1.569	.135
	midterm_grade	<mark>.537</mark>	.115	.677	4.661	<.001
	hmwk_grade	<mark>.257</mark>	.120	.312	2.144	.047

a. Dependent Variable: final grades

$$\hat{\beta}_0 = 17.349$$
 [1/2], $\hat{\beta}_1 = 0.537$ [1/2], $\hat{\beta}_2 = 0.257$ [1/2]

Hence the least squares line is given by:

$$\hat{y} = 17.349 + 0.537x_1 + 0.257x_2$$
 [1/2]

[4.5] (c)

ANOVA^a [1]

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2054.683	2	1027.342	<mark>16.853</mark>	<.001 ^b
	Residual	1036.317	17	60.960		
	Total	3091.000	19			

- a. Dependent Variable: final grades
- b. Predictors: (Constant), hmwk_grade, midterm_grade

$$H_0: \beta_1 = \beta_2 = 0$$
 $\alpha = 0.01$
 $H_a: at least one of the \beta's \neq 0$ [1]

test-statistics:
$$F = \frac{MSR}{MSE} = \underline{16.853}$$

R.R: we reject
$$H_0$$
 if p-value < α (or if $F > F_{\alpha(k,n-(k+1))} = F_{0.01(2,17)} =$ 6.11) [1]

Since p-value < 0.001 < 0.01 (or F = 16.853 > 6.11) [1/2] , <u>we reject</u> H_0 [1/2] and conclude that at 1% level of significance there is an evidence to say that a linear relationship between the final grade, midterm grade and/or homework grade exists. [1/2]

[6] (d)

Coefficients^a [1]

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	17.349	11.060		1.569	.135
	midterm_grade	.537	.115	.677	<mark>4.661</mark>	<.001
	hmwk_grade	.257	.120	.312	<mark>2.144</mark>	<mark>.047</mark>

a. Dependent Variable: final grades

1. midterm grade (x_l) :

$$H_0: \beta_1 = 0$$
, [1] $\alpha = 0.01 \Rightarrow \alpha/2 = 0.005$
 $H_a: \beta_1 \neq 0$

test-statistics: t = 4.661

Since p-value < 0.001 < 0.01 (or t = 4.661 > $t_{0.005,17}$ = 2.898) [1/2], at α = 0.01, we <u>reject H_0 </u>, [1/2] and hence we conclude that 'the midterm grade (x_I)' is useful in predicting 'the final grade'. [1/2]

2. homework grade (x_2) :

$$H_0: \beta_2 = 0$$
, [1] $\alpha = 0.01 \Rightarrow \alpha/2 = 0.005$
 $H_a: \beta_2 \neq 0$

test-statistics: t = 2.144

Since p-value = 0.047 > 0.01 (or t = 2.144 $\Rightarrow t_{0.005,17}$ = 2.898) [1/2], at α = 0.01, we <u>do not reject</u> $\underline{H_0}$, [1/2] and hence we conclude that we do not have enough evidence to say that 'the homework grade (x_2)' is useful in predicting 'the final grades'. [1/2]

[5] (e)

[1/2]
$$r^2 = \frac{SSR}{TSS} = \frac{2\ 054.683}{3\ 091} = 0.66473 \cong \underline{66.5\%}$$
 [1/2]

i.e. approximately 66.5% of the total variation in the data is explained by the regr. line (and 33.5% is due to error). [1]

[1/2]
$$r_{adj}^2 = 1 - \frac{SSE/n - (k+1)}{TSS/n - 1} = 1 - \frac{MSE}{TSS/n - 1} = 1 - \frac{60.960}{3091/19} = 1 - 0.374713684 = 0.62528 \cong$$
 = 62.53% [1/2]

Since r_{adj}^2 is approx. 62.53% (not very high) we can conclude that the full model is not very good. Probably some higher order terms are needed (or perhaps because X_2 is not needed). [1]

Model Summary [1]

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.815ª	<mark>.665</mark>	<mark>.625</mark>	7.808

a. Predictors: (Constant), hmwk grade, midterm grade

[7.5] (f)

Reduced Model: $y = \beta_0 + \beta_1 x_1 + \varepsilon$

ANOVA^a [1]

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	<mark>1774.441</mark>	1	1774.441	24.260	<.001 ^b
	Residual	<mark>1316.559</mark>	<mark>18</mark>	73.142		
	Total	3091.000	19			

a. Dependent Variable: final grades

b. Predictors: (Constant), midterm grade

Full model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2054.683	2	1027.342	16.853	<.001 ^b
	Residual	<mark>1036.317</mark>	<mark>17</mark>	60.960		
	Total	3091.000	19			

a. Dependent Variable: final grades

b. Predictors: (Constant), hmwk_grade, midterm_grade

$$H_0: \beta_2 = 0$$
 $\alpha = 0.01$ $A_a: \beta_2 \neq 0$ [1]

• **full model**: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

• reduced model: $y = \beta_0 + \beta_1 x_1 + \varepsilon$

$$SSR_f = 2054.683 \quad (d.f. = 2) \,,$$
 $SSR_r = 1774.441 \quad (d.f. = 1)$ $SSE_f = 1036.317 \quad (d.f. = 17) \,,$ $SSE_r = 1316.559 \quad (d.f. = 18)$ [1/2] if correct SPSS values were

used in the calculation of test statistics

or equivalently,
$$F_{drop} = \frac{\left[\frac{SSE_r - SSE_f}{SSE_f}\right] / \left[\frac{df_{SSE_r} - df_{SSE_f}}{SSE_f / df_{SSE_f}}\right]}{SSE_f / df_{SSE_f}} = \frac{\left(1316.559 - 1036.317\right) / \left(18 - 17\right)}{1036.317 / 17} = \frac{280.242 / 1}{60.960} = \underline{\textbf{4.59714}}$$

R.R. we reject
$$H_0$$
 if $F_{part} > F_{\alpha(1,17)} = F_{0.01(1,17)} = 8.40$ [1]

Since F_{part} = 4.597 \Rightarrow 8.40 [1/2], we do not reject H_0 [1/2] and conclude that at 1% level of significance there is not enough evidence to say that the X_2 term (i.e. the homework grade) contributes to the model. [1/2]

This confirms the results in part d) as the individual t-tests confirm that x_2 is not useful in predicting 'the final grade'. [1/2]