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Abstract

We study the dynamics of tiling spaces through cohomology. An adapta-

tion of the Čech-deRham theorem allows us to compute the Ruelle-Sullivan

map for such spaces and consider its image together with cohomology as a

more useful invariant than cohomology alone. Computation of the map is

performed for the Penrose tiling and the Octagonal tiling.
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Chapter 1

Introduction

In the 60’s and 70’s, patterns were discovered in nature which were aperiodic,

yet displayed some long-range order. These were usually crystaline in nature,

but went against the laws of crystals as they were known at the time. These

were studied with great interest, and eventually this phenomenon came to

be called aperiodic order. Tilings are the major example of objects that can

display aperiodic order. Much of the study of aperiodic order comes down

to the study of certain tilings.

When one thinks of a tiling, what usually comes to mind is a collection of

polygons fitting together to cover the plane. The mathematical definition of a

tiling extends this to mean a collection of subsets of Rn homeomorphic to the

closed unit ball in Rn whose interiors are pairwise disjoint and whose union is

all of Rn. From any tiling T we can form an Rn action on a topological space

ΩT ; in this way we study aperiodic order though dynamics. As has been

done in [AP] and elsewhere, one way of studying the order in these systems

is though the cohomology. This provides some important invariants, but fails
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to show the whole picture. In [KP] the authors provide a way of obtaining a

map on cohomology which can distinguish between two different Rn-actions

with the same cohomology. The goal of this thesis then is to compute this,

the Ruelle-Sullivan map, for tiling systems.

Shortly after Chapter 2 begins we give the definition of a tiling given

above with the hypothesis that all the tiles are translates of some member of

a finite set {p1, p2, . . . , pN}; the pi’s are called prototiles. We also make some

fairly standard constructions, including the notion of translating a tiling -

the translate of a tiling is just the tiling obtained by translating each of the

component tiles. The first non-intuitive construction is the definition of a

metric on a collection of tilings - this metric basically states that two tilings

are close if they agree up to a small translation on a large ball around the

origin. We then form the tiling space ΩT by taking T , taking all translates of

it by vectors in Rn and completing this collection in the metric; the elements

of this completion are shown to be tilings themselves. The space ΩT is shown

to be compact if we make a hypothesis on T called finite local complexity -

that there are only a finite number of different looking patches in T of any

given radius, up to translation. We then assume further that we have a

substitution rule on our prototiles - we have a constant λ > 1 and, for

each prototile, a rule for subdividing it into pieces, each of which is another

prototile, scaled down by a factor of λ−1. This idea extends to patches of tiles

and whole tilings, so we can construct the dynamical system with the space

ΩT and the substitution map ω. Assumptions are made on the substitution

so that ω is a homeomorphism and thus (ΩT , ω) is a topological dynamical

system.
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We then construct a cell complex Γ from ΩT as in [AP]. Basically, the

n-cells of Γ are the prototiles with their faces identified if they are adjacent

anywhere in any tiling in ΩT . A map γ based on the substitution is defined

on Γ and is shown to be onto, so we construct the inverse limit lim←
γ

Γ and

show it to be topologically conjugate to (ΩT , ω) under the assumption that

the substitution forces its border - this is explained in the section.

After defining cellular, Čech and dynamical cohomology, we begin to con-

nect them for the case n = 2 in Chapter 4. To map cellular cocycles to Čech

cocycles, an open cover U is constructed where each open set corresponds to

a vertex pattern in T . We then have a map that takes a vertex pattern to

the 0-cell at its center, and so this induces a map on the cellular 0-cochains

to the Čech 0-cochains. We define a similar map on 1-cochains and extend

this to a map on cohomology.

Next comes an adaptation of the Čech-deRham theorem [BT] to connect

the Čech cohomology to the dynamical cohomology, mapping Čech cocycles

to smooth functions on our space. We then define the Ruelle-Sullivan map

which takes such functions and integrates them over an invariant probability

measure on ΩT . In the case of n = 2, these integrate to vectors in Rn∗. The

philosophy, as suggested in [KP], is that the long range aperiodic order of an

aperiodic tiling is given by the its first cohomology group together with the

image of the Ruelle-Sullivan map.

To demonstrate this, in Chapter 5 we compute this map for two very

different tilings which have isomorphic first cohomology groups. The first is

the octagonal tiling, consisting of two labeled 1, 1,
√

2 triangles and a rhomb,

along with all their rotations though nπ
4

. We find that the first cohomology
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group to be Z5, and we can find a generating set with one of the generators

mapping to 0. Three of th remaining generators map to rotates of each other

by multiples of π
4

while the fifth points in a direction between the first two,

that is, at a multiple of π
8
. This highlights the symmetry of the tiling through

rotations of π
4
.

The second is the famous kite-and-dart tiling of Penrose. To allow for a

substitution rule, the kites and darts have been split into triangles, so that we

have 40 prototiles - two differently shaped triangles each given two different

labels, and all their rotations though nπ
5

. We compute the first cohomology

group to be isomorphic to Z5 and the image of one of its generators under

the Ruelle-Sullivan map to be 0. The image of the others are vectors in Rn∗

which are rotations of each other through different multiples of π
5
. Here we

see how our map captures some of the rotational symmetry in this aperiodic

tiling.
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Chapter 2

Tilings and Tiling Spaces

2.1 Cell Complexes

First let us solidify some terminology. Hereafter let

En =
{
x ∈ Rn

∣∣ |x| ≤ 1
}

Un =
{
x ∈ Rn

∣∣ |x| < 1
}

Sn−1 =
{
x ∈ Rn

∣∣ |x| = 1
}

ie, En is the closed unit ball in Rn, Un is its interior and Sn−1 is its boundary.

A CW-Complex is, roughly speaking, a space built up by the successive

adjoining of cells of dimension 0, 1, 2, . . . , etc. To be more precise:

Definition 2.1.1 A CW-Complex on a Hausdorff space X is defined by the

prescription of an ascending sequence of closed subspaces

X0 ⊂ X1 ⊂ X2 ⊂ . . .

which satisfy the following conditions:

(1) X0 ⊂ X has the discrete topology.
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(2) For n > 0, Xn is obtained from Xn−1 by adjoining a collection {en
λ}λ∈Λn of

disjoint sets homeomorphic to Un (called n-cells) such that for each λ ∈ Λn

there exists a continuous map

fλ : En → ēn
λ

such that fλ maps Un homeomorphically to en
λ and fλ(S

n−1) ⊂ Xn−1.

(3) X is the union of the X i for i ≥ 0.

(4) The space X and the subspaces X i all have the weak topology: A subset

A is closed if and only if A ∩ ēn is closed for all n-cells, en, n = 0, 1, 2 . . . .

A CW-complex is also called a cell complex. We denote Kn to be the set

{en
λ}λ∈Λn of n-cells adjoined to the complex at stage n. Also, en

λ will denote

the closure of an n-cell while ėn
λ will denote en

λ − en
λ and will be called the

boundary of en
λ.1 We say a CW-Complex is regular if it is a CW-Complex

and we can choose each of our fλ maps in part (2) of the definition to be

homeomorphisms. If Kn 6= ∅ but Ki = ∅ for all i > n, then we say that the

CW-Complex is n-dimensional. Also we say that, for two cells en−1
µ and en

λ,

that en−1
µ is a face of en

λ if en−1
µ ⊂ en

λ

Example - If S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, then define

K0 = {(0, 0,−1), (0, 0, 1)}

K1 =

{
{(sin πt, 0, cos πt) | r ∈ (0, 1)}, {(− sin πt, 0, cos πt) | r ∈ (0, 1)}

}
K2 =

{
{(x, y, z) ∈ S2 | y > 0}, {(x, y, z) ∈ S2 | y < 0}

}
1Note that this may not correspond to the topological definition of boundary.
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S2 is the boundary of the unit sphere, so we chose vertices to be at points of

intersection of S2 with the z-axis, edges to be lines connecting the two vertices

down opposite sides and our 2-cells to be the two determined half-shells. This

defines a regular CW-complex on S2, as the edges are both homeomorphic

to (0, 1) with the homeomorphisms extending to their closures (ie, the two

edges do not start and end at the same vertex). Also, the elements of K2

are both homeomorphic to the unit ball in R2, with the homeomorphisms

extending to the boundaries which themselves are homeomorphic to S1.

2.2 Tilings

Consider Rn, usual n-dimensional Euclidean space. If A is a subset of Rn,

we may translate it by a vector x ∈ Rn,

A+ x = {a+ x | a ∈ A}

We shall begin with a finite set {p1, p2, . . . pN} of subsets of Rn homeo-

morphic to the closed unit ball, which we call prototiles. These prototiles

may carry labels to distinguish them, ie, two prototiles may have the same

shape but have different labels. We then say that a tile is any subset of Rn

which is a translate of one of the pi. Then we define partial tiling and tiling

as follows:

Definition 2.2.1 A partial tiling is a collection {tj}j∈J of subsets of Rn

which are translates of prototiles with pairwise disjoint interiors. The sup-

port of a partial tiling is defined to be the union of its tiles; this is denoted

supp(·). A tiling is a partial tiling whose support is Rn. If T = {tj}j∈J is a

tiling, a patch in T is a subset of T with bounded support.
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When n = 1, a tiling can be thought of as a bi-infinite sequence of a finite

number of symbols, and when n = 2, it is what one normally thinks of as

a tiling; that is, shapes fitting together to cover the plane. If T = {tj}j∈J

is a tiling we can, for x ∈ Rn, define the translation of T by x by T + x =

{tj + x}j∈J .

We also think of a tiling T as a multi-valued function: for u ∈ Rn and

U ⊆ Rn, let

T (u) = {t ∈ T | u ∈ t}

T (U) =
⋃
u∈U

T (u)

Tilings T and T ′ are said to agree on U if T (U) = T ′(U).

Definition 2.2.2 A tiling is said to be periodic if there exists a non-zero

x ∈ Rn such that T = T + x. A tiling for which no such x exists is called

aperiodic.

Periodic tilings are generally not very interesting, so we usually want our

tiling to be aperiodic. Unless stated otherwise, tilings from here forward

are assumed to be aperiodic.

2.3 The Tiling Space ΩT

If T is a collection of tilings, then we can define a metric on T . If T, T ′ ∈ T

with T = {tj}j∈J and T ′ = {t′i}i∈I , then define

d(T, T ′) = inf{1, ε |∃ x, x′ ∈ Rn 3 |x| , |x′| < ε,

(T − x)(B1/ε(0)) = (T ′ − x′)(B1/ε(0))}
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This may look complicated, but it is really quite simple: two tilings are close

if they agree up to a small translation of a large ball about the origin. To

prove that this is a metric, we shall need a lemma.

Lemma 2.3.1 If a and b are positive numbers such that a+ b ≤ 1, then

1

a+ b
≤ 1− ab

a
.

Proof. Notice that since a, b, and a + b ≤ 1, we have that 1− a(a + b) ≥ 0,

and so

0 ≤ 1− a(a+ b)

⇒ 0 ≤ b− a2b− ab2

⇒ a ≤ a− a2b− ab2 + b

⇒ a ≤ (a+ b)(1− ab).

This implies the result. �

Proposition 2.3.1 d satisfies the conditions of a metric.

Proof. That d is symmetric is clear, as the definition is symmetric in T and T ′.

d(T, T ) = 0 for all T because we can always find arbitrarily large balls (and

hence arbitrarily small ε) around the origin where T matches up with itself.

Conversely, if d(T, T ′) = 0, then we must be able to find arbitrary large balls

around the origin where T and T ′ agree up to arbitrarily small translation –

this can only be true if T = T ′. This d is also always non-negative as it is

the inf of a set of positive numbers.
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Now, let R, S and T be tilings. We need to show that

d(T, S) ≤ d(T,R) + d(R,S).

If d(T,R) + d(R,S) ≥ 1 then the equality holds because this d(·, ·) ≤ 1

always. So assume d(T,R) + d(R,S) < 1 and pick ε > 0 small enough so

that d(T,R) + d(R,S) + ε < 1. Find xTR and x′TR with

|xTR| , |x′TR| < d(T,R) +
ε

2

such that

(T − xTR)
(
B 1

d(T,R)+ ε
2

(0)
)

= (R− x′TR)
(
B 1

d(T,R)+ ε
2

(0)
)
.

Likewise, find xRS and x′RS with

|xRS| , |x′RS| < d(R,S) +
ε

2

such that

(R− xRS)
(
B 1

d(R,S)+ ε
2

(0)
)

= (S − x′RS)
(
B 1

d(R,S)+ ε
2

(0)
)
.

Since T − xTR agrees with R − x′TR on
(
B 1

d(T,R)+ ε
2

(0)
)
, then we must have

that T − xTR − x′SR agrees with R − x′TR − x′SR on
(
B 1

d(T,R)+ ε
2

(−x′SR)
)
. In

a similar way we see that S − xSR − x′TR agrees with R − x′SR − x′TR on(
B 1

d(S,R)+ ε
2

(−x′TR)
)
. This means that S−xSR−x′TR agrees with T−xTR−x′SR

wherever these two balls overlap. This overlap includes the origin because

|−x′TR| , |−x′SR| < 1 and the radii 1
d(S,R)+ ε

2
and 1

d(T,R)+ ε
2

are both greater than

1. If r1 and r2 denote the largest balls around the origin which are contained

in
(
B 1

d(T,R)+ ε
2

(−x′SR)
)

and
(
B 1

d(S,R)+ ε
2

(−x′TR)
)

respectively, then

r1 =
1

d(T,R) + ε
2

− |−x′SR|
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r2 =
1

d(S,R) + ε
2

− |−x′TR| .

Now

r1 =
1

d(T,R) + ε
2

− |−x′SR|

≥ 1

d(T,R) + ε
2

− (d(S,R) +
ε

2
),

=
1− (d(T,R) + ε

2
)(d(S,R) + ε

2
)

d(T,R) + ε
2

.

The above lemma implies that r1 ≥ 1
d(T,R)+ ε

2
+d(S,R)+ ε

2
, and a symmetric

argument shows the same inequality for r2. Thus T−xTR−x′SR and S−xSR−

x′TR agree onB 1
d(T,R)+d(S,R)+ε

(0). Since we have that |xTR + x′SR| , |S − xSR − x′TR| ≤

d(T,R)+d(S,R)+ ε by the usual triangle inequality, we have that d(T, S) ≤

d(T,R) + d(R,S) + ε which proves the result. �

Thus any collection of tilings can be made into a metric space. One way

to produce our collection T of tilings is to start with a specific tiling T and

let T be the set of all translates of T , ie, T = T + Rn.

Definition 2.3.1 Let T be a tiling. Then we define ΩT to be the metric

space obtained by completing T + Rn in the above metric.

Strictly speaking, ΩT is a space of Cauchy sequences, but we can visualize

its elements as tilings. For example, consider the tiling of R2 consisting of

unit squares matching up edge-to-edge and vertex-to-vertex, (a checkerboard

pattern) with the vertices on the Z2 lattice, except that imagine that the 4

squares centered at the origin are replaced with a single 2 × 2 square. The

normal checkerboard tiling (call it C) can be identified with the Cauchy se-

quence {T +(n, 0)}∞n=0. This line of thinking leads easily to the identification

ΩT
∼= (T + R2) ∪ (C + R2).
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When we take a tiling T and form the metric space ΩT , we might like to

know whether ΩT possesses any nice topological properties. It is well known

and shown in [AP] that ΩT is compact if T satisfies the following condition.

Definition 2.3.2 A tiling T is said to have Finite Local Complexity if,

for every R > 0 there are only finitely many patches (up to translation) in T

whose radii of their supports are less than R.

2.4 Substitution and the Anderson-Putnam

Complex

One of the difficulties encountered in the study of tilings is producing inter-

esting examples. One method for doing this is called the substitution method.

The substitution method starts with our usual set {p1, p2, . . . pN} of a finite

number of prototiles along with a rule for splitting each prototile into tiles

which are smaller copies of the pi’s along with an inflation constant λ > 0

which inflates the smaller copies to be the same size as the originals. The

simplest example is to take a square with side length 1 and split it into 4

squares of side length one-half. If we then multiply this by λ = 2, we end up

with 4 copies of our original square. In general, the result of the procedure on

pi is denoted ω(pi) and it is a partial tiling with support λpi. This rule can

be extended to the translates of the p′is by defining ω(pi + x) = ω(pi) + λx.

Thus, we can easily define ω of a partial tiling - simply divide all the tiles

in the patch up according to the rule and inflate everything. This clearly

results in a new partial tiling whose support is λ times the support of the

old. This idea can be easily seen to extend to tilings, ie, ω(T ) is the tiling
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obtained by dividing each tile in T according to the rule and then inflating

everything - the result of this is also a tiling.

From here onward we shall be dealing with a tiling T , its tiling space

ΩT , and a substitution rule ω. We also make some assumptions for our

substitution rule ω. The first is that ω maps ΩT to itself and that ω is one-

to-one; this is what’s known as recognizability. It is a well known fact

(proved in [S]) that if ω is one-to-one, then ΩT contains no periodic tilings.

The second assumption is that the substitution is primitive, that is,

there is an M ∈ Z+ such that ωM(pi) contains a translate of pj for all

i, j = 1, 2, . . . , N .

The third assumption is that ω : ΩT → ΩT is onto. These assumptions

lead to the following fact from [AP].

Theorem 2.4.1 Under the hypotheses above, (ΩT , ω) is a topological dynam-

ical system, that is, ω : ΩT → ΩT is bijective and bicontinuous.

From now on assume that all prototiles are polygons and in the substi-

tution they meet vertex to vertex and edge to edge. We are now then ready

produce what is known as the Anderson-Putnam complex [AP] for ΩT . This

is started by constructing a Hausdorff space Γ0 which is the quotient of the

disjoint union of the prototiles obtained by gluing the prototiles together

in all ways in which the substitution rule allows them to be adjacent. The

inflation map ω induces a continuous surjection γ0 on Γ0, and with respect

to which we take the inverse limit to obtain a new space Ω0. We begin by

defining Γk for k = 0, 1. If t is a tile in a tiling T , we define T (0)(t) = {t}

and T (1)(t) = T (t), that is, T (k)(t) is the set of tiles in T that are within k

tiles of t. Consider the space ΩT × Rn with the product topology. Let∼k be
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the smallest equivalence relation on ΩT × Rn that takes (T1, u1), (T2, u2) to

be equivalent whenever T
(k)
1 (t1) − u1 = T

(k)
2 (t2) − u2 for some tiles ti ∈ Ti

such that ui ∈ ti. Now define Γk = ΩT ×Rn/ ∼k with the quotient topology.

For a simple example, consider again the tiling of the plane by unit

squares matching edge-to-edge. There is one prototile, and the identifica-

tion described above leads to identifyting the top edge with the bottom edge

and the left edge with the right edge. In this example, we see that Γ0 is

isomorphic to T, the 2-torus.

For the examples investigated in this thesis, the prototiles are going to be

2-cells, so let us see what we have constructed in this case. A point in ΩT×R2

is a tiling T together with a vector u in R2, so if we think of T covering R2,

we can think of (T, u) as u ∈ supp(T ). If u lies in the interior of a tile t, and

t is the translate of a prototile pi, then the equivalence class (T, u)0 is the

set of all (T1, u1) such that the point u1 on the tiling T1 is in the interior of

a tile t1 – which is also a translate of pi – and lies at exactly the same place

u lies on t. Thus, for each prototile pi we can define Pi = {(T, u)0 | T (u) is

a translate of pi}. The following will be stated without proof.

Claim 2.4.1 The Pi are 2-cells in a cell complex for Γ0.

To get the rest of this cell complex, imagine drawing all the prototiles, each

with the pi label; these are the Pi. Next, label the edges in the natural way:

start with any edge of any 2-cell, give it a label, then give the same label to

any edge on the other 2-cells that may be adjacent to it in any tiling in ΩT ;

do this again for all edges labeled so far until no new labelings can occur.

Repeat this for the other edges, and then for the vertices. This defines a

CW-complex on Γ0.
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To get a similar construction for Γ1, one simply has to start with more 2-

cells in the complex. For each prototile, there will be several different 2-cells,

each with a different label corresponding to different possible patterns of tiles

around it (a tile with such a label will hereafter refered to as a collared tile).

Theorem 2.4.2 If T has finite local complexity, Γk is a compact Hausdorff

space.

Proof Because T has finite local complexity, we can find an r > 0 such

that every possible pairwise adjacency of the prototiles is represented in the

partial tiling T
(
Br(0)

)
. If (T1, u1) is an element of ΩT ×Rn it happens that

either u1 lies on in the interior of a tile in T1 or on the edge between two tiles.

In either case, we can find u in Br(0) such that (T, u) ∼ (T1, u1) (in the first

case because all prototiles are represented in T
(
Br(0)

)
, in the second case

because of our pick of r). {T} × Br(0) is compact, and so Γk is the image

of a compact set under the quotient map π∼ : ΩT × Rn → Γk, and hence is

compact (the quotient map is always continuous with respect to the quotient

topology). A cell complex is always Hausdorff (see [Ma]), so we are done. �

2.5 ΩT as an Inverse Limit

We aim to show that ΩT is isomorphic to a space of sequences in elements of

Γk called an inverse limit ; spaces similar to the solenoids discussed in [BS].

To construct this, we first need a surjection on Γk.

Theorem 2.5.1 The inflation map ω induces a continuous surjection

γk : Γk −→ Γk ; γk((T, u)k) = (ω(T ), λu)k.
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Proof Let T1 and T2 be in ΩT , and assume that (T1, u1) ∼ (T2, u2). Thus

T
(k)
1 (t1) − u1 = T

(k)
2 (t2) − u2 for some u1 ∈ t1 ∈ T1 and u2 ∈ t2 ∈ T2,

and so we must have that t1 − u1 = t2 − u2. Thus we can choose tiles

t′1 and t′2 with λu1 ∈ t′1 ∈ ω({t1}) and λu2 ∈ t′2 ∈ ω({t2}) such that

ω(T1)
(k)(t′1) − λu1 = ω(T2)

(k)(t′2) − λu2. Thus, (ω(T1), λu1) ∼ (ω(T2), λu2)

and so γk is well-defined. The map on ΩT×Rn that sends (S, u) to (ω(S), λu)

is co-ordinatewise continuous and hence continuous, so when we pass to the

quotient we see that γk must be continuous. We have that ω is invertible on

ΩT , so (ω−1(S), λ−1u)k maps to (S, u). Thus, γk is onto. �

We now construct the inverse limit space of Γk with respect to γk. Define

Ωk = lim
←
γk

Γk = {{xi}∞i=1 | xi ∈ Γk, γk(xi) = xi−1}

This is a topological space with the relative topology from the product topol-

ogy (ie, Ωk ⊂
∏∞

i=1 Γk). Thus, a basis for the topology is the collection of

sets of the form BΩk
U,n = {x ∈ Ωk | xi ∈ γn−i

k (U); i = 1, 2, . . . , n}, where

U ⊂ Γk is open and n ∈ N. We can use the inflation map to define a right

shift ωk : Ωk → Ωk by ωk(x)i = γk(xi). We can see that ωk is invertible with

inverse ω−1
k (x)i = xi+1.

Before the last theorem of this chapter, we need a standard dynamical

definition and a definition of a condition due to Kellendonk.

Definition 2.5.1 Two topological dynamical systems (X, f) and (Y, g) are

said to be topologically semi-conjugate if there exists a continuous sur-

jection π : X → Y such that π ◦ f = g ◦ π. The systems are said to be

topologically conjugate if, in addition, π is injective.
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Definition 2.5.2 The substitution tiling space (ΩT , ω) is said to force its

border if there exists a fixed positive integer N such that for any tile t and

tilings T1 and T2 in ΩT containing t, we have that ωN(T1)

(
ωN({t})

)
=

ωN(T2)

(
ωN({t})

)
.

This says that there is a number of iterationsN of the inflation after which

the tiles surrounding the image of a tile in two different tilings must be the

same. This is always satisfied if the tiles we are dealing with are collared

tiles (the tiles surrounding collared tiles are known after each iteration of the

substitution).

Theorem 2.5.2 Let T be a substitution tiling under a substitution rule ω

which has recognizability, is primitive, and is an onto map from ΩT to itself.

Then ωk : Ωk → Ωk is a homeomorphism, and thus (Ωk, ωk) is a topological

dynamical system. The dynamical systems (ΩT , ω) and (Ω1, ω1) are topologi-

cally conjugate. Furthermore, if T forces its border, then (ΩT , ω) and (Ω0, ω0)

are topologically conjugate.

Proof We begin by showing that (ΩT , ω) is conjugate to (Ω1, ω1), and

then show that if the substitution forces its border that (Ω1, ω1) is conjugate

to (Ω0, ω0). We must therefore find a homeomorphism between the two

spaces that conjugates the actions. What is given below is a sketch of the

construction and is also given in [AP].

For any T ′ ∈ ΩT , define π : ΩT → Ω1 by π(T ′) = {xi}∞i=0 where xi =

(ω−1(T ′), 0)1. We have that γ1(xi) = xi−1, so π is well-defined. Let {xi}∞i=0 be

any element of Ω1; we wish to find a tiling T ′ that maps to it under π. Since

we must have that x0 = (T ′, 0)0, x0 specifies the tile t0 in T ′ which contains
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the origin. In the same sense, x1 must specify the tile in ω−1(T ) that contains

the origin - t1 say. Thus T ′ contains the partial tiling ω(t1). If we continue

in this way, we obtain a nested sequence of partial tilings. To have that the

limit of these is a tiling (our T ′), we recall that in Ω1 we are dealing with

“collared tiles”, so the tiles around any given patch are determined.

To see that π is one-to-one, suppose we have that π(T1) = π(T2) for some

T1, T2 ∈ ΩT . Define

r = inf

{
dist

(
t, ∂(∪T ′(t))

)
|T ′ ∈ ΩT , t ∈ T

}
where dist(U, V ) is defined as inf {‖u− v‖ |u ∈ U, v ∈ V } for any sets U, V ⊂

Rn. Finite Local Complexity of T implies that this is an inf over a finite set

of positive numbers, and is thus positive. Suppose v ∈ Rn; we show that T1

and T2 must agree on a ball around the origin containing v.

Let n ∈ Z+ such that rλn > ‖v‖. Now π(T1) = π(T2) as sequences in Ω1,

so π(T1)n = π(T2)n. We can see by finite induction that this reduces to saying

that, for some tiles t1 and t2 containing the origin, we have ω−n(T1)
(1)(t1) =

ω−n(T2)
(1)(t2). Since we are in Ω1, t1 and t2 are collared tiles. Thus, ω−n(T1)

and ω−n(T2) agree at least on Br(0), and hence T1 and T2 agree on Brλn(0).

Since v ∈ Brλn(0), we must have that T1 and T2 agree everywhere. Thus π

is one-to-one.

To show that π is onto, suppose we have x = {(Ti, ui)1}∞1=0 ∈ Ω1. Define

T ′ =
∞⋃
i=1

ωi
( ⋂

ui∈t∈Ti

T
(1)
i (t)− ui

)
.

It needs to be verified that this is a partial tiling, and, using the r defined

two paragraphs above, that it is in fact a tiling. Then it is clear that T ′ ∈ ΩT
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and π(T ′) = x.

Bicontinuity is proven using standard methods, and it is easy to check

that π ◦ ω = ω1 ◦ π to entwine the dynamics. Thus (Ω, ω) is topologically

conjugate to (Ω1, ω1).

Now we assume that the substitution rule forces its border, and prove

that (Ω1, ω1) is topologically conjugate to (Ω0, ω0). If (T1, u1) ∼1 (T2, u2)

then trivially (T1, u1) ∼0 (T2, u2), so the natural map

f : Ω1 → Ω0

f ((T ′, u)1) = (T ′, u)0

is well-defined for all T ′ ∈ ΩT and u ∈ Rn. We clearly have that f is onto,

but it is not in general one-to-one. Now

γ0 ◦ f ((T ′, u)1) = γ0(T
′, u)0

= (ω(T ′), λu)0

= f((ω(T ′), λu)1

= f ◦ γ1((T
′, u)1).

Thus we can define a well-defined map F : Ω1 → Ω0 by F (x)i = xi for i ∈ N+.

We claim F is a homeomorphism that conjugates ω1 and ω0.

To show that F is injective, we need that the substitution forces its border.

Suppose we have that F ({xi}∞i=0) = F ({xi}∞i=0) with xi = (Ti, ui)1 and yi =

(T ′i , u
′
i)1. We see that if v1 ∈ s1 ∈ S1 and v2 ∈ s2 ∈ S2 for S1 and S2 ∈ ΩT ,

and (S1, v1)0 = (S2, v2)0, then S
(0)
1 (s1) − v1 = S

(0)
2 (s2) − v2 and the forcing

the border condition implies that (ωN(S1), λ
Nv1)1 = (ωN(S2), λ

Nv2)1. By
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our hypothesis, F ({xi}∞i=0) = F ({xi}∞i=0) and in particular (Tj+N , uj+N)0 =

(T ′j+N , u
′
j+N)0, by a finite induction we have that (ωN(Tj+N), λNuj+N)1 =

(ωN(T ′j+N), λNu′j+N)1. We know that Tj+N = ω−N(Tj) and that uj+N =

λ−Nuj, so (Tj, uj)1 = (T ′j , u
′
j) and F is one-to-one.

The compactness of ΩT implies that F is onto; the following argument is

due to Kellendonk. Say we are given {(Ti, ui)}∞i=0 ∈ Ω0. Because ΩT is com-

pact, the sequence {ωn(Tn−un)}∞n=0 has a convergent subsequence {ωnk(Tnk
−

unk
)}∞k=0 that converges to some tiling T ′ ∈ ΩT . Now, {(ω−i(T ), 0)1}∞i=0 is

in Ω1, and we claim that it maps to {(Ti, ui)}∞i=0 under F . Since (T0, u0)0 =

(ωn(Tn), λnun)0 and ωn(Tn − un) = ωn(Tn) − λnun, we have that (ωn(Tn −

un), 0)0 = (T0, u0)0 for all n. Because T has Finite Local Complexity, this

means that between all the tilings (ωn(Tn − un), only finitely many different

tiles contain the origin.

Pick an i ≥ 0. Our subsequence being convergent means that given any

ε > 0, we can find a large enough k so that ωnk(Tnk
− unk

) agrees with T ′ on

B 1
ε
(0). Let R be a real number greater than the diameter of each prototile,

and chose k so that nk ≥ i and ωnk(Tnk
− unk

) agrees with T ′ on BλiR(0).

Then (ω−i(T ′), 0)0 = (ωnk−i(Tnk
− unk

), 0)0 = γnk−i
0 (Tnk

, unk
)0 = (Ti, ui)0,

which is what we were claiming.

We have easily that F is bicontinuous, and a simple calculation similar

to the one above shows that it conjugates the actions of ω0 and ω1. Thus

(Ω0, ω0) is topologically conjugate to (Ω1, ω1) when the substitution forces its

border, and since topological conjugacy is an equivalence relation, (Ω0, ω0)

is conjugate to (ΩT , ω). �
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Conjugate dynamical systems have the same dynamics and can be thought

of as, in a sense, the same system. The elements of Ωk can be seen as tilings

in the following way. If {xi}∞i=0 ∈ Ωk, then x0 = (T1, 0)k for some tiling T1.

Furthermore, x0 is equivalent to all (S, 0)k such that S has the same tile t0

around the origin as T1 – so we can see that the first co-ordinate specifies

the tile at the origin. Then by extending this idea to x1 = (T1, 0)k, we see

that x1 specifies a patch ω(t1) around the origin, with the tile t0 ⊂ ω(t1). In

the case k = 1 (or k=0 if T forces its border), we see that the limit of this

process does indeed specify a tiling in ΩT .
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Chapter 3

Cohomology

Cohomology theories are ways to obtain important invariants of a space. The

three we will talk about here concern topological spaces.

3.1 Cohomology in General

In general, when we talk about cohomology we mean the following. Let

X = {X1, X2, . . . } be a sequence of spaces. Define

Ci(X,G) = {f : Xi → G}.

For some abelian groupG. We call Ci(X,G) the group of i-cochains. Suppose

we have a sequence of maps δi such that

0 → C0(X,G)
δ0→ C1(X,G)

δ1→ · · ·Ci(X,G)
δi→ · · ·

such that δi+1 ◦ δi = 0 for all i. Then ker δi is called the group of i-cocycles

while the Im δi−1 is called the group of i-coboundaries. The i-th cohomology
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group of X with coefficients in G is then defined to be

H i(X,G) = ker δi/ Im δi−1.

Elements of H i(X,G) are still refered to as i-cocycles or merely cocycles.

With this, we can define three types of cohomology relevant to tilings.

3.2 Orientation, Incidence Number, and Cel-

lular Cohomology

In a cell complex, orientations are needed on all the cells to define cellular

cohomology. If we restrict our attention to 1, 2, and 3 cells for the moment,

it’s easy to guess what the orientation of cells would look like: a left or right

arrow on a 1-cell, a clockwise or counter-clockwise curl on a 2-cell, or a left

or right handed corkscrew in a 3-cell. In cohomology (and homology) theory,

we need a way of expressing whether the orientations of cells and their faces

“match up” - this is done with incidence numbers.

In Figure 3.1 the arrows indicate the orientations given to σ and the edges

e, f and g. If we go around the cell according to the orientation of σ, then

we see that the orientations of e and f match up to that of σ, while that of

g does not. In this situation, we would like to define incidence numbers of

the pairs (σ, e) and (σ, f) to be +1 and the incidence number of (σ, g) to be

–1. If en
λ and en−1

µ are n and n − 1 cells respectively, then we denote their

incidence number by [en
λ : en−1

µ ]. Note that [en
λ : en−1

µ ] is defined for arbitrary

n and n− 1 cells, but is zero if en−1
µ * en

λ.



CHAPTER 3. COHOMOLOGY 24

Figure 3.1: A typical 2-cell

Example : Looking at Figure 3.1, we have already established that:

[σ : e] = 1

[σ : f ] = 1

[σ : g] = −1

In addition to these, we must relate edges to vertices. If π is an edge and

x is a vertex of the edge, then we define [π : x] to be ±1; 1 when the edge

points toward the vertex and –1 when it points away. Thus,

[f : β] = 1

[f : γ] = −1

[e : α] = 1

[e : β] = −1

[g : α] = 1

[g : γ] = −1

[f : α] = 0, etc.
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It is, in fact, possible to define orientation rigorously to apply to arbitrary

dimensions. For the purposes of the spaces presented here, the highest di-

mension we will have to deal with is 2, and so our discussion of orientation

and incidence will end with the above paragraph.1

We are now ready to define the Cellular Cohomology of a cell complex

K. For each i, let

F (Ki, G) = {f | f : Ki → G}

where G is an abelian group (in this paper, G will always be either R or Z -

for this reason we will often refer to group elements as “numbers”). If K is

n-dimensional, let F (Ki, G) be the zero group for all i > n. Define

∂i : F (Ki, G) −→ F (Ki+1, G)

∂iϕ(ei+1
λ ) =

∑
µ∈Λi

[ei+1
λ : ei

µ]ϕ(ei
µ); ϕ ∈ F (Ki, G)

A minor problem that arises from this definition is the sum - it may not be

finite. There are a couple ways ways to fix this - the first being to define

F (Ki, G) to be the finitely supported functions on Ki. This works fine, al-

though it is rarely necessary. The other is to impose a mild restriction on our

CW -complex stating that, for any n-cell en
λ, we have that en−1

µ ⊂ en
λ for only

finitely many µ. This would make [ei+1
λ : ei

µ] = 0 for all but finitely many µ.

1In short, the orientation of a cell en
λ is derived from a group called the nth relative

homology group of en
λ with respect to ∂(en

λ), denoted Hn(en
λ, ∂(en

λ)). This group is always

infinite cyclic, and the orientation of en
λ is defined to be the choice of its generator. A full

treatment of this object is given in [Ma].
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Example : Looking again at our typical 2-cell, Figure 3.1, we see that if

ψ ∈ F (K0, G), we have

∂0ψ(f) = ψ(β)− ψ(γ)

and, if ϕ ∈ F (K1, G), we have

∂1ϕ(σ) = ϕ(f) + ϕ(e)− ϕ(g)

We can see that if ϕ ∈ F (K1, G), we can think of ∂1 acting on it by taking it

to the function that takes a 2-cell and produces a number by adding up the

values of ϕ on the edges multiplied by the respective incidence numbers.

With these sets and maps, we get a chain complex.

0 −→ F (K0, G)
∂0−→ F (K1, G)

∂1−→ · · · ∂i−1−→ F (Ki, G)
∂i−→ F (Ki+1, G)

∂i+1−→ · · ·

If we view each F (Ki, G) as a group with the usual addition, then the ∂’s are

all homomorphisms. In addition, the ∂’s are related in a very simple way.

Claim 3.2.1 ∂i+1 ◦ ∂i = 0 ∀ i.

Proof Without a definition of orientation and incidence numbers for higher

dimension at our disposal, proving this for i > 2 is impossible. We will

prove this for the case i = 0; the others are done in a similar way with when

equipped with proper definition of orientation for higher dimensions. Let

f ∈ F (K0, G). We need to show that for all 2-cells e2λ, we have

∂1 ◦ ∂0(e
2
λ) = 0

Suppose that e2λ is surrounded by edges e1, e2, . . . , en and let t(e) and i(e)

denote the terminus and initial point of an edge e, respectively. Then
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∂1 ◦ ∂0(e
2
λ) =

n∑
k=1

∂0f(ek)

=
n∑

k=1

[
f
(
t(ek)

)
− f

(
i(ek)

)]
But t(ek) = i(ek + 1), and t(en) = i(e1), so the sum collapses,

∂0 ◦ ∂1(e
2
λ) = −f

(
i(e1)

)
+

[
f
(
t(e1)

)
− f

(
i(e2)

)]
+

[
f
(
t(e2)

)
− f

(
i(e3)

)]
+

· · ·+
[
f
(
t(en − 1)

)
− f

(
i(en)

)]
+ f

(
t(en)

)
= 0 �

(3.1)

Now we can form the cohomology.

Definition 3.2.1 Let K = ∪∞i=1Ki be a CW-Complex. Define the ith Cel-

lular Cohomology Group of K, denoted H i(K,G), to be

H i(K) := ker ∂i/ Im ∂i−1

Note that this is well defined, as ker ∂i and Im ∂i−1 are both groups (the ∂’s

are homomorphisms) and Im ∂i−1 ⊂ ker ∂i by Claim 1.2.

3.3 Čech Cohomology

Using the notation from [BT], let X be a topological space, and let U =

{Ua}a∈J be an open cover for X, where J is a countable linearly ordered

index set. For a < b < c, denote the pairwise intersections Ua ∩ Ub by

Uab, triple intersections Ua ∩ Ub ∩ Uc by Uabc etc. Let U(n) denote the set
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of n-fold intersections of elements of U (0-fold intersections are just the sets

themselves, 1-fold intersections are intersections of the form Ua ∩ Ub with

a < b etc). Let

F (U(n), G) n ∈ N

denote the group of functions on the set of n-fold intersections of elements of

U taking values in the abelian group G. By the 0-fold intersections we mean

just the sets themselves. Define boundary maps ∂̌i by

∂̌i : F (U(i), G) −→ F (U(i+1), G)

(∂̌if)(Ua1a2...ai+1
) =

i+1∑
k=1

(−1)k+1f(Ua1a2...ak−1ak+1...ai+1
)

Then, as before, ∂̌i+1∂̌i = 0 and we can form the cohomology of the complex

· · · ∂̌i−1−→ F (U(i), G)
∂̌i−→ F (U(i+1), G)

∂̌i+1−→ . . .

We denote these groups

Ȟ i(U, G) = ker ∂̌i/ Im ∂̌i−1

and call these the Čech Cohomology of the cover U. A priori, these groups

depend on the cover U. In this regard, we are rescued by a definition and a

theorem from [BT].

Definition 3.3.1 A good cover for a topological space X is an open cover

of X for which each finite intersection is contractible.

Theorem 3.3.1 If U and V are good covers for a space X, then Ȟ i(U, G) ∼=

Ȟ i(V, G) for all i.
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To define the Čech cohomology of a space, we should want a definition

which is independent of the cover, good or otherwise. To do this, we follow

the lead of [BT] and define the following.

Definition 3.3.2 Let U = {Uα}α∈I and V = {Vβ}β∈J be open covers of a

space X. Then we say V is a refinement of U, written U < V if there is a

map φ : J → I such that Vβ ⊂ Uφ(β).

If U < V, then the map φ induces a map on Cohomology, via

Φ : Hk(U, G) −→ Hk(V, G)

Φf(Va1a2...ak
) = f(Uφ(a1)φ(a2)...φ(ak)).

It is possible that the indices in the last term are not in the correct order.

To deal with this, we adopt the convention to take f(Uσ(a1)σ(a2)...σ(ak)) =

sgn(σ)f(Ua1a2...ak
) for any permutation σ.

Definition 3.3.3 (BT) A direct system of groups is a collection {Gi}i∈I

of groups indexed by a directed set I such that for any pair a < b there is a

group homomorphism fa
b : Ga → Gb satisfying

fa
a = identity

fa
c = f b

c ◦ fa
b , ∀ a < b < c

Whenever we have a direct system of groups, we can form is direct limit.

Definition 3.3.4 Let
∐
Gi denote the disjoint union of the direct system

of groups {Gi}i∈I . Introduce an equivalence relation on
∐
Gi by saying that
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ga ∈ Ga is equivalent to gb ∈ Gb if for some upper bound c of a and b we have

fa
c (ga) = f b

c (gb) in Gc. The direct limit of the system, denoted by limi∈I Gi,

is the quotient of
∐
Gi by this equivalence relation.

Thus, two elements in
∐
Gi are equivalent if they are “eventually equal”.

The direct limit is a group under the operation [ga] + [gb] = [fa
c (ga)+ f b

c (gb)],

where c is an upper bound for a and b and the brackets indicate equivalence

classes.

From all this we can see that for each k, {Hk(U, G)}U is a direct system

of groups.

Definition 3.3.5 The Čech Cohomology of a space X is defined as the direct

limit

Hk(X,G) = lim
U
Hk(U, G)

where the limit is over a directed set of refinements.

3.4 Dynamical Cohomology

Now, take (X,ϕ) to be a topological Rn-dynamical system, ie, let X be a

compact metric space and ϕ be a continuous Rn action on X. This just

means that for each v ∈ Rn, ϕv : X → X is a homeomorphism of X and

the map sending (x, v) to v 7→ ϕv(x) is jointly continuous; we also have

ϕv ◦ϕw = ϕv+w for all v, w ∈ Rn. Let C(X) denote the algebra of continuous

R-valued functions on X. We call f ∈ C(X) continuously differentible if

∂f

∂v
(x) = lim

t→0

f(ϕtv(x))− f(x)

t
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exists and is back in C(X) for all x ∈ X and v ∈ Rd. We say f is smooth

if it is infinitely continuously differentiable, and let C∞(X) denote the set of

such functions. We can also take the same approach for a finite dimensional

vector space; we let C(X,W ) denote the continuous W -valued functions on

X. The definition of C∞(X,W ) extends naturally.

Let {x1, x2, . . . xn} denote the standard basis for Rn, and let Rn∗ denote

the dual space of the real vector space Rn. Then we can always find a basis for

{dx1, dx2, . . . , dxn} of Rn∗ such that 〈xi, dxj〉 = δij where δij is the Kronecker

delta symbol (δij = 1 if i = j, but = 0 otherwise). This is called the dual

basis for Rn∗ with respect to {x1, x2, . . . xn}. Then we make the following

definition (see [BT]).

Definition 3.4.1 The graded exterior algebra of Rn∗ is the algebra over

R generated by dx1, dx2, . . . , dxnwith the relations

(dxi)
2 = 0 ∀ i

dxidxj = −dxjdxi

We denote this algebra by ΛRn∗.

Thus ΛRn∗, when viewed as a real vector space, has basis (for 1 ≤ i <

j < k ≤ n)

1, dxi, dxidxj, dxidxjdxk, . . . , dx1dx2 · · · dxn

We also let ΛkRn∗ denote the subspace of ΛRn∗ spanned by elements of the

form dxi1dxi2 · · · dxik for 1 ≤ i1 < i2 < · · · < ik ≤ n.

Consider C∞(X,ΛRn∗). Define

d : C∞(X,R) −→ C∞(X,Rn∗)
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〈v, df(x)〉 =
∂f

∂v
(x)

for all v ∈ Rn. This extends to a differential

d : C∞(X,ΛkRn∗) −→ C∞(X,Λk+1Rn∗)

in the following way: every element of C∞(X,ΛkRn∗) may be written in the

form ∑
I

fIdxi1dxi2 · · · dxik

where I = {i1, i2, . . . ik} ⊂ {1, 2, . . . n} and fI ∈ C∞(X,R). Furthermore, we

have the following relations;

df =
n∑

i=1

∂f

∂xi

dxi,
∂f

∂xi

= lim
t→0

f(ϕtxi
(x))− f(x)

t
.

Proposition 3.4.1 Let di denote the map di = d : C∞(X,ΛiRn∗) → C∞(X,Λi+1Rn∗).

Then di+1 ◦ di = 0 ∀i.

Proof See [BT].

Thus, the chain

· · · d−→ C∞(X,Λk−1Rn∗)
d−→ C∞(X,ΛkRn∗)

d−→ C∞(X,Λk+1Rn∗)
d−→ . . .

has the property that the image of the d map is contained in the kernel of

the previous d map. Thus, we can form the following.

Definition 3.4.2 We define the dynamical cohomology of (X,ϕ) to be

the groups

H i(Rn, C∞(X,R)) = ker di/ Im di−1
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Chapter 4

Connecting Cohomology

Theories

4.1 Mapping Cellular Cohomology of Γ0 to

the Čech Cohomology of ΩT when n = 2

To construct the Cech Cohomology of our tiling space ΩT , we must first

produce an open cover.

Let p1, p2, . . . , pN be our N distinct prototiles in tiling T which generates

our tiling space ΩT . Assuming that each of the pi is star-shaped (that is, for

each i there exists a point xi ∈ pi such that for any other point y ∈ pi, the

line from xi to y is contained in pi) pick a point in the interior of each tile

about which it is star-shaped. Next, pick a point in the interior of each edge

in the edge set. Because the tiles are star-shaped, these can be connected to

the points in the interior of the tile on each tile by a straight line (see Figure
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4.1). This splits the tile into regions, each containing exactly one vertex. For

each vertex v around pi we denote its corresponding region by rv. Let

O(pi, v) =
( ⋃

x∈rv

Bε(x)
)
∩ pi

for some sufficiently small ε. If t is a tile, then t = pi + x for some i and x,

Figure 4.1: O(pi, V )

so define O(t, v) = O(pi, v − x) + x. Now define, for any tiling T and vertex

v in any tile of T ,

O(v) =
⋃
v∈t

O(t, v).

This is an open set in supp(T ) = R2. Now, for all vertices v in T , look at

the sets T (v)− v; we call such a set a vertex pattern. Because of the Finite

Local Complexity property, for each v, T (v)− v = T (vi)− vi for some finite
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set of vertices v1, v2, . . . , vL for which T (vi)− vi 6= T (vj)− vj if i 6= j, and so

⋃
v∈T

(T (v)− v) =
L⋃
i

(T (vi)− vi).

For each i = 1, . . . , L, define

Vi = {T ′ : T ′(0) = T (vi)− vi} − (O(vi)− vi)

= {T ′ + x : T ′(0) = T (vi)− vi;x ∈ O(vi)− vi}

The set Vi consists of all tilings which are translates of tilings which have the

pattern T (vi) − vi at the origin translated by vectors which keep the origin

in rvi
. Now we can define

V = {Vi : 1 ≤ i ≤ L}

V is our open cover.

As stated earlier, we let Γk denote the Anderson-Putnam complex of the

tiling space ΩT , and we can also let Γki denote the i-cells of said complex.

We thus get the usual cellular chain complex

0 −→ F (Γk0,Z)
∂−→ F (Γk1,Z)

∂−→ F (Γk2,Z) −→ 0

where F (Γk∗,Z) denotes the set of integer-valued functions on Γk∗. Refering

to Figure 1, the first boundary map is defined as

∂ : F (Γki,Z) −→ F (Γki+1,Z)

∂f(ei) =
∑
ei−1

[ei : ei−1]f(ei−1), f ∈ F (Γk0,Z)
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where the sum is over all i− 1 cells.

We now wish to produce a map from the cellular cohomology H1(Γk) to

the Cech cohomology Ȟ1(Ω). This is accomplished by producing 2 maps,

α0 : F (Γk0,Z) −→ F (V(0),Z)

α1 : F (Γk1,Z) −→ F (V(1),Z)

such that the following diagram commutes

0 −−−→ F (Γk0,Z)
∂−−−→ F (Γk1,Z)

∂−−−→ F (Γk2,Z) −−−→ 0

α0

y α1

y
0 −−−→ F (V(0),Z)

∂̌−−−→ F (V(1),Z)
∂̌−−−→ F (V(2),Z) −−−→ 0

where the ∂̌’s in the bottom row indicate the usual Cech chain complex.

In addition to wanting this diagram to commute, we also wish to have the

kernel of the ∂ map from F (Γk1,Z) to F (Γk2,Z) to map into the kernel of

the ∂̌ map from F (V(1),Z) to F (V(2),Z). This will ensure that the α∗’s can

be translated to a map α between H1(Γk) and Ȟ1(Ω).

We will first define α0. It’s easy to see that we have a map from V to Γk0

– for every vertex pattern look at the vertex at the center of it, and then map

it to that vertex in Γk0. We can then take α0 to be the dual of this map.

Next, we need to decide what α1 is. Since n = 2, we can assign to the

2-cells arbitrary orientation, so we pick them all to have the same orienta-

tion, say clockwise. Suppose we take f ∈ F (Γk1,Z). Then we want α1f

to be defined on two-fold intersections of our vertex patterns. If a two-fold

intersection of vertex patterns is non-empty, then the vertices at the middle
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of them must lie on the outside of a common tile t in both vertex patterns.

So we define

α1f : V −→ Z

α1f(Vab) =
∑
a→b

[t : e]f(e)

where the sum is over the edges starting from the vertex at the middle of

pattern a to the vertex at the middle of pattern b according to the orientation

of the cell. If these two vertices lie on the outside of two different tiles t1 and

t2, ie, they lie at the beginning and end of an edge which connects t1 and t2,

then this is not well defined. Since we said earlier that all the tiles must have

the same orientation, then if e is the edge in question, [t1 : e] must be either

plus or minus 1, with [t2 : e] = −[t1 : e] ([t : e] denotes the incidence number

of t with respect to edge e). To make our map well-defined, we chose to sum

around the tile which has positive orientation number with respect to e.

Claim 4.1.1 The six-term diagram above commutes. In addition, α1(ker ∂) ⊂

ker ∂̌.

Proof : Say we have f ∈ F (Γk1,Z). Then

α1(∂f)(Vab) =
∑
a→b

[t : e]∂f(e)

=
∑
a→b

[t : e]
(
f(t(e))− f(i(e))

)
= f(vb)− f(va)
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where t(e) denotes the terminal point of an edge e and i(e) denotes the initial

point of e. The last step follows by collapsing the sum. Notice that if va and

vb were on the same edge that we end up with the same answer, as we pick

the 2-cell with which the edge has positive orientation. On the other hand,

we have

∂̌(α0f)(Vab) = α0f(Vb)− α0f(Va)

= f(vb)− f(vb)

Now to show that α1(ker ∂) ⊂ ker ∂̌. Take f ∈ ker ∂. Then, if σ ∈ Γk2,

(∂f)(σ) =
∑

i

[σ : ei]f(ei)

where the sum is over all edges ei around the tile σ. f is in the kernel, so the

sum must be zero. Thus f must sum to zero around all tiles σ. Thus, if Va

and Vb share an edge, summing around either tile that the edge is a part of

will give values negative to each other, so that multiplying by the incidence

number makes them equal. In other words, if Va and Vb share and edge e ,

with the edge adjacent to two tiles t1 and t2, then∑
a→b

[t1 : e]f(e) =
∑
a→b

[t2 : e]f(e)

where it is understood that one of the sums is a single term. Now, if Va, Vb

and Vc are vertex patterns with non-empty intersection,
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Figure 4.2: Two Possible Arrangements of 3 Vertex Patterns with Non-empty

Intersection

∂̌(α1f)(Vabc) = α1f(Vbc)− α1f(Vac) + α1f(Vab)

=
∑
a→b

[σ : e]f(e)−
∑
a→c

[σ : e]f(e) +
∑
b→c

[σ : e]f(e)

=
∑
a→b

[σ : e]f(e) +
∑
c→a

[σ : e]f(e) +
∑
b→c

[σ : e]f(e)

The figures above show the 2 ways in which 3 vertex patterns could be

arranged around a tile, with a < b < c. In the first case, we see that we

sum around once, as we sum from a to b, then from b to c, then from c

to a. In the second, we sum around twice. In either case, our value is an

integer multiplied by
∑

i[σ : ei]f(ei), and this is zero because f ∈ ker ∂. Thus

α1(ker ∂) ⊂ ker ∂̌. This proves the claim. �
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4.2 Mapping Čech Cohomology to Dynami-

cal Cohomology to ΛRn∗

We now describe the mapping Čech cohomology to dynamical cohomology

and from dynamical cohomology to ΛRn∗ in the case of a general topological

dynamical system – the following section mentions nothing about tilings. Let

(X,ϕ) be a topological Rn-Dynamical System. Then let µ be an invariant

probability measure on X (these always exist by [Gl]). Recall that we can

form the dynamical cohomology groups

H i(Rn, C∞(X,R)) = ker di/ Im di−1.

where di : C∞(X,ΛiRn∗) → C∞(X,Λi+1Rn∗). From this we can define the

following map.

Definition 4.2.1 The Ruelle-Sullivan current Cµ associated with µ is the

linear map

〈Cµ, ·〉 : C∞(X,ΛkRn∗) −→ ΛkRn∗

defined by

〈Cµ, f〉 =

∫
X

f(x)dµ(x), f ∈ C∞(X,ΛkRn∗)

Lemma 4.2.1 Let µ be an invariant probability measure for the action ϕ.

Let f be any ϕ-smooth function in C∞(X,ΛkRn∗) for some k. Then

〈Cµ, df〉 = 0

Proof It suffices to show that∫
X

∂f

∂xi

(x)dµ(x) = 0
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for i = 1, 2, . . . , n. Since any invariant measure is the weak-* limit of a convex

combination of ergodic measures, we can assume µ is ergodic (see []). By the

Birkhoff ergodic theorem, for almost all x in X we have∫
X

∂f

∂xi

(x)dµ(x) = lim
R→∞

1

(2R)n

∫
[−R,R]n

∂f

∂xi

(ϕu(x))dλ(u)

where λ indicates Lebesgue measure. We have∣∣∣∣∫
[−R,R]n

∂f

∂xi

(ϕu(x))dλ(u)

∣∣∣∣ =

∣∣∣∣∫
[−R,R]n−1

(f |ui=R − f |ui=−Rdu1 · · · d̂ui · · · dun

∣∣∣∣
≤ 2 ‖f‖∞ (2R)n−1

where d̂ui indicates that dui is omitted. This means that∣∣∣∣∫
X

∂f

∂xi

(x)dµ(x)

∣∣∣∣ ≤ ∣∣∣∣ lim
R→∞

‖f‖∞
R

∣∣∣∣ = 0.

This proves the result. �

Since Cµ is zero on the image of the d maps, it extends to a map on

cohomology:

τ̃ϕ,µ : H i(Rn, C∞(X,R)) −→ ΛRn∗

Thus, we have found a map from the dynamical cohomology to ΛRn∗

for any (X,ϕ). The next step is then to find homomorphism from Čech

cohomology to dynamical cohomology, and to compose these into a map

from the Čech cohomology to ΛRn∗, which is called the Ruelle-Sullivan map.

We make the following definition:

Definition 4.2.2 Let U = {Ui}i∈I be a finite open cover of X. A partition

of unity subordiante to U is a set of positive-valued functions {ρi} on X

such that
∑

i ρi(x) = 1 for all x ∈ X and the support of ρi is contained in

Ui.
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As before, for i0 < i1 < · · · < ij, we let Ui0i1···ij = Ui0 ∩ Ui1 ∩ · · · ∩ Uij .

For any open set U , we note that even if U is not invariant under ϕ, we have

that, for any continuous function f on U and v ∈ Rn, the expression ∂f
∂v

still

makes sense as a function on U (assuming the limit exists). Thus, we can

define C∞(U,ΛRn∗) as the smooth functions on U with values in ΛRn∗.

Those familiar with the Čech-deRham theorem for manifolds and its proof

will see how the following is an adaptation of the argument there to our case

where X may not be a manifold. It involves constructing a double complex

with appropriate maps to show that we can map the cohomologies to each

other.

So, we define the double complex

Kj,k(U) =
⊕

i0<i1<···<ij

C∞(Ui0i1···ij ,Λ
k)

where we always sum only over i0 < i1 < · · · < ij with nonempty Ui0i1···ij .

If f ∈ Kj,k(U), then we denote the i0i1 · · · ij component by fi0i1···ij . Also,

for notational purposes, we want to set fi0i1···ij = 0 if Ui0i1···ij = ∅ and

fσ(i0)σ(i1)···σ(ij) =sgn(σ)fi0i1···ij , for any permutation σ.

We have a diagram
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...
...

...
...

∂̌

x ∂̌

x ∂̌

x ∂̌

x
K2,0(U)

d−−−→ K2,1(U)
d−−−→ K2,2(U)

d−−−→ K2,3(U)
d−−−→ · · ·

∂̌

x ∂̌

x ∂̌

x ∂̌

x
K1,0(U)

d−−−→ K1,1(U)
d−−−→ K1,2(U)

d−−−→ K1,3(U)
d−−−→ · · ·

∂̌

x ∂̌

x ∂̌

x ∂̌

x
K0,0(U)

d−−−→ K0,1(U)
d−−−→ K0,2(U)

d−−−→ K0,3(U)
d−−−→ · · ·

where

∂̌ : Kj,k(U) −→ Kj+1,k(U)

(∂̌f)i0i1···ij+1 =

j+1∑
l=0

(−1)lfi0···îl···ij+1

with îl indicating that il is omitted in the index.

Lemma 4.2.2 The two differentials, ∂̌ and d, commute.

Proof. Let f ∈ Kj,k(U). Then for any i0 < i1 < · · · < ij+1

∂̌(df)i0i1···ij+1 =

j+1∑
l=0

(−1)ldfi0···îl···ij+1

=

j+1∑
l=0

(−1)l
( n∑

i=1

∂fi0···îl···ij+1

∂ei

dei

)
.

(4.1)
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While we also have

d(∂̌f)i0i1···ij+1 =
n∑

i=1

∂(∂̌fi0i1···ij+1)

∂ei

dei

=
n∑

i=1

∂

∂ei

( j+1∑
l=0

(−1)lfi0···îl···ij+1

)
dei.

(4.2)

The above definition of partial differentiation is linear, so we see by exchang-

ing the order of summation that the two are equal. �

We now want to define a new map on our complex using the partition of

unity found above, {ρi}i. For j > 0, we define

h : Kj,k(U) −→ Kj−1,k(U)

(hf)i0···ij−1
=

∑
i

ρifii0···ij−1

Lemma 4.2.3 h∂̌ + ∂̌h = 1

Proof Let f ∈ Kj,k(U) for our cover U. Then, for i0 < i1 < · · · < ij
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(h∂̌f)i0i1···ij =
∑

i

ρi(∂̌f)ii0i1···ij

=
∑

i

ρi

( j+1∑
l=0

(−1)lfii0···îl···ij

)
=

∑
i

ρi

(
fi0···ij −

j∑
l=0

(−1)lfii0···îl···ij

)
(∂̌hf)i0i1···ij =

j∑
l=0

(−1)l(hf)i0···îl···ij

=

j∑
l=0

(−1)l
( ∑

i

ρifii0···îl···ij

)
.

(4.3)

Adding the two sees (∂̌hf)i0i1···ij cancel with the similar term in the first

equation. Thus

(
h∂̌ + ∂̌h

)
(f)i0i1···ij =

∑
i

ρifi0i1···ij = fi0i1···ij

( ∑
i

ρi

)
= fi0i1···ij ,

that is to say,
(
h∂̌ + ∂̌h

)
(f) = f . �

Lemma 4.2.4 The restriction map r defined by

r : C∞(X,ΛkRn∗) −→ K0,k(U)

r(f)i = f |Ui
,

commutes with the differential d.
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Proof. Take f ∈ C∞(X,ΛkRn∗). Then, for any i, we have

d(rf)i =
n∑

i=1

∂rfi

∂ei

dei

=
n∑

i=1

∂f |Ui

∂ei

dei

r(df)i =
( n∑

i=1

∂f

∂ei

dei

)
|Ui
.

(4.4)

Since the restriction of a sum is the sum of the restrictions, and partial

differentiation is linear, these are equal. �

If f ∈ K0,k(U), f has a unique pre-image under if r when fi = fj on Uij

whenever Uij is non-empty. Every f in ker ∂̌ ⊂ K0,k(U) satisfies this, so we

can define r−1 on the ker ∂̌’s by

r−1f(x) = fi(x)

where Ui is any member of the cover that contains x. It is easy to see that

the map r is bijective onto ker ∂̌ and that r−1 its inverse.

Corollary 4.2.1 For any k the following sequence is exact;

0 −→ C∞(X,ΛkRn∗)
r−→ K0,k(U)

∂̌−→ · · · ∂̌−→ Kj,k(U)
∂̌−→ Kj+1,k(U)

∂̌−→ · · ·

and thus has trivial cohomology.

Proof First we need to show that ∂̌ ◦ r = 0. Take f ∈ C∞(X,ΛkRn∗). Then

(∂̌ ◦ r)(f)ab = (rf)b − (rf)a

= f |Ub
− f |Ua

(4.5)
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Since (∂̌ ◦r)(f)ab is a function on Uab, this difference is 0. Conversely, if ∂̌g =

0 for g ∈ K0,k(U), then we can act on g with r−1, so g = r ◦ r−1, so g ∈ Im r.

Now, take f ∈ Kj,k(U) with ∂̌f = 0. Then, because
(
h∂̌ + ∂̌h

)
(f) = f ,

we have that f =
(
∂̌h

)
(f), ie, f ∈ Im ∂̌. On the other hand, we know that

∂̌2 = 0 because it is the Čech differential, so we have that ker ∂̌j = Im ∂̌j−1

for j ≥ 1. Thus the sequence is exact. �

As before for i0 < i1 < · · · < ij we let Č(Ui0i1···ij ,R) and Č(Ui0i1···ij ,Z)

denote the locally constant functions from Ui0i1···ij with values in R and Z,

respectively. Since these functions are locally constant, they are obviously

smooth. We now define

Čj(U,R) =
⊕

i0<i1<···<ij

Č(Ui0i1···ij ,R)

Čj(U,Z) =
⊕

i0<i1<···<ij

Č(Ui0i1···ij ,Z)

We have the inclusions

Č(U,Z) ⊂ Č(U,R) ⊂ Kj,0(U)

These form subcomplexes with the ∂̌ maps. Let ι denote the inclusion maps

of either of the first two in Kj,0(U). Because the partition of unity functions

are not locally constant, the cohomology of the subcomplexes does not van-

ish. Then the cohomologies of these subcomplexes are Ȟ(U,R) and Ȟ(U,Z),

the Čech cohomologies of the covering U with coeffiecients in R and Z, re-

spectively. When it is not necessary to indicate the group used, we will use

G.
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Ȟ(U, G) caries a graded ring structure, as described in [BT]. The product

comes from the map

Čj(U)× Čk(U) −→ Čj+k(U)

(f, f ′) 7→ f · f ′

where

(f · f ′)i0i1···ik+j
= (−1)jkfi0···ijf

′
ij ···ij+k

,

for f ∈ Čj(U, G), f ′ ∈ Čk(U, G), i0 < i1 < · · · < ij+k

Theorem 4.2.1 The maps

(−1)jr−1(dh)jι : Č(U) −→ C∞(U,Λj)

induce a graded ring homomorphism

θϕ,U : Ȟ(U) −→ H(Rn, C∞(X,R)),

for coefficients in either Z or R for the Čech cohomology.

Proof We have the following diagram
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...
...

...

0 // Č2(U, G)

∂̌

OO

ι // K2,0(U)

∂̌

OO

h
��

d // K2,1(U)

∂̌

OO

h
��

d // · · ·

0 // Č1(U, G)

∂̌

OO

ι // K1,0(U)

∂̌

OO

h
��

d // K1,1(U)

∂̌

OO

h
��

d // · · ·

0 // Č0(U, G)

∂̌

OO

ι // K0,0(U)

∂̌

OO

d // K0,1(U)

∂̌

OO

d // · · ·

0

OO

// C∞(X,Λ0Rn∗)

r

OO

d // C∞(X,Λ1Rn∗)

r

OO

d // · · ·

0

OO

0

OO

and we can prove the claim by chasing though it.

First we need that ker ∂̌ ⊂ Čj(U, G) maps to ker d ⊂ C∞(X,ΛjRn∗) under

θϕ,U. Then we must show that if ∂̌f ∈ Čj(U, G), then its image under θϕ,U is

in Im d ⊂ C∞(X,ΛjRn∗).

We begin by claiming that for any f ∈ ker ∂̌ ⊂ Čj(U, G), (dh)jιf ∈ ker ∂̌

and proving it by induction. For j = 1, notice that ιf ∈ ker ∂̌ because

the inclusion map commutes with ∂̌. We proved earlier that h∂̌ acts as the

identity on such elements, so we have

∂̌hιf = ιf

⇒ d∂̌hιf = dιf

⇒ ∂̌dhιf = dιf.

We know that ιf is constant on all Ui, so dιf = 0, and we have proven the

case when j = 1. Now suppose true for j − 1, that is, (dh)j−1ιf ∈ ker ∂̌.
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Then we have that

∂̌h(dh)j−1ιf = (dh)j−1ιf

⇒ d∂̌h(dh)j−1ιf = d(dh)j−1ιf

⇒ ∂̌dh(dh)j−1ιf = 0.

The last step follows due to the fact that the differentials commute and that

d2 = 0. Thus (dh)jιf ∈ ker ∂̌, and then r−1(dh)jιf ∈ ker ∂̌ makes sense. We

know r is one-to-one, so that dr−1(dh)jιf = 0 if and only if rdr−1(dh)jιf = 0.

The maps r and d commute so we see that this is zero (r collapses with its

inverse and d2 = 0).

Now to show that if ∂̌f ∈ Čj(U, G), then its image under θϕ,U is in

Im d ⊂ C∞(X,ΛjRn∗). We will show for the case j = 1, the other cases are

analagous. Take ∂̌f ∈ Im ∂̌ and x ∈ Ui0 ⊂ X. Then

(−r−1dhι∂̌f)(x) = −d
( ∑

i

ρi(ι∂̌f)ii0)
)

= −d
( ∑

i

ρi(f(Ui0)− f(Ui))
)

= −d
( ∑

i

ρi(f(Ui0))−
∑

i

ρif(Ui)
)

= −d
(
f(Ui0)

∑
i

ρi −
∑

i

ρif(Ui)
)

= −d
(
f(Ui0)−

∑
i

ρif(Ui)
)

= d
( ∑

i

ρif(Ui)
)
.

This d is the same that acts on C∞(X,Λ0Rn∗), and
∑

i ρif(Ui) is in C∞(X,Λ0Rn∗),

so we have shown that if ∂̌f ∈ Č1(U, G), then its image under θϕ,U is in
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Im d ⊂ C∞(X,Λ1Rn∗).

That θϕ,U is additive is clear, so we need to show that it respects the

graded ring structure. As this property is not explored in later computations,

we leave the interested reader to see the proof given in [BT]. �

Recall that Čech Cohomology of a space X is defined as the direct limit

Hk(X,G) = lim
U
Hk(U, G)

where the limit is over a directed set of refinements. If φ : V → U are two

covers together with the refinement map φ such that V ⊂ φ(V ), then the

map φ induces a map

φ : Ȟ(U) → Ȟ(V)

over which we take the above direct limit. It is a fact (see [KP]) that

θϕ,V ◦ φ = θϕ,U,

so that θϕ,U induces a graded ring homomorhism θϕ : Ȟ(X,G) → H(Rn, C∞(X,R)).

This leads to the following definition from [KP], which was the goal of this

section; it is what we wish to compute for tiling spaces.

Definition 4.2.3 Let (X,ϕ) be an Rn action with a ϕ-invariant measure µ.

The Ruelle-Sullivan map τϕ,µ : Ȟ(X,G) → ΛRn∗ is defined by

τϕ,µ(a) = 〈Cµ, θϕ(a)〉 .

In particular, if we have a ∈ Ȟ(U, G) where U is an open cover, then

τϕ,µ(a) = 〈Cµ, θϕ,U(a)〉. The philosophy, as stated in [KP], is that Čech co-

homology together with the Ruelle-Sullivan map furnishes a better invariant

for Rn-actions.
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4.3 Finding a Translation Invariant Measure

on ΩT when n = 2

So we have a way of connecting the cellular cohomology of Γk to the Čech

cohomology of ΩT . We now want to connect the Čech cohomology of a

covering of ΩT to the dynamical cohomology of ΩT - this can be accomplished

with our above adaptation of the Čech-deRham theorem, but first we need

a translation invariant probability measure on ΩT . Our construction will be

for n = 2, a similar construction works for higher dimensions.

For a substitution tiling T with finite local complexity that forces its

border, we can do the following - form the space Γ0, which is a finite CW-

Complex whose n-cells are copies of the prototiles {p1, p2, . . . pN}. The faces

of the 2-cells are identified if they are adjacent in a tiling ωk(T ) for some k.

Let A be the matrix whose (i, j)th entry is the number of times a translate of

prototile pi appears in ω(pj). Then A is a matrix of non-negative numbers,

and because ω is primitive, the matrix A is primitive in the sense that there

is a k > 0 such that Ak is a matrix of positive numbers. We now invoke a

version of the Perron-Frobenius theorem.

Theorem 4.3.1 Let A be a primitive m×m matrix. Then A has a positive

eigenvalue c with the following properties:

1. c is a simple root of the characteristic polynomial of A

2. c has an eigenvector v with only positive entries.

3. any other eigenvalue of A has modulus strictly less than c

4. any non-negative eigenvector of A is a positive multiple of v
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5. if u is any non-zero vector in Rm with non-negative entries, then

lim
n→∞

c−nAnu = 〈u,w〉 v

where w is an eigenvector for At for which 〈v, w〉 = 1

There is a proof of this in [BS]. In our case, the fifth condition says that if

ω is applied repeatedly to a patch of tiles, then the proportion of the number

of each tile converges to a vector v given in the theorem. More precisely, for

any tiling T ′ in ΩT , if for each i = 1, . . . , N we let Qi(R) denote the number

of translates of prototile pi contained in T ′(BR(0)), then

lim
R→∞

Qi(R)∑N
k=1Qk(R)

=
vi∑N

k=1 vk

.

We also have, and it is easy to prove, that if λ is our inflation constant, then

the Perron eigenvalue of the substitution matrix is λ2.

We can now use this to define a measure µ on Γ0. For each i = 1, . . . , N ,

let a be the vector in RN such that ai is the area of pi. Find the Perron-

Frobenius eigenvector v for A and scale it so that 〈a, v〉 = 1. Then if E is a

Borel set in Γ0, define

µ(E ∩ pi) = viL(E ∩ pi)

This gives a probability measure on Γ0 because of the 〈a, v〉 = 1 condition.

We now construct a measure µ on ΩT from µ as follows.

Define π : ΩT → Γ0 by saying that π(T ′) = (T ′, 0)k. That is, for any

tiling T ′ we find the tile containing the origin and define π(T ′) to be the

point corresponding to the origin in the representation of this tile in the cell

complex. Now π is easily seen to be continuous and onto, and

π ◦ ω(T ′) = (ω(T ′), 0)k = γ0(T
′, 0)k = γ0 ◦ π(T ′)
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so π is a topological semi-conjugacy.

Lemma 4.3.1 µ ◦ γ−1
0 = µ.

Proof It suffices to check for a Borel set E ⊂ pi. The set Γ−1
0 (E) consists

of copies of E scattered around the cell complex, each scaled by λ−1. The

number of such copies in pj is the same as the number of translates of pi in

ω(pj), which is just Aij. Thus

µ ◦ γ−1
0 (E) =

∑
j

Aijvjλ
−2 · L(E) = λ2vi · λ−2 · L(E) = vi · L(E) = µ(E)

where L(E) indicates the area of E. �

Now define Eε ⊂ Γ0 as all points within ε of a 1-cell. If

P =
∑

i

vi · perimeter(pi),

then it’s clear that µ(Eε) ≤ Pε.

Lemma 4.3.2 If C(X) denotes the continuous complex-valued functions on

any space X, then

C(Ω0) ∼= lim
→
C(Γ0)

γ∗0→ C(Γ0)
γ∗0→ · · · ,

where γ∗0f(x) = f(γ0(x)). As a consequence,

C(ΩT ) ∼= lim
→
C(Γ0)

γ∗0→ C(Γ0)
γ∗0→ · · · .

Proof The proof utilizes as its main tool the Stone-Weierstass theorem

for algebras of continuous functions. Recall that if

D = lim
→
C(Γ0)

γ∗0→ C(Γ0)
γ∗0→ . . .
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then D is the disjoint union
∐∞

n=1C(Γ0)n with C(Γ0)n = C(Γ0) for all n

and with the equivalence relation saying that f ∈ C(Γ0)n is equivalent to

g ∈ C(Γ0)m if there exists s ≥ m,n such that γ
∗(s−n)
0 f = γ

∗(s−m)
0 g. We also

have that D is an algebra with the following operations. If f ∈ C(Γ0)n

and g ∈ C(Γ0)m, then [f ] + [g] = [γ
(s−n)
0 (f) + γ

(s−m)
0 (g)] and [f ][g] =

[γ
(s−n)
0 (f)γ

(s−m)
0 (g)], where s is any integer with s ≥ m,n.

Take f ∈ D, then f ∈ C(Γ0)n for some n. Define a function f ′ on Ωk

by saying that f ′({xi}∞i=1) = f(xn). Because of the continuity of f and the

projection maps on product spaces, we know that f ′ is continuous. Now, if

f ∈ C(Γ0)n and g ∈ C(Γ0)m are equivalent, then for x ∈ C(Ωk),

f ′(x) = f(xn)

= f(γ
(s−n)
0 (xs))

= γ
∗(s−n)
0 f(xs)

= γ
∗(s−m)
0 g(xs)

= g(γ
(s−m)
0 (xs))

= g(xm)

= g′(x).
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Now, if f ∈ C(Γ0)n and g ∈ C(Γ0)m, then for an s ≥ m,n we have

([f ] + [g])′(x) = [γ
(s−n)
0 (f) + γ

(s−m)
0 (g)]′(x)

= γ
(s−n)
0 (f)(x) + γ

(s−m)
0 (g)(x)

= f(xn) + g(xm)

= (f ′ + g′)(x).

A similar calculation shows that ′ also respects products. If f ′(x) = 0 for

f ∈ C(Γ0)n and all x ∈ Ωk, then f(xn) = 0. This means that f is 0 on all of

Γ0, and hence f is zero. This shows that

′ : D → C(Ωk)

is an injection - let D′ denote the image of D under this map. Then D is a

subalgebra of C(Ωk) which trivially contains the constant functions. To see

that D′ separates points, say we have x 6= y ∈ Ωk. Then there must be an

n with xn 6= yn, and we can find a function in C(Γ0)n that separates xn and

yn, and its image will this separate x and y. Therefore D′ is dense in C(Ωk)

by Stone-Weierstrass. Clearly D′ is closed, so D′ = C(Ωk). The fact that ′

is an injection gives us that

C(Ω0) ∼= lim
→
C(Γ0)

γ∗0→ C(Γ0)
γ∗0→ · · · .

The fact that Ω0 is homeomorphic to ΩT when the substitution forces its

border gives the result. �

Consider µ as a linear funcitonal on each C(Γ0) by taking

µ : C(Γ0) → C
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µ(f) =

∫
Γ0

f(x)dµ(x).

Since µ◦γ−1
0 = µ, µ takes the same value on equivalent elements in the direct

limit, and so by continuity µ extends to a functional µ on C(Ωk). By Reisz

Representation, µ is realized as a measure on Ωk such that when we have

f ′ ∈ C(Ωk), ∫
Ωk

f ′(x)dµ(x) =

∫
Γ0

f(x)dµ(x).

By definition of π and µ, we have that µ ◦ π−1(E) = µ(E) for any Borel set

E ⊂ Γ0.

Lemma 4.3.3 µ ◦ ω−1 = µ.

Proof If E ⊂ Γ0 is a Borel set, then we have

µ ◦ ω−1(π−1(E)) = µ ◦ π−1 ◦ γ−1
0 (E)

= µ ◦ γ−1
0 (E)

= µ(E)

= µ(π−1(E))

The rest follows from the definition of µ. �

Lemma 4.3.4 If E ⊂ (Γ0 − Eε) is a Borel set and |x| < ε, then

µ(π−1(E) + x) = µ ◦ π−1(E).

Proof Since E ⊂ (Γ0 − Eε), it suffices to show for E ⊂ pi − Eε for some

i because any E ⊂ (Γ0 − Eε) will be the union of such sets. If we think of
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E as a subset of all translates of prototile pi, then π−1(E) is the set of all

tilings of Rn where the origin lies in E. If |x| < ε, then E + x will still be in

pi, and so π−1(E + x) = π−1(E) + x. Thus

µ(π−1(E) + x) = µ(π−1(E + x))

= µ(E + x).

Since E + x is still a subset of the same prototile, this is just µ(E) as it

is Lebesgue measure times a constant, and Lebesgue measure is translation

invariant. Thus µ(π−1(E)) = µ(E) = µ ◦ π−1(E). �

Theorem 4.3.2 The measure µ is translation invariant.

Proof It suffices to take E ⊂ Γ0 Borel, x ∈ R2, and show µ(π−1(E)+x) =

µ ◦ π−1(E).

Let ε > 0 and find n ≥ 0 such that |λ−nx| < ε. Then we have

µ(π−1(E) + x) = µ ◦ ω−n(π−1(E) + x)

= µ

(
ω−n(π−1(E)) + λ−nx

)
= µ

(
π−1(γ−n

0 (E)) + λ−nx

)
.

On the other hand,

µ(π−1(E)) = µ ◦ ω−n(π−1(E)) = µ(π−1(γ−n
0 (E))).

Let E ′ = γ−n
0 (E) and x′ = λ−nx. Thus |x′| < ε and

π−1(E ′)+x′ =

[(
π−1(E ′)+x′

)
∩π−1(Γ0−Eε)

]
∪

[(
π−1(E ′)+x′

)
∩π−1(Eε)

]
.
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The second set in this union is contained in π−1(Eε), so it has measure at

most Pε. Similarly,

π−1(E ′) = π−1
(
E ′ ∩ (Γ0 − E2ε)

)
∪ π−1(E ′ ∩ E2ε.

Since |x′| < ε, π−1
(
E ′ ∩ (Γ0 − E2ε)

)
+ x′ ⊂ π−1(Γ0 − Eε) and

π−1(E ′∩E2ε+x
′ ⊂ π−1(E3ε). Thus, intersecting π−1(E ′)+x′ with π−1(Γ0−Eε)

yields π−1
(
E ′ ∩ (Γ0 − E2ε)

)
+ x′ unioned with a subset of π−1(E3ε). The

measure of the first is equal to µ
(
E ′ ∩ (Γ0 − E2ε)

)
by 4.3.4. The measure

of the second is at most 3Pε. Finally, µ
(
E ′ ∩ (Γ0 − E2ε)

)
is within 2Pε of

µ(E ′) = µ(E).

Thus, µ(π−1(E)+x) is within 6Pε of µ(E) = µ(π−1(E)). As ε is arbitrary,

this proves the result. �

We can now use this measure to define a map from the dynamical coho-

mology to ΛRn∗.

4.4 Computing 〈Cµ, θϕ,U ◦ α1(·)〉.

In this section we compute the image of our map for elements of H1(Γ0). It

can be proved, but it is too long to include here, that the range of the map

on H1(ΩT ) can be computed from this by using the inverse limit structure

of Γ0. Also, from here on we will be considering cohomology with integer

coefficients.

Our measure is defined as weighted Lebesgue measure on our cell complex

- so we would like to know what the image of our maps looks like on each

2-cell individually. To do this, we first need to know some properties of the

partition of unity functions.
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To construct the functions, first consider the x-axis in R2. Then there

exists a smooth function ρε : R2 → [0, 1] with the following properties:

1. ρε(x, y) = 1 for all (x, y) ∈ R2 with y ≥ ε.

2. ρε(x, y) = 0 for all (x, y) ∈ R2 with y ≤ −ε.

3. ρε(x, y) > 0 for all (x, y) ∈ R2 with ε > y > −ε.

4. The function is anti-symmetric about the x-axis – ρε(x,−y) = 1−ρε(x, y).

5. If R = [a, b]× [−ε, ε], then∫
R

∇ρε = (b− a)[0, 1]t.

6. |∇ρε| ≤ Kε−1 for some positive real constant K.

Now this function is defined in terms of the x-axis, but we can see that we

can define similar functions in terms of any line ` in R2. That is to say, ρ`,ε

would be a smooth function on R2 with values between 1 and 0 that takes

value 1 on one side of an ε-band around `, 0 on the other side, and slopes up

smoothly in the ε-band in such a way that the integral condition is satisifed,

see Figure 4.3. In the figure, v =
∫

R
∇ρ`,ε and is the vector which points

perpendicular to to the direction of ` from the region where ρ`,ε = 0 to where

it is 1 and whose magnitude is the length c.

r =1

c

v

R

r = 0

Figure 4.3: Properties of ρ`,ε

Extending this, say we have two rays `1 and `2 in the plane which meet at
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a point. This path `1∪`2 then divides the plane in 2 pieces. Then the function

ρ`1,ερ`2,ε will take the value 1 on the concave side of the ε-band around `1∪ `2
and the value 0 on the other side, see Figure 4.4. This function has the

properties of the ρ`,ε, namely, that
∫

R
ρ`1,ερ`2,ε = v, where v has length equal

to the length of the region R provided R does not intersect with the dotted

region; the bound on the gradient follows as well from the product rule. We

can also see that if we wanted a smooth function which is 1 on the convex

side and 0 on the concave side with the same properties, then we could take

the function 1− ρ`1,ερ`2,ε.

1

0

R

v

Figure 4.4: ρ`1,ερ`2,ε

Now, say we have a star-shaped polygon p (convex or not) in the plane,

and take an ε-band around it. Suppose we want to find a function which

is 1 in the interior of the polygon, 0 outside it, and which is smooth in the
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ε-band. As in Section 4.1, we can pick a point in the interior of p about

which is it starshaped and connect it with a line to the middle of each edge

and form the regions rvi
for each vertex vi, see Figure 4.5.

rv3

e

Figure 4.5: Splitting of a polygon into regions.

Then we can define our function ρp,ε piecewise on Bε(rvi
) by using the ρ

functions as earlier. For example, in Figure 4.5,

ρp,ε|Bε(rv3 ) =
(
ρe3,ερe2,ε

)
|Bε(rv3 ).

If we define ρp,ε to be 0 outisde of Bε(p), then it is clear that the functions will

match up where the regions meet (taking 1 - ρei,ερej ,ε in areas where the edges

ei, ej meet concavely). This function will share the integration properties of

the ρe,ε on the appropriate regions around edge segments.

Finally, recall our open cover V = {Vi}L
i=1 of ΩT , where the set Vi consists

of all tilings which are translates of tilings which have the pattern T (vi)− vi

at the origin translated by vectors which keep the origin in rvi
. For each Vi,

define a function ρ0
i : Γ0 → [0, 1] as follows. If T (vi)−vi is the vertex pattern
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associated with Vi, then Figure 4.6 shows O(vi) (defined back in Section 4.1).

Now T (vi) − vi can be viewed as a subset of Γ0 by seeing it as the union of

the 2-cells associated with the tiles in vertex pattern T (vi)− vi. This in turn

can be seen as a subset of Rn, so we define ρ0
i := ρpi,ε, our function from the

previous paragraph. This function is not defined on Γ0 because what happens

near the edges of the 2-cells will be different for each vertex pattern it is in.

Now, for any tiling T ′ ∈ ΩT , define ρi(T
′) = ρ0

i (T
′, 0)0. After normalizing,

this is a partition of unity subordinate to V .

Figure 4.6: O(vi) with the polygon pi.

Now, say we have a cocycle f in H1(Γ0) for a tiling T of R2 which forces

its border. Then f is a function from the finite set of 1-cells in Γ0 to Z, and

can thus be thought of as a vector in Zm whose entires sum to zero around

any 2-cell, where m is the number of 1-cells in Γ0. When we map to Čech
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cocycles, we want to know what value the image of f will take on the pairwise

intersections of patterns around a given 2-cell. As described above, it takes

the same value that f does on the edge connecting two patterns, respecting

orientation.

Say we have the patch T (σ) as shown (see Figure 4.7) in our tiling T .

Suppose also we have an f ∈ H1(Γ0) with the values f(e12) = 1, f(e23) = 1,

f(e13) = 2. Then

hα1f(V1) =
∑

i

α1ρif(Vi1)

= ρ2α1f(V21) + ρ3α1f(V31)

= −ρ2 − 2ρ3

hα1f(V2) =
∑

i

α1ρif(Vi2)

= ρ1α1f(V12) + ρ3α1f(V32)

= ρ1 − ρ3

hα1f(V3) =
∑

i

α1ρif(Vi3)

= ρ1α1f(V13) + ρ2α1f(V23)

= 2ρ1 + ρ2

Viewing σ as a subset of R2, these are smooth real-valued functions on the

open set ∪x∈σBε(x). The d map is then just the gradient of these functions.

These functions do not agree on σ, but their gradients do, except possibly

at the points of 3-way intersection (see [BT]). Refering to the above example

hα1f(V1) = −ρ2 − 2ρ3 has value –1 at and around the vertex V2, –2 at and

around the vertex V3 and has value 0 at and around vertex V1, see Figure



CHAPTER 4. CONNECTING COHOMOLOGY THEORIES 65

v

v

1
2

3

v

s

Figure 4.7: T (σ)

4.9. It slopes smoothly from one value to another at the places of 2-way

intersection between vertex patterns. Thus we have that −dhα1f(V1) is 0 at

and around the three vertices and is non-zero only on the places of 2-way

intersection, where it takes vector values depending on the direction of the

gradient, see Figure 4.10. Now, if we look at hα1f(V2) = ρ1 − ρ3 instead,

we see that it has value 1 at and around V1, value -1 at and around V3 and

value 0 at and around V2. Thus it is just −ρ2− 2ρ3− 1 and, differing just by

a constant, has the same gradient. The same holds for hα1f(V3) = 2ρ1 + ρ2

For our f , we can then do this for each 2-cell in Γ0, and get smooth ΛR∗2

functions on all the 2-cells. Aside from a small neighborhood around the

edges, these define functions on Γ0 which we can integrate over our measure

µ on Γ0. In short, to compute the image of a cocycle in H1(Γ0), we do the

following.

1. Take f ∈ H1(Γ0). Then for each 1-cell (edge) e in Γ0, f(e) ∈ Z.
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Figure 4.8: Three Vertex Patterns and their Intersections
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Figure 4.9: hα1f(V1)

Represent Γ0 visually as a cell complex, as in 5.3.

2. As outlined in Section 4.1, pick a point in the interior of each 2-cell

about which it is star-shaped, and mark it with a dot. For each edge e for

which f(e) 6= 0, place a dot in the interior of e.

3. We now have a collection of dots in the interiors of some 2-cells and

1-cells. For each dot on an edge e, connect it to each 2-cell for which e is

a face with a line. Call the union of these lines l(f), see Figure 4.11. The

image of f will be non-zero on

L(f) =
⋃

x∈l(f)

Bε(x).

In Figure 4.11, we see that this area is shaded on the tile pi.

4. Let l(f)j,i be the line from the point in the interior of edge ej to the

point in the interior of pi. Restricting to pi and integrating over Lebesgue



CHAPTER 4. CONNECTING COHOMOLOGY THEORIES 68

v

v

1
2

3

v

Figure 4.10: −dhα1f(V1)

measure, 〈Cµ, θϕ,U ◦ α1(·)〉 will then be∑
j

[pi : ej]f(ej)|l(f)j,i|u⊥j

Where |l(f)j,i| stands for the length of the line segment and u⊥j is the unit

vector uxdx + uydy which is perpendicular to l(f)j,i whose direction agrees

with the orientation of pi.

5. The full integral 〈Cµ, θϕ,U ◦ α1(f)〉 will then be the weighted sum of

these taken over each 2-cell. The weights are the vi - the components of the

Perron-Frobenius eigenvector v from when we defined the measure. That is

to say,

〈Cµ, θϕ,U ◦ α1(f)〉 =
∑

i

vi

( ∑
j

[pi : ej]f(ej)|l(f)j,i|u⊥j
)
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Figure 4.11: l(f) and L(f) on pi

Theorem 4.4.1 Given the setup above,

〈Cµ, θϕ,U ◦ α1(f)〉 =
∑

i

vi

( ∑
j

[pi : ej]f(ej)|l(f)j,i|u⊥j
)

Proof Let {p1, p2, . . . pN2}, {e1, e2, . . . eN1} and {ν1, ν2, . . . νN0} denote the

2-, 1-, and 0-cells in the cell complex for Γ0 respectively. Let V be our open

cover of ΩT by vertex patterns, and let ϕx denote the action of translating a

tiling in ΩT by x ∈ R2. Let f ∈ H1(Γ0). Then

−r ◦ θϕ,V ◦ α1(f)i0 = dhια1(f)i0

= d(h(α1f)i0)

= d

( ∑
i

ρi(α1f)ii0

)
= d

( ∑
i

ρi(
∑
i→i0

[tii0 : e]f(e))

)
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where
∑

i→i0
[tii0 : e]f(e)) indicates that the vertex patterns Vi and Vi0 meet

in a tile tii0 , and we sum around the tile according to the orientation of the

cell. As before, if two patterns meet in two different tiles, then it must be

that the vertices at the middle of the patterns are connected by an edge e - if

this is the case then we sum around the tile t for which [t : e] is postitive (all

2-cells are assumed to have the same orientation). Because f is a cocycle,

the sum will be ±f(e) - positive if the orientation on e runs from i to i0 and

negative if otherwise.

We can split the sum into two cases:

−r ◦ θϕ,V ◦ α1(f)i0 = d

( ∑
i�i0

ρi(
∑
i→i0

[tii0 : e]f(e))

)
+ d

( ∑
i∼i0

ρif(ei→i0)

)
,

where we write i ∼ i0 if there an edge in common between the patterns Vi

and Vi0 , and i � i0 otherwise. Also, f(ei→i0) is the value of f at the edge

from the vertex at the middle of pattern i and the vertex at the middle of

pattern i0, where it is understood that we take the negative of the value if

the orientation runs from i0 to i.

For any indices m, k, if m ∼ k, then on the set Vmk,
∑

i∼m ρif(ei→m) =∑
i∼k ρif(ei→k) except on a set whose measure is proportional to ε2 (this is

the the area around the chosen points at the centers of tiles and around the

edges, it’s easy to see from the discussion at the beginnning of Section 4.4

that this is indeed the case). Thus there is a function F in C∞(ΩT ,Λ
1R2∗)

whose image under r agrees with d

( ∑
i∼i0

ρif(ei→i0)

)
except on a set of

measure proportional to ε2, and it is described as follows.

For each prototile pk ∈ R2, look at l(f)∩pk, the line segments constructed

in steps 1-3 on pages 65-67. As stated there, F will be non-zero on the ε
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neighborhood around this collection of line segments. The exact form of F

is given piecewise on each line segment l(f)i as

dρli,ε[pk : ei]

whose vectors agree with the orientation of pk. The function F on pk is

then the sum of these over all line segments. This is a function on Γ0, but

can be seen as a function on ΩT because of our map from ΩT to Γ0. Now,

θϕ,V ◦ α1(f) agrees with F except on a set of measure proportional to ε2

around the edges of the prototiles, because θϕ,V ◦ α1(f) may take different

values along the edges depending on what prototiles were around it in the

tiling while F was defined on the prototiles independent of tiles around it.

Because of the bounds on the gradients given at the beginning of this section,

we have that

|〈Cµ, θϕ,U ◦ α1(f)〉 − 〈Cµ, F 〉| < Pε

where P is some positive real constant. Now,

〈Cµ, F 〉 =
∑

i

vi

( ∑
j

[pi : ej]f(ej)|l(f)j,i|u⊥j
)

where vi is the weight on tile pi, [pi : ej] is the incidence number between

pi and ej, |l(f)j,i| is the length of the line segment in pi adjacent to ej and

u⊥j is the unit vector perpendicular to l(f)j,i whose direction agrees with the

orientation of pi. Now since ε is arbitrary, we have proved the formula. �
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Chapter 5

Computations

Now that we have a definition of the Ruelle-Sullivan Map, we would like

to compute it for some examples. The two that will be looked at are the

Octagonal Tiling and the Penrose Tiling. The first cellular cohomology group

of these two tilings are both isomorphic to Z5. We would like to see if our

map can distinguish between these obviously different tilings.

5.1 The Octagonal Tiling

The octagonal tiling is a substitution tiling with 20 prototiles. It has finite

local complexity, and the substitution shown in Figure 5.1 (and taken from

[KP2]) forces its border. The prototiles are those pictured as well as their

flips about the horizontal and rotations though nπ/4. The substitution rule

extends by symmetry. Since we have a 2-dimensional tiling, the Cohomology

chain will look like

0
0−→ F (Γ00,Z)

∂0−→ F (Γ01,Z)
∂1−→ F (Γ02,Z)

0−→ 0
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Figure 5.1: Substitution Rule for Octagonal Tiling

If we start by giving any vertex a label, say x, then go though and give to

all the vertices that could touch our first vertex the same label, and repeat

with the vertices so given our label, we see that all the vertices will be given

the same label, thus F (Γ00,Z) ∼= Z, with a generator being the function

that takes x to 11. This means that ∂0 is the zero map, because (∂0f)(e) =

f(t(e))−f(i(e)) for each edge, where t(e) and i(e) denote the terminal vertex

and initial vertex of e, respectively. These vertices are equal, so this is always

0. Thus, H0(Γ0) = 0 and H1(Γ0) ∼= ker ∂1.

Consider our cell complex, Figure 5.3. Since we have 16 edges, ie, Γ01 =

{1, 2, . . . , 16}, each element g of F (Γ01,Z) can be viewed as a vector

[g(1), . . . , g(16)]t ∈ Z16. Similarly, if g is in F (Γ02,Z), then is can also be

viewed as a vector [g(1), g(2), . . . , g(20)]t ∈ Z20. Thus the map ∂1 can be

1This also means that our cell complex is not a regular CW-complex, as the homeo-

morphisms that take the edges to the unit interval do not extend to their boundaries.
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viewed as a linear transformation from Z16 to ∈ Z20, ie, a 20× 16-matrix of

integers. If we call this matrix A∂1 , then (A∂1)ij is the incidence number of

edge j and row i. This matrix is



1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0
−1 0 0 1 −1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 0 −1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0
−1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1
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This matrix has rank 11. It therefore has a kernel of dimension 5. Its

kernel is generated by the vectors

v1 =

2
666666666666666666666666666666666666666664

1

0

0

0

−1

0

0

0

0

−1

0

1

0

1

0

−1

3
777777777777777777777777777777777777777775

, v2 =

2
666666666666666666666666666666666666666664

0

1

0

0

0

−1

0

0

1

0

1

0

−1

0

−1

0

3
777777777777777777777777777777777777777775

, v3 =

2
666666666666666666666666666666666666666664

0

0

1

0

0

0

−1

0

0

1

0

1

0

−1

0

−1

3
777777777777777777777777777777777777777775

, v4 =

2
666666666666666666666666666666666666666664

1

1

1

1

0

0

0

0

1

2

2

1

1

0

0

1

3
777777777777777777777777777777777777777775

, v5 =

2
666666666666666666666666666666666666666664

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3
777777777777777777777777777777777777777775

As discussed at the end of last chapter, we can represent the image of

our cocycles on the cell complex as shown in Figures 5.4, 5.5 and 5.6. The

shaded areas denote where the function is non-zero.

Figure 5.7 shows how v1 looks represented on a larger patch of the tiling.

v2 and v3 look similar when represented in this way, just rotated by appro-

priate multiples of π/4 (ie, v2 looks like v1 rotated by π/4, v3 looks like v1

rotated by 2π/4 etc.). v4 looks different however, see Figure 5.8. If we were

to represent v5 on the tiling, it would be non-zero on the ε neighbourhoods

of all the lines connecting the centers of the tiles to the centers of the edges

to which it is adjacent.

To compute the Ruelle-Sullivan Map, we need our measure. We first take

our substitution matrix
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2
6666666666666666666666666666666664

2 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 2 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 0 2 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 1 0 2 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0

3
7777777777777777777777777777777775

Which has Perron-Frobenius eigenvalue 3 + 2
√

2 with eigenvector

uoct = ξ[2
√

2, 2
√

2, 2
√

2, 2
√

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]t

for any ξ ∈ R. The area vector is, if we let the side of the rhomb be b,

aoct =
b2

2
[
√

2,
√

2,
√

2,
√

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]t

Thus our condition aoct · uoct = 1 on the measure leaves us with

b2ξ

2

(
8(
√

2)2 + 16
)

= 32
b2ξ

2
= 1

Thus the eigenvector we want is

P :=
1

16b2
[2
√

2, 2
√

2, 2
√

2, 2
√

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]t.

So

τv1 =
∑

σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v1)
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Back when defining our open cover, we chose points in the interiors of the

cells. For this example, pick the points to bisect the 1-cells, and the points

in the 2-cells as shown. Because we are integrating the partition of unity

functions, the integration is easy. On σ1, for example:∫
σ1

(−1)
(
dhα1

)
(v1) = (

1√
2
dx− 1√

2
dy)bP1

=
1

8b
(dx− dy)

And on σ6∫
σ6

(−1)
(
dhα1

)
(v1) =

(( 1√
2
dx− 1√

2
dy

) b

2
√

2
+

( 1√
2
dx+

1√
2
dy

) b

2
√

2

)
P6

=
1

32b
dx

In fact, on each of the triangles where the function is non-zero, the integral

computes to 1
32b
dx, while on the other rhomb σ4, it computes to 1

8b
(dx+ dy),

bringing the final sum to 1
2b
dx for the space. The direction of this vector

makes sense if one views the vector field on a patch of the tiling - see Figure
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5.7. Similarly,∑
σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v1) =

1

2b
dx

∑
σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v2) =

1

2b

( 1√
2
dx+

1√
2
dy

)
∑

σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v3) =

1

2b
dy

∑
σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v4) =

1

4b

(
1dx+ (1 +

√
2)dy

)
∑

σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v5) = 0

This may be alarming. The first three computations result in vectors

which are rotations of each other by multiples of π
4
. It is curious then, that

the rotations of the fourth generator do not appear, as the octagonal tiling

is symmetric with respect to rotations of multiples of π
4
. Well, it turns out

that if we take our generating set to be {v4− v1, v2, v3, v4, v5} then the image

of v4 − v1 is the rotation of the image of v4 by π
4
.
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Figure 5.2: A Patch of an Octagonal Tiling
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Figure 5.3: Cell Complex Generated by the Octagonal Tiling
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Figure 5.4: Representation of v1, v2 on the Cell Complex

Figure 5.5: Representation of v3 on the Cell Complex
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Figure 5.6: Representation of v4 on the Cell Complex

∇
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Figure 5.7: v1 Represented on a Larger Patch
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Figure 5.8: v4 Represented on a Larger Patch
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5.2 The Penrose Tiling

The famouse kites-and-darts tiling of Penrose give a nice example of an

apreiodic tiling with finite local complexity. Splitting up the kites and darts

into triangles allows up to define a substitution rule to produce such tilings,

see Figure 5.9. This substitution forces its border (see [AP]).

This is the substitution matrix for the Penrose tiling.
2
66666666666666666666666666666666666666666666666666666666666666666664

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

3
77777777777777777777777777777777777777777777777777777777777777777775

Let γ denote the Golden Ratio, γ = 1+
√

5
2

. Then the above matrix has

Perron-Frobenius eigenvalue γ2, with eigenvector

upen = ξ[1, . . . , 1︸ ︷︷ ︸
20

, γ, . . . γ︸ ︷︷ ︸
20

]t

for any ξ ∈ R. If b is the length of the medium length edge (ie, edge 1), then
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Figure 5.9: Cell Complex and Substitution for the Penrose Tiling.
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the area vector is

apen =
b2

4γ2

√
4γ2 − 1[1, . . . , 1︸ ︷︷ ︸

20

, γ, . . . γ︸ ︷︷ ︸
20

]t

We want to choose ξ so that apen · upen = 1, thus

ξ
b2

4γ2

√
4γ2 − 1(20 + 20γ2) = 1

ξ =
γ2

5b2(1 + γ2)
√

4γ2 − 1

In Figure 5.10, the four lengths are equal to

L1 =
b

4γ

√
4γ2 − 1

L2 =
b

4γ

L3 =
γb

4

L4 =
b

4

√
4− γ2

The boundary matrices can be read off Figure 5.9, and they yield the

following generators of H1(Γ0):
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v1 =

2
66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664
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0
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0
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0
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0
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v4 =

2
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0
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v5 =

2
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CHAPTER 5. COMPUTATIONS 89

To calculate the image of v1 under our map, we integrate over the cell

complex:

∫
σi

(−1)
(
dhα1

)
(v1) =

(√
4γ2 − 1dx+ dy

)
b
4γ
ξ; i = 1, 6, 11, 16

=
(√

4γ2 − 1u 8π
10

+ u 3π
10

)
b
4γ
ξ; i = 5, 10, 15, 20

= γ2bξ
4
u 7π

10
+ γbξ

4

√
4− γ2u 2π

10
; i = 22, 27, 32, 37

= γ2bξ
4
u π

10
+ γbξ

4

√
4− γ2u 6π

10
; i = 24, 29, 34, 39.

When worked out this gives∑
σi∈Γ01

∫
σi

(−1)
(
dhα1

)
(v1) =

2

5b
u 2π

5

Where again u 2π
5

denotes the unit vector in the direction of 2π
5

from the

horizontal. Similarly, ∫
σi

(−1)
(
dhα1

)
(v2) =

2

5b
u 3π

5∫
σi

(−1)
(
dhα1

)
(v3) =

2

5b
u 4π

5∫
σi

(−1)
(
dhα1

)
(v4) =

2

5b
uπ∫

σi

(−1)
(
dhα1

)
(v5) = 0

Here we see how the Ruelle-Sullivan map separates the two tilings – the

image of the map is a set of vectors which have rotational symmetry correst-

ponding to the rotational symmetry in the tiling. Indeed, this was our goal –

to extract more information from the cohomology groups to help distinguish
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Figure 5.10: Lengths Needed for Computations.

between fundamentally different tilings. It seems that the Ruelle-Sullivan on

tiling spaces captures the symmetry present, at least in these two examples.
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Figure 5.11: Patch of a Penrose Tiling
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Figure 5.12: First Generator of H1(Γ0) Represented on a Larger Patch.
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Figure 5.13: First Generator of H1(Γ0) represented on Penrose Cell Complex
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Figure 5.14: Fifth Generator of H1(Γ0) Represented on a Larger Patch.



Chapter 6

Conclusion

We began with an aperiodic substitution tiling T of Rn and after making

some standard assumptions about the substitution we formed a cell complex

Γ0. We found a map from the cellular cohomology of the cell complex to the

Čech cohomology of a certain cover of ΩT , and then mapped this cohomology

group to the dynamical cohomology group through an adaptation of the

Čech-deRham theorem. We then showed that this group could be mapped

in a homomorphic way to ΛR∗n as in [KP].

We showed that this map indeed distinguishes between the two different

tilings given in Chapter 5. This is consistent with the sentiment given in

[KP] - that the cohomology groups together with the Ruelle-Sullivan map

will furnish a better invariant for tiling spaces. It is in this way that the

Ruelle-Sullivan map aids in the study of aperiodic order.

The fact that the Penrose tiling admits a generator of cohomology which

maps to 0 while the octagonal tiling does not seems to suggest that there is

more to learn about these tilings - this we feel warrants further study.
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