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Overview

We study tilings of R2 which are aperiodic, but not completely random.

Tiling T −→ topological space ΩT

Elements of ΩT are tilings, and R2 acts by translating them.

Compute ΩT for some periodic examples, use this to describe it in
aperiodic cases.

C∗-algebra of a tiling and invariants.
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Tilings

Definition

A tiling T of R2 is a countable set T = {t1, t2, . . . } of subsets of R2,
called tiles such that

Each tile is homeomorphic to the closed ball (they are usually
polygons),

ti ∩ tj has empty interior whenever i 6= j , and

∪∞i=1ti = R2.

A patch is a finite subset of T . The support of a patch is the union
of its tiles.

If T is a tiling, x ∈ R2, T + x is the tiling formed by translating every
tile in T by x .

T is aperiodic if T + x 6= T for all x ∈ R2 \ {0}.
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Example: Penrose Tiling
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Substitution Rules

Frequently we have a finite number of “tile types”.

P = {p1, p2, . . . , pN} is called a set of prototiles for T if
t ∈ T =⇒ t = p + x for some p ∈ P and x ∈ R2.

Definition

A substitution rule on a set of prototiles P consists of

A scaling constant λ > 1

A rule ω such that, for each p ∈ P, ω(p) is a patch whose support is
λp and whose tiles are translates of members of P.

ω can be applied to patches and tilings by applying it to each tile.

ω can be iterated, since ω(p) is a patch.
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Example: Penrose Tiling

Prototiles
(+ rotates by π
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Example: Penrose Tiling

p

ω−→

ω(p)

ω−→

ω2(p)
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Producing a Tiling from a Substitution Rule

p ⊂ ω4(p) ⊂ ω8(p)

ω4n(p) ⊂ ω4(n+1)(p)
Then

T =
∞⋃
n=1

ω4n(p)

is a tiling.
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The Tiling Metric

The Tiling Metric

The distance between two tilings T and T ′ is less than ε if T and T ′ agree
on a ball of radius 1

ε up to a small translation of at most ε. The distance
d(T ,T ′) is then defined as the inf of all these ε (or 1 if no such ε exists).

There are essentially two ways that T and T ′ can be close:

1 T ′ = T + x for some |x | < ε.

2 T ′ agrees with T exactly on a large ball around the origin, then
disagrees elsewhere.

In most cases, 1 looks like a disc while 2 looks like a Cantor set (ie, totally
disconnected, compact, no isolated points).
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Example: Penrose Tiling

T1
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Example: Penrose Tiling

T2
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Example: Penrose Tiling

T2 is a small shift of T1 ⇒ T1 is close to T2

Charles Starling () Aperiodic Substitution Tilings January 4, 2011 12 / 27



Example: Penrose Tiling

T1
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Example: Penrose Tiling

T2
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Example: Penrose Tiling

T1 and T2 agree around the origin, disagree elsewhere.
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Example: Penrose Tiling

d(T1,T2) < (radius of the ball above.)−1
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The Tiling Space

Definition

The tiling space associated with a tiling T , denoted ΩT , is the
completion of T + R2 = {T + x | x ∈ R2} in the tiling metric. This is also
called the continuous hull of T .

It’s not obvious, but the elements of ΩT are tilings.

ΩT is the set of all tilings T ′ such that every patch in T ′ appears
somewhere in T .
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Properties of the tiling space

Definition

A tiling T is said to have Finite Local Complexity (FLC) if for every
r > 0, the number of different patches (up to translation) of diameter r in
T is finite .

This is always satisfied if the prototiles are polygons and meet full-edge to
full-edge. If T has FLC, then ΩT is compact.

Definition

A substitution rule ω is said to be primitive if there exists some n such
that such that ωn(pi ) contains a copy of pj for every pi , pj ∈ P.

If T is formed by a primitive substitution rule, and T ′ ∈ ΩT , then
ΩT ′ = ΩT .

T ,T ′ both come from same primitive ω =⇒ ΩT = ΩT ′

Replace ΩT → Ω.
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Example: Grid

Infinite grid in R2
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Example: Grid

Placement of the origin in any square determines the tiling.
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Example: Grid

Placement of the origin in any square determines the tiling. T = T − x
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Example: Grid

a and b are the same in the tiling space =⇒ ΩT
∼= T2
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Example: Equilateral Triangles

Infinite tiling of the plane with equilateral triangles.
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Example: Equilateral Triangles

Space of “origin placements” ΩT
∼= T2
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Example: Modified Grid

T , same as usual grid with a larger square at origin.
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Example: Modified Grid

T + (1, 0)
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Example: Modified Grid

T + (2, 0)
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Example: Modified Grid

T + (51, 0)
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Example: Modified Grid

T + (n, 0) is a Cauchy sequence converging to the usual grid.
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Approximating the tiling space

For periodic tilings, we made ΩT by building a space out of the prototiles.
We “glued them together” along their edges if those edges could touch in
the tiling.

Idea: do this for aperiodic tilings → obtain a CW-complex Γ, but not ΩT .
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Approximating the tiling space

The CW complex Γ for the Penrose tiling.
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Approximating the tiling space

For periodic tilings, we made ΩT by building a space out of the prototiles.
We “glued them together” along their edges if those edges could touch in
the tiling.

Idea: do this for aperiodic tilings → obtain a CW-complex Γ, but not ΩT .

Anderson, Putnam (1996) - ω induces a homeomorphism γ on Γ, and if we
form the inverse limit

Ω0 = lim
←

Γ = {(xi )i∈N | xi ∈ Γ∀i , xi = γ(xi+1)}

Then if T satisfies another condition (called forcing the border),

Ω0
∼= Ω
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The discrete tiling space

Recall two ways that T and T ′ can be close:

1 T ′ = T + x for some |x | < ε.

2 T ′ agrees with T exactly on a large ball around the origin, then
disagrees elsewhere.

In the case our periodic examples, neighbourhoods consist of the first way
only. The second way is much more interesting!

For this reason we assume finite local complexity, a primitive substitution
rule, and that every tiling in Ω is aperiodic.

We produce a subspace of Ω to essentially make the first way vanish.
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The discrete tiling space

We replace each prototile p ∈ P −→ (p, x(p)), where x(p) ∈ the interior
of p. The point x(p) is called the puncture of p. If t ∈ T , then t = p + y
for some y and so we define x(t) = x(p) + y .

Define Ωpunc ⊂ Ω as the set of all tilings T ∈ Ω such that the origin is on
a puncture of a tile in T , ie, x(t) = 0 for some t ∈ T . Ωpunc is called the
discrete tiling space or discrete hull.

Ωpunc is homeomorphic to a Cantor set (ie it is totally disconnected,
compact, and has no isolated points).

Its topology is generated by clopen sets of the following form: if P is a
patch and t ∈ P, then let

U(P, t) = {T ∈ Ωpunc | 0 ∈ t ∈ P ⊂ T}
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If T looks like this around the origin 0 ∈ R2, then T ∈ U(P, t1).
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The tiling algebra

Let Rpunc = {(T ,T + x) | T ,T + x ∈ Ωpunc}. Then Rpunc is an
equivalence relation. Topology from Ωpunc × R2.

Cc(Rpunc) - the complex-valued compactly supported continuous functions
on Rpunc .

For f , g ∈ Cc(Rpunc), the convolution product and involution are

f ∗ g(T ,T ′) =
∑

T ′′∈[T ]

f (T ,T ′′)g(T ′′,T ′)

f ∗(T ,T ′) = f (T ′,T )

Cc(Rpunc) is a ∗-algebra, and when completed in a suitable norm becomes
a C∗-algebra, C ∗(Rpunc).
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The tiling algebra

K-theory is an important invariant for C∗-algebras. K0(A) records the
structure of the projections in A up to a generalized notion of dimension.

Anderson, Putnam (1996) - the K-theory of C ∗(Rpunc) is isomorphic to
the cohomology of Ω.

K0(C ∗(Rpunc)) ∼= Ȟ0(Ω)⊕ Ȟ2(Ω)

This is great news!

Cohomology is well-behaved with respect to inverse limits.

Cohomology of Γ is easy to compute.

Penrose: K0(C ∗(Rpunc)) ∼= Z⊕ Z8.
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