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Introduction

We study tilings of R2 which are aperiodic, but not completely random.

Tiling T −→ topological space ΩT

Elements of ΩT are tilings, and R2 acts by translating them.

We replace (ΩT ,R2) with a groupoid Rpunc which captures all essential
features of the action.

Tiling groupoid Rpunc −→ groupoid C∗-algebra C ∗(Rpunc).

Properties of C ∗(Rpunc) ⇐⇒ properties of T .
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Tilings

Definition

A tiling T of R2 is a countable set T = {t1, t2, . . . } of subsets of R2,
called tiles such that

Each tile is homeomorphic to the closed ball (they are usually
polygons),

ti ∩ tj has empty interior whenever i 6= j , and

∪∞i=1ti = R2.

A patch is a finite subset of T . The support of a patch is the union
of its tiles.

If T is a tiling, x ∈ R2, T + x is the tiling formed by translating every
tile in T by x .

T is aperiodic if T + x 6= T for all x ∈ R2 \ {0}.
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Substitution Rules

Frequently we have a finite number of “tile types”.

P = {p1, p2, . . . , pN} is called a set of prototiles for T if
t ∈ T =⇒ t = p + x for some p ∈ P and x ∈ R2.

Definition

A substitution rule on a set of prototiles P consists of

A scaling constant λ > 1

A rule ω such that, for each p ∈ P, ω(p) is a patch whose support is
λp and whose tiles are translates of members of P.

ω can be applied to patches and tilings by applying it to each tile.

ω can be iterated, since ω(p) is a patch.
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Example: Penrose Tiling
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Example: Penrose Tiling

Prototiles
(+ rotates by π

5 )
γ = golden ratio

γ γ

1

γ γ

γ2

ω
λ=γ
−→

Charles Starling () Substitution Tilings and Groupoids June 6, 2010 6 / 27



Example: Penrose Tiling

p

ω−→

ω(p)

ω−→

ω2(p)
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Producing a Tiling from a Substitution Rule

p ⊂ ω4(p) ⊂ ω8(p)

ω4n(p) ⊂ ω4(n+1)(p)
Then

T =
∞⋃
n=1

ω4n(p)

is a tiling.
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The Tiling Metric

The Tiling Metric

The distance between two tilings T and T ′ is less than ε if T and T ′ agree
on a ball of radius 1

ε up to a small translation of at most ε. The distance
d(T ,T ′) is then defined as the inf of all these ε (or 1 if no such ε exists).

There are essentially two ways that T and T ′ can be close:

1 T ′ = T + x for some |x | < ε.

2 T ′ agrees with T exactly on a large ball around the origin, then
disagrees elsewhere.

In most cases, 1 looks like a disc while 2 looks like a Cantor set (ie, totally
disconnected, compact, no isolated points).
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The Tiling Space

Definition

The tiling space associated with a tiling T , denoted ΩT , is the
completion of T + R2 = {T + x | x ∈ R2} in the tiling metric. This is also
called the continuous hull of T .

It’s not obvious, but the elements of ΩT are tilings.

ΩT is the set of all tilings T ′ such that every patch in T ′ appears
somewhere in T .
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Properties of the tiling space

Definition

A tiling T is said to have Finite Local Complexity (FLC) if for every
r > 0, the number of different patches (up to translation) of diameter r in
T is finite .

If T has FLC, then ΩT is compact.

Definition

A substitution rule ω is said to be primitive if there exists some n such
that such that ωn(pi ) contains a copy of pj for every pi , pj ∈ P.

If T is formed by a primitive substitution rule, and T ′ ∈ ΩT , then
ΩT ′ = ΩT .

T ,T ′ both come from same primitive ω =⇒ ΩT = ΩT ′

Replace ΩT → Ω.
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Example: Grid

Infinite grid in R2
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Example: Grid

Placement of the origin in any square determines the tiling.
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Example: Grid

Placement of the origin in any square determines the tiling. T = T − x
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Example: Grid

a and b are the same in the tiling space =⇒ ΩT
∼= T2
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Example: Grid

The grid is periodic, and gives a somewhat boring tiling space.

Recall two ways that T and T ′ can be close:

1 T ′ = T + x for some |x | < ε.

2 T ′ agrees with T exactly on a large ball around the origin, then
disagrees elsewhere.

In the case of the grid, neighbourhoods consist of the first way only. The
second way is much more interesting!

For this reason we assume finite local complexity, a primitive substitution
rule, and that every tiling in Ω is aperiodic.

We produce a subspace of Ω to essentially make the first way vanish.
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The discrete hull

We replace each prototile p ∈ P −→ (p, x(p)), where x(p) ∈ the interior
of p. The point x(p) is called the puncture of p. If t ∈ T , then t = p + y
for some y and so we define x(t) = x(p) + y .

Define Ωpunc ⊂ Ω as the set of all tilings T ∈ Ω such that the origin is on
a puncture of a tile in T , ie, x(t) = 0 for some t ∈ T . Ωpunc is called the
discrete tiling space or discrete hull.

Ωpunc is homeomorphic to a Cantor set (ie it is totally disconnected,
compact, and has no isolated points).

Its topology is generated by clopen sets of the following form: if P is a
patch and t ∈ P, then let

U(P, t) = {T ∈ Ωpunc | 0 ∈ t ∈ P ⊂ T}
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If T looks like this around the origin 0 ∈ R2, then T ∈ U(P, t1).
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The tiling groupoid

Let Rpunc = {(T ,T + x) | T ,T + x ∈ Ωpunc}. Then Rpunc is an
equivalence relation.

When given the topology inherited from Ωpunc × R2, Rpunc is an étale
equivalence relation.

The topology is generated by compact open sets of the following form: if
P is a patch and t1, t2 ∈ P, then let

V (P, t1, t2) = {(T ,T − x) | T ∈ U(P, t1), x(t2) = x}

When restricted to these neighbourhoods, the range and source maps are
homeomorphisms, and

r(V (P, t1, t2)) = U(P, t1), s(V (P, t1, t2)) = U(P, t2)
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If T ∈ U(P, t1), then (T ,T − x) ∈ V (P, t1, t2).
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The tiling groupoid

Properties of Rpunc :

r(T ,T ′) = (T ,T ) and s(T ,T ′) = (T ′,T ′).

The unit space R0
punc is Ωpunc Rpunc is r-discrete – Ωpunc is open in

Rpunc .

Rpunc is principal (that is, (r , s) : Rpunc → Ωpunc × Ωpunc is
injective).

Rpunc is locally compact (indeed, there is a basis of its topology
consisting of compact open sets).

Rpunc has a Haar system consisting of counting measures.
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An AF-subgroupoid

If p ∈ P, then ωn(p) is a patch.

For each n ∈ N, define

Rn =
⋃
p∈P

t1,t2∈ωn(p)

V (ωn(p), t1, t2)

Rn is a compact and open subequivalence relation of Rpunc .

Rn ⊂ Rn+1(it isn’t obvious, but this depends on Ω not containing any
periodic tilings).

Let RAF = ∪∞n=1Rn. RAF is an increasing union of compact open
groupoinds and is hence an AF-groupoid.
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C∗-algebras

Since Rpunc is a principal étale groupoid, we can form its C∗-algebra,
C ∗(Rpunc).

Cc(Rpunc) - the complex-valued compactly supported functions on Rpunc .

For f , g ∈ Cc(Rpunc), the convolution product and involution are

f ∗ g(T ,T ′) =
∑

T ′′∈[T ]

f (T ,T ′′)g(T ′′,T ′)

f ∗(T ,T ′) = f (T ′,T )

Cc(Rpunc) is a ∗-algebra, and when completed in a suitable norm becomes
C ∗(Rpunc).

This algebra has a nice description in terms of patches and tiles.
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C∗-algebras

For an open neighbourhood V (P, t1, t2), let e(P, t1, t2) denote the
characteristic function of this set.

Since these sets are clopen, these functions are continuous.

Let
E = spanC{e(P, t1, t2) | P is a patch in T , t1, t2 ∈ P}

This set becomes a dense ∗−subalgebra of C ∗(Rpunc) with product and
involution determined by the formulas

e(P, t1, t2)e(P ′, t ′1, t
′
2) =

{
e(P ∪ P ′, t1, t

′
2) if t2 = t ′1 and P,P ′ agree

0 otherwise

e(P, t1, t2)∗ = e(P, t2, t1)
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C∗-algebras

e(P, t, t)e(P, t, t) = e(P, t, t) = e(P, t, t)∗, so these elements are
projections.

e(P, t1, t2)∗e(P, t1, t2) = e(P, t2, t1)e(P, t1, t2) = e(P, t2, t2)

e(P, t1, t2)e(P, t1, t2)∗ = e(P, t1, t2)e(P, t2, t1) = e(P, t1, t1)

Thus each e(P, t1, t2) is a partial isometry.
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Finite dimensional subalgebras

Fix n ∈ N and p ∈ P, and consider the patch ωn(p).

For t1, t2, t
′
1, t
′
2 ∈ ωn(p), we have

e(ωn(p), t1, t2)e(ωn(p), t ′1, t
′
2) =

{
e(ωn(p), t1, t

′
2) if t2 = t ′1

0 otherwise

Thus, the e(ωn(p), t1, t2) act like matrix units, so if k = |ωn(p)|,

An,p = spanC{e(ωn(p), t1, t2) | t1, t2 ∈ ωn(p)} ∼= Mk

An =
⊕
p∈P

An,p = C ∗(Rn)

C ∗(RAF ) =
⋃
n

An
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K-theory

K0 is a functor from C∗-algebras to ordered abelian groups.

If C∗-algebras are “non-commutative geometry”, then K0 is a
non-commutative homology.

K0(C ∗(Rpunc)) ∼= Ȟ0(Ω)⊕ Ȟ2(Ω)
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