Inverse Semigroups in C*-algebras

Charles Starling

University of Ottawa

June 4, 2016

A C*-algebra is a set A which:

- **1** is an algebra over \mathbb{C} ,
- 2 has an involution $a \mapsto a^*$ which is conjugate linear, and $(ab)^* = b^*a^*$,
- has a norm || · || with which it is complete normed algebra (i.e. it is a Banach algebra)
- for all $a \in A$, $||a^*a|| = ||a||^2$ (the C*-condition).

Examples:

C

- **2** $\mathbb{M}_n(\mathbb{C})$ the $n \times n$ matrices over \mathbb{C}
- **③** $B(\mathcal{H})$, the bounded operators on a Hilbert space \mathcal{H} .

X – compact Hausdorff space

$$C(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous}\}$$

This is a C*-algebra with pointwise sum, product, and complex conjugate, with

$$\|f\| = \sup_{x \in X} |f(x)|$$

If X is only locally compact, $C_0(X)$ is a C*-algebra, but without a unit.

Theorem (Gelfand-Naimark)

- Every commutative C*-algebra is isomorphic to C₀(X) for some locally compact X.
- C₀(X) and C₀(Y) are isomorphic if and only if X and Y are homeomorphic.
- C*-algebras are "noncommutative geometry"

Theorem (Gelfand-Naimark-Segal construction)

Every C*-algebra is isomorphic to a norm-closed subalgebra of $B(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Inverse semigroups in C*-algebras

A projection is an element $p \in A$ such that

$$p = p^2 = p^*$$

An isometry is an element $s \in A$ such that

 $s^*s = 1$

A partial isometry is an element $s \in A$ such that

 $ss^*s = s$

equivalently, s^*s and ss^* are both projections

Any set of partial isometries $S \subset A$ closed under multiplication and involution is an inverse semigroup, and E(S) is a commuting set of projections.

 $\mathbb{M}_2(\mathbb{C}) - 2 \times 2$ matrices over \mathbb{C} .

$$S_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

All matrix units, together with identity and zero.

 S_2 is an inverse semigroup which generates $\mathbb{M}_2(\mathbb{C})$

$$\mathcal{I}_2 = S_2 \cup \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

All rook matrices, also an inverse semigroup which generates $\mathbb{M}_2(\mathbb{C})$

 \mathcal{I}_2 is isomorphic to the symmetric inverse monoid on the two element set.

Question: can every inverse semigroup be realized as a set of partial isometries in some C*-algebra?

Answer: Yes – Paterson (99)

 $\pi: S \to A$ is a representation if $\pi(st) = \pi(s)\pi(t)$ and $\pi(0) = 0$.

There exists $C^*(S)$ which is universal for representations of S.

 $C^*(S) = C^*(\mathcal{G}_u(S))$ for an étale groupoid $\mathcal{G}_u(S)$ constructed from S.

 $\mathcal{G}_u(S)^{(0)}$ is homeomorphic to the space of filters in E(S), and $C_0(\mathcal{G}_u(S)^{(0)}) = C^*(E(S))$ is always a commutative subalgebra of $C^*(S)$.

Example: 2×2 matrices

 $\mathbb{M}_2(\mathbb{C}) - 2 \times 2$ matrices over \mathbb{C}

 $e_{ij} = matrix$ with 1 in (i, j) entry, 0 elsewhere.

 $E(S_2) = \{1_2, e_{11}, e_{22}, 0_2\}$

Set of filters = $\{\{1_2\}, \{1_2, e_{11}\}, \{1_2, e_{22}\}\}$

 $C(\mathcal{G}_u(S_2)^{(0)}) = \mathbb{C}^3$

Even though it "feels like" $C^*(S_2)$ should be $\mathbb{M}_2(\mathbb{C})$, it cannot be.

 $C^*(S_2) \cong \mathbb{M}_2(\mathbb{C}) \oplus \mathbb{C}$, with universal representation given by

$$\pi_{u}\left(\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}\right) = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix} \qquad \pi_{u}\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) = \begin{bmatrix}a & b & 0\\ c & d & 0\\ 0 & 0 & 0\end{bmatrix} else$$

$$\pi_u \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \pi_u \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 0 \end{bmatrix} else$$

 $\pi_u(E(S_2))$ is a commuting set of projections, and two commuting projections in a C*-algebra always have a join:

$$e \lor f = e + f - ef$$

$$\pi_u(e_{11}) \lor \pi_u(e_{22}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \pi_u(1_2) = \pi_u(e_{11} \lor e_{22})$$

If we want to recover $\mathbb{M}_2(\mathbb{C}),$ we would like to look at representations which preserve joins.

The above example was special, $E(S_2)$ is a Boolean algebra, and has joins.

In general, E(S) won't have joins.

 $C \subset_{\text{fin}} E(S)$ is a cover for $e \in E(S)$ if for all $0 \neq f \leq e$, there is a $c \in C$ such that $fc \neq 0$.

Exel (08) introduced the notion of a tight representation.

 π is tight if whenever C is a cover for e, we have $\bigvee_{c \in C} \pi(c) = \pi(e)$ $(\pm \epsilon)$

 $C^*_{\text{tight}}(S)$ universal for tight representations.

 $C^*_{\operatorname{tight}}(S_2) \cong \mathbb{M}_2(\mathbb{C})$

Example: Cuntz algebras

 ℓ^2 : Hilbert space of square-summable complex sequences.

Define $\mathit{s}_0, \mathit{s}_1 \in \mathit{B}(\ell^2)$ by

$$s_0(x_1, x_2, x_3, \dots) = (x_1, 0, x_2, 0, x_3, 0, \dots)$$

$$s_1(x_1, x_2, x_3, \dots) = (0, x_1, 0, x_2, 0, x_3, \dots)$$

$$s_0^*(x_1, x_2, x_3, \dots) = (x_1, x_3, x_5, \dots)$$

 $s_1^*(x_1, x_2, x_3, \dots) = (x_2, x_4, x_6, \dots)$

$$s_0^* s_0 = 1 = s_1^* s_1$$

 $s_0 s_0^* =$ projection onto odd coordinates $s_1 s_1^* =$ projection onto even coordinates Then

$$s_0^* s_0 = 1 = s_1^* s_1$$

 $s_0 s_0^* s_1 s_1^* = 0$
 $s_0 s_0^* + s_1 s_1^* = 1$

Cuntz (77) showed that the C*-algebra generated by s_0, s_1 , denoted \mathcal{O}_2 depended only on the relations above.

Analogous construction for \mathcal{O}_n – these are the Cuntz algebras. They were the first examples of separable simple C*-algebras which are infinite (ie, contain a proper isometry).

Example: Cuntz algebras

 $\{0,1\}^* = (\text{possibly empty}) \text{ words in } \{0,1\}$ For $\alpha \in \mathcal{A}^*$, let $s_\alpha := s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_{|\alpha|}}$, and note $s_\alpha^* = s_{\alpha_{|\alpha|}}^* \cdots s_{\alpha_2}^* s_{\alpha_1}^*$ Let $s_{\emptyset} = 1$ $s_{\alpha}s_{\beta} = s_{\alpha\beta}$ and $s_{\alpha}^*s_{\beta}^* = s_{\beta\alpha}^*$ $P_2 = \{s_\alpha s_\beta^* \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{0\}$ polycyclic monoid $(s_{\alpha}s_{\beta}^{*})(s_{\gamma}s_{\nu}^{*}) = \begin{cases} s_{\alpha\gamma'}s_{\nu}^{*} & \text{if } \gamma = \beta\gamma' \\ s_{\alpha}s_{\nu\beta'}^{*} & \text{if } \beta = \gamma\beta' \\ 0 & \text{otherwise} \end{cases}$

 $E(P_2) = \{ s_{\alpha} s_{\alpha}^* \mid \alpha \in \{0,1\}^* \} \cup \{0\}$

$$s_0^* s_0 = 1 = s_1^* s_1$$
$$s_0 s_0^* s_1 s_1^* = 0$$
$$s_0 s_0^* + s_1 s_1^* = 1$$

 $C^*(P_2) \cong \mathcal{T}_2$. This is the universal C*-algebra generated by elements as above, with the last relation removed.

 $C^*_{\operatorname{tight}}(P_2) \cong \mathcal{O}_2$

The last relation is the one which involves more than the multiplicative semigroup structure.

 $s, t \in S$ are called compatible if $s^*t, st^* \in E(S)$. $F \subset S$ is compatible if its elements are pairwise compatible.

Definition

- S is a Boolean inverse monoid if
 - **(**) for all compatible $F \subset_{fin} S$, the join $\bigvee F$ exists, and for all $s \in S$,

$$s \bigvee F = \bigvee sF$$
 $(\bigvee F) s = \bigvee Fs$

 $\bigcirc E(S)$ is a Boolean algebra

Pairs of elements in P_2 may have a join outside of P_2

Eg: in P_2 , $s_{00}s_{00}^*$ and $s_{11}s_{11}^*$ don't have a join in P_2 , but in \mathcal{O}_2 , we have $s_{00}s_{00}^* + s_{11}s_{11}^*$

Lawson, Scott – create a Boolean inverse monoid which contains all possible joins P_2 .

View P_2 as a subsemigroup of $\mathcal{I}(\{0,1\}^{\mathbb{N}})$:

$$s_{\alpha}s_{\beta}^*:\beta\{0,1\}^{\mathbb{N}}\to\alpha\{0,1\}^{\mathbb{N}}$$

$$s_{\alpha}s_{\beta}^{*}(\beta x) = \alpha x$$

Let C_2 be the set of all joins of finite compatible sets in P_2 , this is a Boolean inverse monoid called the Cuntz monoid.

C*-algebras of Boolean inverse monoids

If S is a Boolean inverse monoid, a Boolean inverse monoid representation of S is a representation $\pi: S \to A$ such that for all $e, f \in E(S)$

$$\pi(e \lor f) = \pi(e) \lor \pi(f) = \pi(e) + \pi(f) - \pi(ef)$$

This is equivalent to saying that, for all compatible $s, t \in S$, we have

$$\pi(s \lor t) = \pi(s) + \pi(t) - \pi(ss^*t)$$

 $C^*_B(S)$ – universal C*-algebra for Boolean inverse monoid representations of S.

Observation

 a representation is a Boolean inverse monoid representation if and only if it is a tight representation

$$c^*_B(S) = C^*_{tight}(S).$$

Many C*-algebras have been identified as the tight C*-algebra of a generating inverse semigroup:

- Graph C*-algebras (Exel 2008)
- Tiling C*-algebras (Exel-Gonçalves-S 2012)
- Self-similar group C*-algebras (Exel-Pardo 2014)
- Katsura algebras (Exel-Pardo 2014)
- C*-algebras of right LCM semigroups (S 2015)
- Carlsen-Matsumoto subshift algebras (S 2015)
- AF C*-algebras (Lawson-Scott 2014, S 2016)
- Any C*-algebra of an ample étale groupoid (Exel 2010)
- C*-algebras of Boolean dynamical systems (Carlsen-Ortega-Pardo 2016)
- C*-algebras of labeled spaces (Boava-de Castro-Mortari 2016)

General question: given two C*-algebras A, B, how can we tell if $A \cong B$?

Recall that commutative C*-algebras \leftrightarrow locally compact Hausdorff spaces.

In topology, the problem of deciding when two spaces are homeomorphic are aided by invariants like homology.

X – topological space, $H_*(X) = \bigoplus_{n \ge 0} H_n(X)$ finitely generated abelian groups.

 $X \cong Y \Rightarrow H_*(X) \cong H_*(Y).$

For some classes of spaces, isomorphism of homology implies isomorphism of spaces – ie homology is a complete invariant of surfaces.

In C*-algebras, we have K-theory, $K_0(A)$, $K_1(A)$, abelian groups.

For some classes of C*-algebras, the K-theory $(\pm \epsilon)$ is a complete invariant.

Determining which classes can be classified by K-theory is the Elliott program.

Most classes known to be classified by K-theoretical data consist of simple C^* -algebras (simple = no closed two-sided ideals).

We would like to determine when $C^*_{\text{tight}}(S)$ is simple (for example), in terms of properties of S.

Theorem (Renault, Brown-Clark-Farthing-Sims)

Let \mathcal{G} be a Hausdorff étale groupoid. Then $C^*(\mathcal{G})$ is simple if and only if

- **1** *G* is minimal (every orbit is dense)
- G is effective (the interior of the isotropy group bundle is the unit space), and
- \mathcal{G} satisfies weak containment ($C_r^*(\mathcal{G}) \cong C^*(\mathcal{G})$).

Exel-Pardo and Steinberg (2015) gave conditions on an inverse semigroup to ensure that \mathcal{G}_{tight} satisfies the conditions above (except weak containment).

 \mathcal{G}_{tight} Hausdorff:

 $\Leftrightarrow \text{ For all } s \in S \text{, the set } \mathcal{J}_s = \{ e \in E(S) \mid e \leqslant s \} \text{ has a finite cover.}$

Boolean inverse monoid case – \Leftrightarrow *S* is a meet Boolean inverse monoid.

 \mathcal{G}_{tight} Minimal:

 \Leftrightarrow For every nonzero $e, f \in E(S)$, there exist $F \subset_{\text{fin}} S$ such that $\{esfs^* \mid s \in F\}$ is a cover for $\{e\}$.

Boolean inverse monoid case – \Leftrightarrow for every nonzero $e, f \in E(S)$, there exist $F \subset_{\text{fin}} S$ such that $e \leq \bigvee_{s \in F} sfs^*$.

Say an idempotent $e \leqslant s^*s$ is

- fixed by s if se = e
- **2** weakly fixed by *s* if for all $0 \neq f \leq e$, $fsfs^* \neq 0$

 \mathcal{G}_{tight} Effective:

(if Hausdorff) \Leftrightarrow For every $s \in S$ and every $e \in E(S)$ weakly fixed by s, there exists a finite cover for $\{e\}$ by fixed idempotents.

Boolean inverse monoid case – (if Hausdorff) \Leftrightarrow for every $s \in S$, e weakly fixed by s implies e is fixed by s.

Remark

If $A \cong C^*_{tight}(S)$ for some inverse semigroup S, it can be realized as $C^*_B(T)$ for some Boolean inverse monoid T.

 $C^*_{\text{tight}}(S) = C^*(\mathcal{G}_{\text{tight}}(S))$ and $\mathcal{G}_{\text{tight}}(S)$ is ample. Its ample semigroup is a Boolean inverse monoid whose C*-algebra is exactly $C^*(\mathcal{G}_{\text{tight}}(S))$. This is in fact true for all C*-algebras of ample étale groupoids (Exel 2010).

Often, it is easier to describe a generating inverse semigroup combinatorially.

Inverse semigroup	C*-algebra	Groupoid
$s \in S$	partial isometry	compact open bisection
$e \in E(S)$	projection	compact open set of units
Green's relation ${\cal D}$	Murray-von Neumann	
	equivalence	
Type monoid	K-theory	
Boolean inverse		all compact
monoid		open bisections
Invariant mean	trace	invariant measure
Coffee	Coffee	Coffee