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Overview

We study tilings of R2 which are aperiodic, but display long-range order.

We produce such tilings using substitution rules.

Tiling T −→ topological space ΩT

Elements of ΩT are tilings, and R2 acts by translating them.

We replace (ΩT ,R2) with an étale groupoid Rpunc which is transverse to
the action.

Étale groupoid Rpunc −→ C∗-algebra C ∗(Rpunc).

Finite symmetry group actions on tilings −→ crossed products.
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Tilings

Definition

A tiling T of R2 is a countable set T = {t1, t2, . . . } of subsets of R2,
called tiles such that

Each tile is homeomorphic to the closed ball (they are usually
polygons),

ti ∩ tj has empty interior whenever i 6= j , and

∪∞i=1ti = R2.

A patch is a finite subset of T . The support of a patch is the union
of its tiles.

If T is a tiling, x ∈ R2, T + x is the tiling formed by translating every
tile in T by x .

T is aperiodic if T + x 6= T for all x ∈ R2 \ {0}.
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Example: Penrose Tiling
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Tilings

There are uncountably many Penrose tilings, even up to tranlsation.

However, all Penrose tilings look similar locally.

For any r > 0, there are only a finite number of patches of radius r
possible in Penrose tilings (finite local complexity).

For any patch P, there is an R > 0 such that every ball of radius R
contains a copy of P (repetitivity).
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The Tiling Space

Given a tiling T , look at the set T + R2 = {T + x | x ∈ R2}.

We can put a metric on this set that satisfies the following: T1 and T2 are
close if

1 T1 = T2 + x for some small x .

2 T1 agrees with T2 exactly on a large ball around the origin, then
disagrees elsewhere.

In most cases, 1 looks like a disc while 2 looks like a Cantor set.
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The Tiling Space

Complete T + R2 in the metric −→ ΩT , the continuous hull of T .

ΩT is the set of all tilings T ′ such that every patch in T ′ appears
somewhere in T .

Finite local complexity =⇒ ΩT compact. (Radin-Wolff)

Repetitivity =⇒ (ΩT ,R2) minimal. (Solomyak)
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Substitution Rules

We build tilings from a finite set of polygons P = {p1, p2, . . . , pN}, called
the set of prototiles.

Prototiles may carry labels.

A substitution on P is

A scaling constant λ > 1

A rule ω such that for each p ∈ P, ω(p) is a patch with support λp
whose tiles are translates of elements of P.

ω can be applied to tilings and patches consisting of translates of P by
applying it to each tile.

ω can be iterated, since ω(p) is a patch.

If t is a tile, ωn(t) is called an nth order supertile.
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Example: Penrose Tiling

Prototiles
(+ rotates by π

5 )
γ = golden ratio

γ γ

1

γ γ

γ2

ω
λ=γ
−→
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Example: Penrose Tiling

p

ω−→

ω(p)

ω−→

ω2(p)
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Producing a Tiling from a Substitution Rule

p ⊂ ω4(p) ⊂ ω8(p) . . .

ω4n(p) ⊂ ω4(n+1)(p)
Then

T =
∞⋃
n=1

ω4n(p)

is a tiling.
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Properties of the Tiling Space

If T is formed as above, every tile in T is a translate of an element of P.
If they only meet edge-to-edge in T , T has finite local complexity.

We call ω primitive if there exists some n such that such that ωn(pi )
contains a copy of pj for every pi , pj ∈ P.

If T is formed by a primitive substitution rule, then T has repetitivity.
Hence ΩT → Ω.

We restrict our attention to tilings that have FLC, that come from a
primitive substitution rule, and such that Ω contains no periodic tilings.

In this case ω : Ω→ Ω is a homeomorphism.
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The Punctured Tiling Space

We replace each prototile p ∈ P −→ (p, x(p)), where x(p) ∈ the interior
of p. The point x(p) is called the puncture of p. If t ∈ T , then t = p + y
for some y and so we define x(t) = x(p) + y .

Define Ωpunc ⊂ Ω as the set of all tilings T ∈ Ω such that the origin is on
a puncture of a tile in T , ie, x(t) = 0 for some t ∈ T . Ωpunc is called the
punctured tiling space or punctured hull.

Ωpunc is homeomorphic to a Cantor set. Its topology is generated by
clopen sets of the following form: if P is a patch and t ∈ P, then let

U(P, t) = {T ∈ Ωpunc | P − x(t) ⊂ T}
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If T looks like this around the origin 0 ∈ R2, then T ∈ U(P, t1).
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Groupoids associated to Tilings

Let Rpunc = {(T ,T + x) | T ,T + x ∈ Ωpunc}. Then Rpunc is an
equivalence relation.

With the topology from Ωpunc × R2, it becomes an étale groupoid. It is
locally compact, σ-compact, the diagonal is open, and the range and
source maps are local homeomorphisms. Its unit space is Ωpunc .

We build RAF ⊂ Rpunc from the substitution.

Since ω : Ω→ Ω is invertible, so is ωn. Hence every tiling in Ω has a
unique decomposition into nth order supertiles.

Define Rn ⊂ Rpunc by saying (T ,T − x) ∈ Rn if 0 and x are punctures in
the same nth-order supertile in T .

Rn are nested compact open sub equivalence relations of Rpunc −→
RAF = ∪Rn is an AF subgroupoid of Rpunc .
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A punctured tiling T .
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T has unique decomposition into 2nd order supertiles.
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(T ,T − x) ∈ R2.
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The Tiling Algebra

The C∗-algebra of a tiling is

Aω := C ∗(Rpunc)

This is Cc(Rpunc) with convolution product completed in a suitable norm.
This algebra was studied extensively by Kellendonk and Putnam.

AFω := C ∗(RAF )

is an AF-subalgebra of Aω.

Anderson, Putnam (1996) - Aω ∼m C (Ω) oR2, hence simple. They used
this to calculate the K-theory.
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The Tiling Algebra

Putnam (1999) - Order on K-theory of Aω is determined by its unique
trace.

Phillips (2002) - Generalized this result to C∗-algebras of almost AF
Cantor groupoids (notably, minimal actions of Zd on the Cantor set). Also
proved that such algebras have real rank zero and stable rank one.

Conjectured that all such algebras have tracial rank zero. This would
imply that tiling algebras would be classified by their K-theory.

Used presence a “large” AF-subalgebra.
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Finite Symmetry Groups

Most of the tilings we are interested in display some finite symmetries.

If T is a Penrose tiling in Ω, then rotating T by π
5 gives us another

element of Ω. Same for flipping over any edge direction.

⇒ D10 acts on Ω by homeomorphisms (as do subgroups).

We can choose punctures carefully so that elements of D10 act on Ωpunc

and hence on Rpunc and Aω.

α : D10 → Aut(Aω)

αg (f )(T ,T ′) = f (gT , gT ′)

Thus we can form the crossed product Aω o G for any G < D10.
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Finite Symmetry Groups

In general, a group G will act on Aω if G acts on P and commutes with
the substitution.

Since gωn(t) = ωn(gt),
αg (Rn) = Rn

⇒ AFω o G is an AF algebra.

In the case of the Penrose tiling, D10 acts freely on the prototiles, but this
is not true in general. However, we can replace P with P ′ that respects
the original substitution such that a given symmetry group acts freely.

⇒ Homeomorphic Ω, Mortia equivalent Aω, but AFω need not be
isomorphic.
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Finite Symmetry Groups

Proposition

If G is a finite group that acts freely on P and commutes with ω, then
Aω o G is the C∗-algebra of an almost AF Cantor groupoid (and hence has
real rank zero, stable rank one, and order on K-theory is determined by
traces).

The large AF-algebra in this case is AFω o G ∼= C ∗(RAF o G ).

The incidence matrix of AFω o G is primitive, so it is simple and has a
unique trace.

By Phillips, Aω o G also has a unique trace.
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Finite Symmetry Groups

Proposition

If G acts freely on the prototiles, then

1 α : G → Aut(AFω) has the Rokhlin property
2 IF Aω has tracial rank zero, then

α : G → Aut(Aω) has the tracial Rokhlin property and
Aω o G also has tracial rank zero.

Rokhlin property and tracial Rokhlin property are freeness conditions.
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K-theory

The crossed product Aω o G is strongly Morita equivalent to
C (Ω) o (R2 o G ).

Chabert, Echterhoff, Nest (2003) – If G is a finite subgroup of SO(2), then

K∗(C (Ω) o (R2 o G )) = K∗(C (Ω) o G ).

Echterhoff, Emerson (2010) – Compute K∗(C (X ) o G ) where G acts
properly on some compact X .

They produce an ideal I of C (X ) o G strongly Morita equivalent to
C (X/G ) and use excision to write down a six-term exact sequence.
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K-theory

When K 1(Ω/G ) is free, then

K1(C (Ω) o G ) ∼= K 1(Ω/G )

K0(C (Ω) o G ) ∼= K 0(Ω/G )⊕ Zn

Each G -orbit contributes a copy of Z for each non-trivial character of its
stabilizer subgroup.
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K-theory

Example: Penrose

K 0(Ω/Z10) ∼= Z3 K 1(Ω/Z10) ∼= Z

There are two Z10-orbits with fixed points, each with stabilizer subgroup
Z5.

These contribute 8 copies of Z

K0(C (Ω) o Z10) ∼= K0(Aω o Z10) ∼= Z11

K1(C (Ω) o Z10) ∼= K1(Aω o Z10) ∼= Z
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K-theory of the AF algebra

ω(p1) ω(p2)

Taking the crossed product by D10 has the effect of “modding out” by the
group.

An o D10
∼= M(#D10)(#ωn(p1)) ⊕M(#D10)(#ωn(p2))

There is one copy of p1 and one copy of p2 in ω(p1). There is one copy of
p1 and two copies of p2 in ω(p2).
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K-theory of the AF algebra

An o D10 ↪→ An+1 o D10

(
A 0
0 B

)
7→


A 0
0 B

A 0 0
0 B 0
0 0 B



⇒ K0(AFω o D10) ∼= Z2

 1 1
1 2


−→ Z2

 1 1
1 2


−→ Z2 −→ · · ·

⇒ K0(AFω o D10) ∼= Z + γZ where γ is the golden ratio.
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K-theory

If you are seeing this slide, I ran out of time! Oops!

Penrose:

K0(Aω o Z10) ∼= Z11

K1(Aω o Z10) ∼= Z

K0(AFω o D10) ∼= Z + γZ
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