STAT 2509 A Assignment #2

SOLUTION

// 60

- 1. [42 marks]
- [1] a) Identify independent (x) and dependent (y) variables.

x =# of ads per day [1/2] y =# of cars sold [1/2]

[2] b) [1]

Scatter plot indicates [1/2] approximately straight line (or linear relationship) with [1/2] positive slope.

[3] c)

Model: $y = \beta_0 + \beta_1 x + \varepsilon$ [1/2], **n = 12**

Assumptions: (i) x's are observed without error [1/2]

(ii) y's (or ε 's) are independently [1/2] distributed with mean $E(y) = \beta_0 + \beta_1 x$ (or $E(\varepsilon) = 0$) [1/2]

(iii) variance of y's (or ε 's) is constant [1/2], σ^2 for all x's (iv) $y \sim N(E(y), \sigma^2)$ [1/2] for any value of x (or $\varepsilon \sim N(0, \sigma^2)$ for any value of x)

NOTE: Assumptions (ii) – (iv) can be summarized also as $y \sim N(E(y), \sigma^2)$ (or $\varepsilon \sim N(0, \sigma^2)$)

d)
$$[1/2] \quad \hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}} = \frac{969 - \frac{(30)(344)}{12}}{90 - \frac{(30)^{2}}{12}} = \frac{1/2}{12}$$

$$= \frac{109}{15} = \frac{7.2666666667 = 7.2667}{15} \quad [1/2]$$

[1/2]
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = \frac{\sum_{i=1}^n y_i}{n} - \hat{\beta}_1 \left(\frac{\sum_{i=1}^n x_i}{n} \right) = \frac{344}{12} - (7.266666667) \left(\frac{30}{12} \right) =$$

$$= 28.666666667 - 18.16666667 = 10.5 \quad [1/2]$$

: the least squares fitted regression line is given by: $\hat{y} = 10.5 + 7.2667 x$ [1]

[1] e)

$$\frac{\left[\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n}\right]}{\left[\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}\right]} = \frac{\left[\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}\right]}{n-2} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}}{n-2} = \frac{\left(\sum_{i$$

$$= \frac{\left[10.742 - \frac{(344)^2}{12}\right] - \frac{(109)^2}{15}}{10} = \frac{\text{[W2]}}{880.6666667 - 792.0666667} = \frac{88.6}{10} = \frac{8.86}{10} = \frac{1}{10}$$

$$\therefore$$
 [1/2] $s = \sqrt{s^2} = 2.976575213 \cong 2.9766$ [1/2]

[4.5] g)

$$H_0: \beta_1 = 0$$
 [1/2] $\alpha = 0.05 \Rightarrow \alpha/2 = 0.025$
 $H_a: \beta_1 \neq 0$ [1/2]

test-statistics: [1/2]
$$t = \frac{\hat{\beta}_1}{s/\sqrt{S_{xx}}} = \frac{7.266666667}{2.976575213/\sqrt{15}} = \underline{9.45505} \cong \underline{9.455}$$
 [1/2]

R.R: we reject
$$H_0$$
 if $t < -t_{\alpha/2;n-2} = -t_{0.025;10} = -2.228$ or $t > t_{\alpha/2;n-2} = t_{0.025;10} = 2.228$ [1]

Since t = 9.455 2.228, we reject H_0 [1/2] and conclude that at 5% level of significance there is an evidence to say that the No. of ads per day and the No. of cars sold are linearly related. [1/2]

[2.5] h)
$$1-\alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025$$

[1/2] $\beta_1 \in \left(\hat{\beta}_1 \pm t_{\alpha/2;n-2} \right) \left(\frac{S}{\sqrt{S_{xx}}}\right) = \left(7.2667 \pm t_{0.025;10} \right) \left(\frac{2.976575213}{\sqrt{15}}\right) = \left(7.2667 \pm 2.228 \left(0.768548415\right)\right) = \left(7.2667 \pm 1.712325869\right) = \left(5.554374131, 8.979025869\right) = \left(5.5544, 8.979\right)$ [1]

(1/2 mark for each correct interval value)

i.e. We are 95% confident that in repeated sampling the true value of the population slope would lie in the interval (5.5544, 8.979). [1/2]

[1/2]
$$TSS = S_{yy} = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} = \underline{880.6666667}$$
 [1/2] (as calculated in part (f))

[1/2]
$$SSR = \frac{S_{xy}^2}{S_{xx}} = \frac{792.0666667}{n}$$
 [1/2] (as calculated in part (f))
[1/2] $SSE = TSS - SSR = 88.6$ [1/2] (calculated in part (f))

[1/2]
$$SSE = TSS - SSR = 88.6$$
 [1/2] (calculated in part (f))

[1/2]
$$MSR = \frac{SSR}{1} = \frac{792.0666667}{1}$$
 [1/2]

[1/2]
$$MSE = \frac{SSE}{n-2} = \frac{88.6}{10} = \frac{8.86}{10}$$
 [1/2] (= s²) (as calculated in part (f))

[1/2]
$$F = \frac{MSR}{MSE} = \frac{89.39804}{MSE}$$
 [1/2]

Source	d.f.	SS	MS	F
Regression	1	792.0666667	792.0666667	89.398
Error	10	88.6	8.86	
Total	11	880.6666667		
	[1/2]	[1/2]	[1/2]	[1/2]
$H_0: \beta_1 = 0$ $H_a: \beta_1 \neq 0$	$\alpha = 0.05$		one mark for ea	ch column, if values

test-statistics:
$$F = \frac{MSR}{MSE} = 89.398$$
 [1/2] are entered correctly

R.R.: we reject
$$H_0$$
 if $F > F_{\alpha(1,n-2)} = F_{0.05(1,10)} =$ 4.96 [1]

Since F = 89.398 4.96, we reject H_0 [1/2] and conclude that at 5% level of significance there is an evidence to say that a linear relationship between the No. of ads per day and the No. of cars sold exists. [1/2]

[5] j)
$$[1/2] r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{109}{\sqrt{(15)(880.6666667)}} = \underline{0.94836} \cong \underline{0.95} [1/2]$$

i.e. the No. of ads per day and the No. of cars sold are positively [1/2]correlated (related) with the strength of their relationship approx. 95%. [1/2]

[1/2]
$$r^2 = \frac{SSR}{TSS} = \underline{0.89939} \cong \underline{0.90}$$
 [1/2]

i.e. approximately 90% of the total variation in the data is explained by the regression line (and approx. 10% is due to error). [1]

The model is a very good fit (or it is a very good model). [1]

[3] k)

Model Summary ^b				[1]						
			Adjusted R			Std. Error of				
Model	R	R Square	Square			the Estimate)		
1	<mark>.948</mark> ª	<mark>.899</mark>		.889		<mark>2.977</mark>		>		<i>,</i>
a. Predictors: (Constant), ads b. Dependent Variable: cars [1] ANOVA ^a)
b. Dependent Variable: cars										
[1]	[1] ANOVA ^a						y.) – 1 -	7 Maria	
		Sum	of				•	Sig.	- He)
Model		Squar	es	df		Mean Square	F		/	
1	Regression	<mark>79</mark>	2.067		1	<mark>792.067</mark>	89.398	.000 ^b		
	Residual	8	8.600	1(0	8.860				
	Total	88	0.667	<mark>1</mark>	1					

- a. Dependent Variable: cars
- b. Predictors: (Constant), ads

2. [9 marks]

[6] a) 95% C.I. for
$$E(y)$$
 when $x_p = 0$:

$$\hat{y}$$
 = 10.5 + 7.2667 (0) = 10.5 [1/2] and $1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025$

$$[1/2] : E(y) \in \left(\hat{y} \pm t_{\alpha/2; n-2} s_{\sqrt{\frac{1}{n}}} + \frac{\left(x_p - \overline{x} \right)^2}{S_{xx}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right) = \left(10.5 \pm t_{0.025; 10} \left(2.976575213 \right) \sqrt{\frac{1}{12} + \frac{\left(0 - 2.5 \right)^2}{15}} \right)$$

$$[1/2] = (10.5 \pm 2.228(2.104756518)) = (10.5 \pm 4.689397522) = (5.810602478, 15.18939752) \cong$$

$$\cong \left(5.8106\;,\;15.1894\right)\;$$
 [1] (1/2 mark for each correct interval value)

i.e. We are 95% confident that in repeated sampling the <u>average value</u> of the No. of cars sold when the 0 ads were run, will fall in the interval (5.8106, 15.1894). [1/2]

and

95% P.I. for *y* when $x_p = 0$:

$$\hat{y}$$
 = 10.5 + 7.2667 (0) = 10.5 and $1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025$

$$[1/2] = (10.5 \pm 2.228(3.645545226)) = (10.5 \pm 8.122274764) = (2.377725236, 18.62227476) \cong$$

$$\cong \underbrace{\left(2.377\;,\;18.622\right)}$$
 [1] (1/2 mark for each correct interval value)

i.e. We are 95% confident that in repeated sampling the No. of cars sold when the 0 ads were run, will lie in the interval (2.377, 18.622). [1/2]

Conclusion:

• The P.I. is <u>wider [1/2]</u> than C.I. (as expected), since the variability in the error for predicting a single value of y is always greater than the variability of the error for the estimation of the mean/average value of y.

[3] b) 95% C.I. for
$$E(y)$$
 when $x_p = 0$: (5.81031, 15.18969) [1] 95% P.I. for y when $x_p = 0$: (2.37722, 18.62278) [1] $\hat{y} = \frac{10.50000}{1}$ when $x_p = 0$

3. [9 marks]

- Residuals seem to be randomly scattered around zero (i.e. no pattern) \Rightarrow [1/2] no violations of independence (and linearity) [1/2]

NOTE: if students saw and indicated a pattern, then there is a [1/2] <u>violation</u> of the <u>assumption</u> of the independence of the errors (and/or linearity) [1/2].

- Residuals seem to be randomly scattered around zero (i.e. no pattern) ⇒ [1/2] no violations of constant variance [1/2]

NOTE: if students saw and indicated a pattern, then there is a [1/2] <u>violation</u> of the <u>assumption</u> of the <u>constant variance</u> [1/2].

[1]

Q-Q Plot of residuals shows approximately the straight line ⇒ [1/2] no violations of normality of the errors [1/2]

Histogram of the errors looks <u>approx. bell-shaped</u> [1/2]. It is <u>not really symmetric</u> [1/2] (but it is most likely due to small sample size, as n = 12). Therefore, since Q-Q plot did not show any violations, <u>errors are normally distributed</u>. [1/2]

All the plots suggest that the model assumptions are (reasonably) satisfied [1/2]