Lab#5

Dummy Variables Ex. (Thanksgiving Turkeys)

Obs	Ages(X₁)	Weights(Y)	Origin
1	28	13.3	G
2	20	8.9	G
3	32	15.1	G
4	22	10.4	G
5	29	13.1	V
6	27	12.4	V
7	28	13.2	V
8	26	11.8	V
9	21	11.5	W
10	27	14.2	W
11	29	15.4	W
12	23	13.1	W
13	25	13.8	W

y = turkey weight (in pounds)

 x_1 = ages (in weeks)

n = 13 thirteen Thanksgiving turkeys.

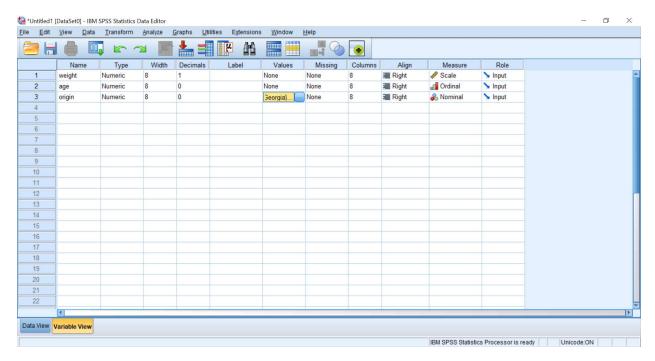
Origin = 1) Four of these turkeys were reared in Georgia(G),

- 2) Four in Virginia(V)
- 3) Five in Wisconsin(W).

Let us define 2 dummy variables (because categorical variable "origin" has 3 categories: G, V and W).

Let
$$x_2 = \begin{cases} 1; & \text{if G} \\ 0; & \text{ow} \end{cases}$$
 and $x_3 = \begin{cases} 1; & \text{if V} \\ 0; & \text{ow} \end{cases}$

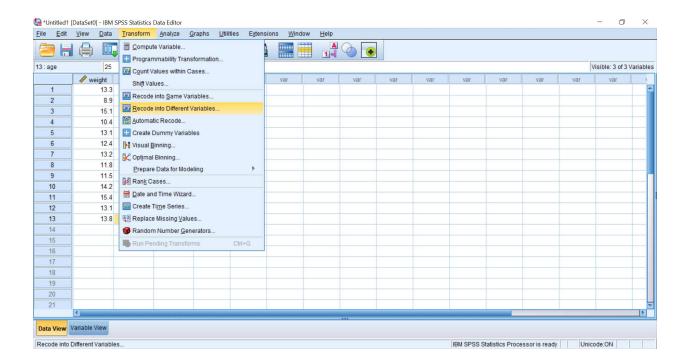
We enter the y, x1 and origin variables in to SPSS:



With categorical variable "origin" having the values defined as:

- i.e "value" 1, "label" if Georgia \rightarrow "Add" \rightarrow "OK",
 - "value" 2 , "label" if Virginia \rightarrow "Add" \rightarrow "OK",
 - "value" 3 , "label" if Wisconsin \rightarrow "Add" \rightarrow "OK".13

Next , we need to define our dummy variables x_2 (as 1 if G and 0 otherwise) and x_3 (as 1 if V and 0 otherwise).



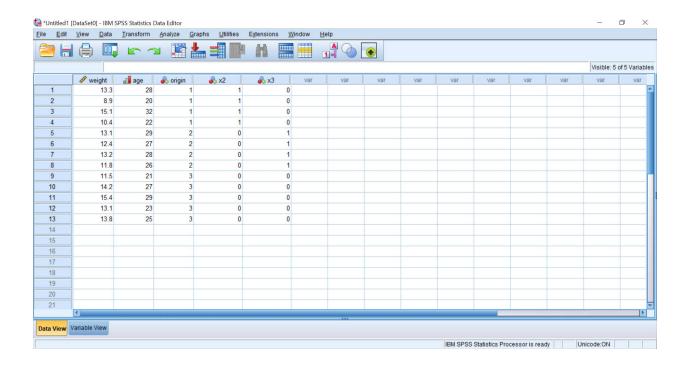
 \rightarrow "Transform" \rightarrow "Recode into different variables" \rightarrow select "origin" under the <u>input variable</u> and type "x2" under <u>output variable</u> \rightarrow click on "old and new values" \rightarrow and under old values type '1', then under new value type '1' \rightarrow click on "add". Repeat with: under old values type '2', then under new value type '0' \rightarrow click on "add". Repeat with: under old values type '3', then under new value type '0' \rightarrow click on "add" \rightarrow click on "continue" \rightarrow "change" \rightarrow OK.

(NOTE; here we defined x_2 dummy variable that is 1 if origin is Georgia and 0 if origin is Virginia or Wisconsin)

Repeat, the same process, by defining a dummy variable x_3 such that x_3 =1 if origin is Virginia and x_3 =0 if origin is Georgia or Wisconsin.

i.e. \rightarrow "Transform" \rightarrow "Recode into different variables" \rightarrow select "origin" under the <u>input variable</u> and type "x3" under <u>output variable</u> \rightarrow click on "old and new values" \rightarrow and under old values type '1', then under new value type '0' \rightarrow click on "add". Repeat with: under old values type '2', then under new value type '1' \rightarrow click on "add". Repeat with: under old values type '3', then under new value type '0' \rightarrow click on "add" \rightarrow click on "continue" \rightarrow "change" \rightarrow OK.

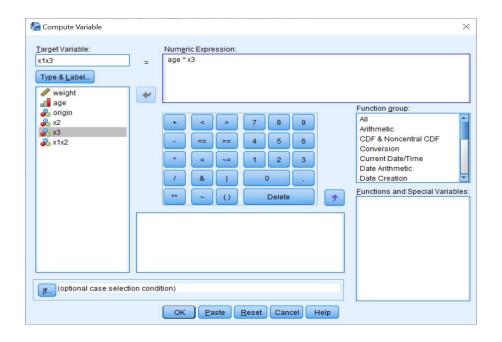
We get following variables:



Our <u>full model</u> is: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \varepsilon$

To define the interaction terms:

Go to "Transform" \rightarrow "Compute Variable" \rightarrow type 'x1x2' under <u>target variable</u> and then under <u>numeric expression</u> type 'origin*x2' \rightarrow OK. Repeat with defining 'x1x3' as 'origin*x3' \rightarrow OK.



To run the full model:

Go to "Analyze" \rightarrow "Regression" \rightarrow "Linear" \rightarrow put 'weight' under dependent variable and 'age', x2, x3, x1x2 and x1x3 under independent variables \rightarrow OK

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	<mark>38.711</mark>	<mark>5</mark>	7.742	76.744	.000 ^b
	Residual	.706	7	.101		
	Total	39.417	12			

a. Dependent Variable: weight

b. Predictors: (Constant), x1x3, age, x2, x1x2, x3

Coefficients^a

				Standardized		
		Unstandardize	ed Coefficients	Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.475	1.264		1.959	.091
	age	.445	.050	.871	8.861	.000
	x2	-3.454	1.531	916	-2.257	.059
	x 3	-2.775	4.109	736	675	.521
	x1x2	.061	.060	.423	1.013	.345
	x1x3	.025	.151	.182	.166	.873

a. Dependent Variable: weight

• Test whether the 3 lines have the same y-intercepts, i.e.

$$H_0: \beta_2 = \beta_3 = 0$$

 H_a : at least one of β 's $\neq 0$

The <u>reduced model</u> is: $y = \beta_0 + \beta_1 x_1 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \varepsilon$

To run the reduced model:

Go to "Analyze" \rightarrow "Regression" \rightarrow "Linear" \rightarrow put 'weight' under dependent variable and 'age', x1x2 and x1x3 under independent variables \rightarrow OK

Α	N	O	V	Αa
---	---	---	---	----

N	lodel		Sum of Squares	df	Mean Square	F	Sig.
1		Regression	<mark>38.196</mark>	3	12.732	93.838	.000b
		Residual	1.221	9	.136		
		Total	39.417	12			

a. Dependent Variable: weight

b. Predictors: (Constant), x1x3, age, x1x2

Coefficients^a

	Comolonia						
				Standardized			
		Unstandardize	ed Coefficients	Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	.107	.814		.132	.898	
	age	.539	.033	1.054	16.423	.000	
	x1x2	074	.010	510	-7.555	.000	
	x1x3	083	.010	608	-8.574	.000	

a. Dependent Variable: weight

 $\underline{\text{R.R.:}} \quad \text{reject Ho if} \ F_{\textit{part}} \ (or \ F_{\textit{drop}}) > F_{\alpha;(2,7)}$