Ex. (Model Selection)

Suppose we are interested in predicting of surgery survival rate as a function of x_1 = blood clotting score, x_2 = prognostic index, x_3 = enzyme function test score, x_4 = liver function test score and y = log(surgery survival rate). The TSS for the full model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$
 is: TSS = 21.07733.

We decided to screen the independent variables to determine the best set for predicting the surgery rates. The sums of squares for all possible regression models were found to be as follows:

Independent variables	SSR	SSE	d.f. _{SSE}	MSE	R^2
in the model					
X_1	2.52720	18.55013	52	0.3567332	0.1199013
X_2	7.39311	13.68422	52	0.263158	0.3507612
X ₃	9.33966	11.73767	52	0.2257244	0.443114
X_4	11.10557	9.97176	52	0.1917646	0.5268964
X_1, X_2	12.76391	8.31342	51	0.1630082	0.6055752
X ₁ , X ₃	13.62588	7.45145	51	0.1461068	0.6464708
X_1, X_4	11.11514	9.96219	51	0.195337	0.5273504
X_2, X_3	17.13462	3.94271	51	0.077308	0.8129407
X_2, X_4	13.67307	7.40426	51	0.1451815	0.6487097
X ₃ , X ₄	14.47288	6.60445	51	0.129499	0.6866562
X_1, X_2, X_3	20.49376	0.58357	50	0.0116714	0.9723129
X_1, X_2, X_4	13.68169	7.39564	50	0.1479128	0.6491187
X_1, X_3, X_4	15.16439	5.91294	50	0.1182588	0.7194644
X_2, X_3, X_4	18.60417	2.47316	50	0.0494632	0.8826625
X_1, X_2, X_3, X_4	20.49413	0.5832	49	0.011902	0.9723304

 Determine the subset of variables that is selected as best using max R² criterion. Show your steps.

$$R^2 = \frac{SSR}{TSS}$$
, the set $\{X_1, X_2, X_3\}$ is selected as the best one. (Please note that the

full model gives the highest R², however we prefer the second highest one other than the full model).

2. Determine the subset of variables that is selected as best using **min MSE criterion**. Show your steps.

The best model is determined by the set $\{X_1, X_2, X_3\}$ (since the *min MSE* and *max* R^2 are equivalent).

3. Determine the subset of variables that is selected as best using Mallows C_p criterion. Show your steps.

We will select as the best model whose C_p is as close to p as possible.

$$C_p = \frac{SSE_p}{MSE(X_1, X_2, X_3, X_4)} - (n - 2p) \quad , n = 54 \text{ (since d.f.}_{TSS} = d.f._{SSR} + d.f._{SSE}, \text{ so then e.g.}$$
 when $k = 1$, $d.f._{TSS} = 1 + 52 = 53 = (n - 1)$).

• when p = 2 (i.e. one-variable models):

for
$$X_1$$
: $C_p = \frac{SSE(X_1)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(2)) = \frac{18.55013}{0.011902} - 50 = \underline{1508.5725}$

for
$$X_2$$
: $C_p = \frac{SSE(X_2)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(2)) = \frac{13.68422}{0.011902} - 50 = \underline{1099.7412}$

for
$$X_3$$
: $C_p = \frac{SSE(X_3)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(2)) = \frac{11.73767}{0.011902} - 50 = \underline{936.19308}$

for
$$X_4$$
: $C_p = \frac{SSE(X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(2)) = \frac{9.97176}{0.011902} - 50 = \frac{787.82221}{0.011902}$

• when p = 3 (i.e. two-variable models):

for
$$X_1, X_2$$
: $C_p = \frac{SSE(X_1, X_2)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{8.31342}{0.011902} - 48 = \underline{650.48933}$

for
$$X_1, X_3$$
: $C_p = \frac{SSE(X_1, X_3)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{7.45145}{0.011902} - 48 = \underline{578.06705}$

for
$$X_1, X_4$$
: $C_p = \frac{SSE(X_1, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{9.96219}{0.011902} - 48 = \frac{789.01815}{0.011902}$

for
$$X_2, X_3$$
: $C_p = \frac{SSE(X_2, X_3)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{3.94271}{0.011902} - 48 = \underline{283.26449}$

for
$$X_2, X_4$$
: $C_p = \frac{SSE(X_2, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{7.40426}{0.011902} - 48 = \underline{574.10217}$

for
$$X_3, X_4$$
: $C_p = \frac{SSE(X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(3)) = \frac{6.60445}{0.011902} - 48 = \underline{506.90254}$

• when p = 4 (i.e. three-variable models):

for
$$X_1, X_2, X_3$$
: $C_p = \frac{SSE(X_1, X_2, X_3)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(4)) = \frac{0.58357}{0.011902} - 46 = \underline{3.0312553}$

for
$$X_1, X_2, X_4$$
: $C_p = \frac{SSE(X_1, X_2, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(4)) = \frac{7.39564}{0.011902} - 46 = \underline{575.37792}$

for
$$X_1, X_2, X_4$$
: $C_p = \frac{SSE(X_1, X_2, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(4)) = \frac{5.91294}{0.011902} - 46 = \underline{450.80222}$

for
$$X_2, X_3, X_4$$
: $C_p = \frac{SSE(X_2, X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(4)) = \frac{2.47316}{0.011902} - 46 = \underline{161.79365}$

• when p = 5 (i.e. four-variable model, i.e. the full model):

for
$$X_1, X_2, X_3, X_4$$
: $C_p = \frac{SSE(X_1, X_2, X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(5)) = \frac{0.5832}{0.011902} - 44 = \underline{\underline{5}}$

• when p = 1 (i.e. no variables in the model, only β_0):

$$C_p = \frac{TSS}{MSE(X_1, X_2, X_3, X_4)} - (54 - 2(1)) = \frac{21.07733}{0.011902} - 52 = \underline{1718.9066}$$

 X_2,X_3 5 - X_1, X_2, X_3, X_4 3 - X_1, X_2, X_3 1 2 3 5 p

- ... the best set is given by $\{X_1, X_2, X_3\}$, since its C_p is closest to p (other than the full model). However, since in this case the full model's C_p is exactly equal to p, we may consider the full model as the best model, as well.
- **4.** Determine the subset of variables that is selected as best by the **Forward Selection Procedure** using $F_0^* = 4.2$ (to-add-variable). Show your steps.
 - (1) Fit all one-term models: $y = \beta_0 + \beta_1 x_j + \varepsilon$ for j = 1, 2, 3, 4 i.e.

$$SSR(X_1) = 2.52720$$

$$SSR(X_2) = 7.39311$$

$$SSR(X_3) = 9.33966$$

$$SSR(X_4) = \frac{11.10557}{4} \leftarrow max$$

$$\therefore F_4 = \frac{MSR(X_4)}{MSE(X_4)} = \frac{SSR(X_4)/1}{SSE(X_4)/52} = \frac{11.10557}{0.1917646} = \underline{57.9125}$$

Since
$$F_4 = 57.9125 > F_0^* = 4.2$$
, we keep X_4

(2) Fit all two-term models: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_j + \varepsilon$ for j = 1, 2, 3 Calculate $SSR(X_j | X_4)$

$$SSR(X_1 \mid X_4) = SSR(X_1, X_4) - SSR(X_4) = 11.11514 - 11.10557 = 0.00957$$

$$SSR(X_2 \mid X_4) = SSR(X_2, X_4) - SSR(X_4) = 13.67307 - 11.10557 = 2.5675$$

$$SSR(X_3 | X_4) = SSR(X_3, X_4) - SSR(X_4) = 14.47288 - 11.10557 = 3.36731 \leftarrow max$$

$$\therefore F_3 = \frac{MSR(X_3 \mid X_4)}{MSE(X_3, X_4)} = \frac{[SSR(X_3, X_4) - SSR(X_4)]/[df_{SSR(X_3, X_4)} - df_{SSR(X_4)}]}{SSE(X_3, X_4)/df_{SSE(X_3, X_4)}} = \frac{3.36731/(2-1)}{6.60445/51} = \frac{6.60445/51}{6.60445/51} = \frac{3.36731/(2-1)}{6.60445/51} = \frac{3.36731/(2-1)}{6.60445/(2-1)} = \frac{3.36731/(2-1)}{6.6045/(2-1)} = \frac{3.36731/(2-1)}{6.6045/(2-1)} = \frac{3.36731/(2-1)}{6.6045/(2$$

$$=\frac{3.36731}{0.129499}=\mathbf{\underline{26.00259}}$$

Since $F_3 = 26.00259 > F_0^* = 4.2$, we keep $X_3 \& X_4$

(3) Fit all three-term models: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_3 + \beta_3 x_j + \varepsilon$ for j = 1, 2 Calculate $SSR(X_i | X_3, X_4)$

i.e.

$$SSR(X_1 \mid X_3, X_4) = SSR(X_1, X_3, X_4) - SSR(X_3, X_4) = 15.16439 - 14.47288 = 0.69151$$

 $SSR(X_2 \mid X_3, X_4) = SSR(X_2, X_3, X_4) - SSR(X_3, X_4) = 18.60417 - 14.47288 = 4.13129$

↑max

$$\therefore F_2 = \frac{MSR(X_2 \mid X_3, X_4)}{MSE(X_2, X_3, X_4)} = \frac{[SSR(X_2, X_3, X_4) - SSR(X_3, X_4)]/[df_{SSR(X_2, X_3, X_4)} - df_{SSR(X_3, X_4)}]}{SSE(X_2, X_3, X_4)/df_{SSE(X_2, X_3, X_4)}} = \frac{4.13129/(3-2)}{2.47316/50} = \frac{4.13129/(3-2)}{2.47316/50}$$

$$=\frac{4.13129}{0.0494632}=\mathbf{83.52249}$$

Since $F_2 = 83.52249 > F_0^* = 4.2$, we keep $X_2, X_3 \& X_4$

(4) Fit the full model: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_3 + \beta_3 x_2 + \beta_4 x_1 + \varepsilon$ Calculate $SSR(X_1 | X_2, X_3, X_4)$ i.e. $SSR(X_1 | X_2, X_3, X_4) = SSR(X_1, X_2, X_3, X_4) - SSR(X_2, X_3, X_4) = 20.49413 - 18.60417 = 1.88996$

$$\therefore F_1 = \frac{MSR(X_1 \mid X_2, X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_2, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/df_{SSE(X_1, X_2, X_3, X_4)}} = \frac{1.88996/(4-3)}{0.5832/49} = \frac{1.88996/(4-3)}{0$$

$$=\frac{1.88996}{0.011902}=$$
 $=$ $\frac{158.79348}{0.011902}$

Since $F_1 = 158.79348 > F_0^* = 4.2$, we keep $X_1, X_2, X_3 & X_4$

- \therefore the best set is $\{X_1, X_2, X_3, X_4\}$, i.e. the full model.
- **5.** Determine the subset of variables that is selected as best by the **Backward Elimination Procedure** using $F_0^{**} = 4.1$ (to-delete-variable). Show your steps.

Fit the full model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$ and check whether model is significant (at $\alpha = 5\%$)

i.e.
$$F = \frac{MSR_f}{MSE_f} = \frac{SSR_f/4}{SSE_f/49} = \frac{5.1235325}{0.011902} = 430.4766$$

Since $F=430.4766 > F_{0.05;(4,49)}=2.57$, we conclude that at 5% level of significance, the full model is significant (i.e. it can be used)

(1) Calculate

$$F_{j} = (t_{j})^{2} = \frac{MSR(X_{j} \mid all \mid X's \mid except \mid X_{j})}{MSE(X_{1}, X_{2}, X_{3}, X_{4})} = \frac{[SSR_{f} - SSR(all \mid X's \mid except \mid X_{j})]/d.f.}{MSE_{f}}$$

for j = 1, 2, 3, 4

i.e.

$$F_{1} = \frac{MSR(X_{1} \mid X_{2}, X_{3}, X_{4})}{MSE(X_{1}, X_{2}, X_{3}, X_{4})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})} - df_{SSR(X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})}} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})} - df_{SSR(X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/(df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/(df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/(df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/(df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{1}, X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSR(X_{1}, X_{2}, X_{3}, X_{4})/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{1}, X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSR(X_{1}, X_{2}, X_{3}, X_{4})/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{1}, X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSR(X_{1}, X_{2}, X_{3}, X_{4})/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}$$

$$=\frac{20.49413-18.60417/(4-3)}{0.5832/49}=\frac{1.88996}{0.011902}=\mathbf{158.79348}$$

$$F_2 = \frac{MSR(X_2 \mid X_1, X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/df_{SSE(X_1, X_2, X_3, X_4)}} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})}$$

$$=\frac{20.49413-15.16439/(4-3)}{0.5832/49}=\frac{5.32974}{0.011902}=$$
447.80205

$$F_{3} = \frac{MSR(X_{3} \mid X_{1}, X_{2}, X_{4})}{MSE(X_{1}, X_{2}, X_{3}, X_{4})} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{1}, X_{2}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})} - df_{SSR(X_{1}, X_{2}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})}} = \frac{[SSR(X_{1}, X_{2}, X_{3}, X_{4}) - SSR(X_{1}, X_{2}, X_{3}, X_{4})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})} - df_{SSR(X_{1}, X_{2}, X_{3}, X_{4})}]}{SSE(X_{1}, X_{2}, X_{3}, X_{4})/(df_{SSE(X_{1}, X_{2}, X_{3}, X_{4})})$$

$$=\frac{20.49413-13.68169/(4-3)}{0.5832/49}=\frac{6.81244}{0.011902}=$$
572.37775

$$= \frac{20.49413 - 20.49376/(4-3)}{0.5832/49} = \frac{0.00037}{0.011902} = \frac{\textbf{0.03108}}{0.03108} \quad \leftarrow \text{ min}$$

Since $F_4 = 0.03108 < F_0^{**} = 4.1$, we delete X_4

(2) Fit $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ and calculate

$$F_{j} = \frac{MSR(X_{j} | all \quad X's \quad except \quad X_{j})}{MSE(X_{1}, X_{2}, X_{3})}$$
 for $j = 1, 2, 3$

i.e.

$$F_{1} = \frac{MSR(X_{1} \mid X_{2}, X_{3})}{MSE(X_{1}, X_{2}, X_{3})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/df_{SSE(X_{1}, X_{2}, X_{3})}} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/[df_{SSE(X_{1}, X_{2}, X_{3})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/[df_{SSE(X_{1}, X_{2}, X_{3})}]}$$

$$= \frac{20.49376 - 17.13462/(3-2)}{0.58357/50} = \frac{3.35914}{0.0116714} = \frac{287.8095}{0.0116714} \leftarrow \min$$

$$F_{2} = \frac{MSR(X_{2} | X_{1}, X_{3})}{MSE(X_{1}, X_{2}, X_{3})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/df_{SSE(X_{1}, X_{2}, X_{3})}} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSR(X_{1}, X_{2}, X_{3})/(df_{SSE(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSE(X_{1}, X_{2}, X_{3})}]}{SSR(X_{1}, X_{2}, X_{3})/[df_{SSE(X_{1}, X_{2}, X_{3})}]}$$

$$=\frac{20.49376-13.62588/(3-2)}{0.58357/50}=\frac{6.86788}{0.0116714}=\mathbf{588.43669}$$

$$F_{3} = \frac{MSR(X_{3} \mid X_{1}, X_{2})}{MSE(X_{1}, X_{2}, X_{3})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2})}]}{SSE(X_{1}, X_{2}, X_{3})/df_{SSE(X_{1}, X_{2}, X_{3})}} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSR(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSR(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSE(X_{1}, X_{2}, X_{3})/(df_{SSR(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSR(X_{1}, X_{2}, X_{3})/(df_{SSR(X_{1}, X_{2}, X_{3})})} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSR(X_{1}, X_{2}, X_{3})/[df_{SSR(X_{1}, X_{2}, X_{3})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3})} - df_{SSR(X_{1}, X_{2}, X_{3})}]}{SSR(X_{1}, X_{2}, X_{3})/[df_{SSR(X_{1}, X_{2}, X_{3})}]} = \frac{[SSR(X_{1}, X_{2}, X_{3}) - SSR(X_{1}, X_{2}, X_{3})]/[df_{SSR(X_{1}, X_{2}, X_{3}, X_{3}$$

$$=\frac{20.49376-12.76391/(3-2)}{0.58357/50}=\frac{7.72985}{0.0116714}=\textbf{662.2898}$$

Since $F_1 = 287.8095 \le F_0^{**} = 4.1$, we can not delete X_1 (i.e. we keep X_1) and we stop.

 \therefore the best set is $\{X_1, X_2, X_3\}$

- **6.** Determine the subset of variables that is selected as best by the **Stepwise Regression Procedure** using $F_0^* = 4.2$ (to-add) and $F_0^{**} = 4.1$ (to-delete). Show your steps.
- (1) Fit all one-term models: $y = \beta_0 + \beta_1 x_j + \varepsilon$ for j = 1, 2, 3, 4
 - as in Forward Selection in part (a), we know that we keep X4
- (2) Fit all two-term models: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_j + \varepsilon$ for j = 1, 2, 3
 - as in Forward Selection in part (a), we know that we keep X₃ and X₄
 - \triangleright Is X_4 redundant when X_3 is in the model?

i.e.
$$SSR(X_4 \mid X_3) = SSR(X_3, X_4) - SSR(X_3) = 14.47288 - 9.33966 = 5.13322$$

$$\therefore F_4 = \frac{MSR(X_4 \mid X_3)}{MSE(X_3, X_4)} = \frac{[SSR(X_3, X_4) - SSR(X_3)]/[df_{SSR(X_3, X_4)} - df_{SSR(X_3)}]}{SSE(X_3, X_4)/df_{SSE(X_3, X_4)}} = \frac{5.13322/(2-1)}{6.60445/51} = \frac{6.60445/51}{6.60445/51} = \frac{5.13322/(2-1)}{6.60445/51} = \frac{5.1322/($$

$$=\frac{5.13322}{0.129499}=\underline{\mathbf{39.639}}$$

Since
$$F_4 = 39.639 \le F_0^{**} = 4.1$$
, we keep $X_3 \& X_4$

- (3) Fit all three-term models: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_3 + \beta_3 x_j + \varepsilon$ for j = 1, 2
 - as in Forward Selection in part (a), we know that we keep X₂, X₃ and X₄
 - \triangleright Is X_3 redundant when $X_2 \& X_4$ are in the model?

i.e.
$$SSR(X_3 \mid X_2, X_4) = SSR(X_2, X_3, X_4) - SSR(X_2, X_4) = 18.60417 - 13.67307 = 4.9311$$

$$=\frac{4.9311/(3-2)}{2.47316/50}=\frac{4.9311}{0.0494632}=\mathbf{99.6922}$$

Since
$$F_3 = 99.6922 \le F_0^{**} = 4.1$$
, we keep $X_3 \mid X_2 \mid X_4 \mid X_5 \mid X_6 \mid X_6$

 \triangleright Is X_4 redundant when $X_2 \& X_3$ are in the model?

i.e.
$$SSR(X_4|X_2,X_3) = SSR(X_2,X_3,X_4) - SSR(X_2,X_3) = 18.60417 - 17.13462 = 1.46955$$

$$\dot{\cdot} \cdot F_4 = \frac{MSR(X_4 \mid X_2, X_3)}{MSE(X_2, X_3, X_4)} = \frac{[SSR(X_2, X_3, X_4) - SSR(X_2, X_3)]/[df_{SSR(X_2, X_3, X_4)} - df_{SSR(X_2, X_3)}]}{SSE(X_2, X_3, X_4)/df_{SSE(X_2, X_3, X_4)}} = \frac{1.46955/(3-2)}{2.47316/50} = \frac{1.46955}{0.0494632} = 29.70996$$

Since $F_4 = 29.70996 \le F_0^{**} = 4.1$, we keep $X_4 \mid X_2 \mid X_3 \mid X_4 \mid X_5 \mid X_5$

(4) Fit the full model: $y = \beta_0 + \beta_1 x_4 + \beta_2 x_3 + \beta_3 x_2 + \beta_4 x_1 + \varepsilon$ - as in Forward Selection in part (a), we know that we keep X_1, X_2, X_3 and X_4

now we need to check for redundancy of previously entered variables when X_1 is in the model:

- \triangleright Is X_2 redundant when X_1 , X_3 & X_4 are in the model?
- i.e. $SSR(X_2|X_1,X_3,X_4) = SSR(X_1,X_2,X_3,X_4) SSR(X_1,X_3,X_4) = 20.49413 15.16439 = 5.32974$

$$\dot{\cdot\cdot} F_2 = \frac{MSR(X_2 \mid X_1, X_3, X_4)}{MSE(X_1, X_2, X_3, X_4)} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/df_{SSE(X_1, X_2, X_3, X_4)}} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_2, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_2, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)} - df_{SSR(X_1, X_2, X_3, X_4)}]}{SSE(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})} = \frac{[SSR(X_1, X_2, X_3, X_4) - SSR(X_1, X_2, X_3, X_4)]/[df_{SSR(X_1, X_2, X_3, X_4)}]}{SSR(X_1, X_2, X_3, X_4)/(df_{SSR(X_1, X_2, X_3, X_4)})}$$

$$=\frac{5.32974/(4-3)}{0.5832/49}=\frac{5.32974}{0.011902}=447.80205$$

Since $F_2 = 447.80205 \le F_0^{**} = 4.1$, we keep $X_2 \mid X_1, X_3, X_4$

> Is X_3 redundant when X_1 , X_2 & X_4 are in the model?

i.e.
$$SSR(X_3|X_1,X_2,X_4) = SSR(X_1,X_2,X_3,X_4) - SSR(X_1,X_2,X_4) = 20.49413 - 13.68169 = 6.81244$$

$$=\frac{6.81244/(4-3)}{0.5832/49}=\frac{6.81244}{0.011902}=$$
572.37775

Since $F_3 = 572.37775 \le F_0^{**} = 4.1$, we keep $X_3 \mid X_1, X_2, X_4$

- \triangleright Is X_4 redundant when $X_1, X_2 \& X_3$ are in the model?
- i.e. $SSR(X_4|X_1,X_2,X_3) = SSR(X_1,X_2,X_3,X_4) SSR(X_1,X_2,X_3) = 20.49413 20.49376 = 0.00037$

$$=\frac{0.00037/(4-3)}{0.5832/49}=\frac{0.00037}{0.011902}=\mathbf{0.03108}$$

Since $F_4 = 0.03108 < F_0^{**} = 4.1$, we delete X_4 when X_1 , X_2 & X_3 are in the model.

 \therefore the best set is $\{X_1, X_2, X_3\}$