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C*-algebras

A C*-algebra is a set A which:

1 is an algebra over C,

2 has an involution a 7→ a∗ which is conjugate linear, and (ab)∗ = b∗a∗,

3 has a norm ‖ · ‖ with which it is complete normed algebra (i.e. it is a
Banach algebra)

4 for all a ∈ A, ‖a∗a‖ = ‖a‖2 (the C*-condition).

Examples:

1 C
2 Mn(C) the n × n matrices over C
3 B(H), the bounded operators on a Hilbert space H.
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Commutative C*-algebras

X – compact Hausdorff space

C (X ) = {f : X → C | f is continuous}

This is a C*-algebra with pointwise sum, product, and complex conjugate,
with

‖f ‖ = sup
x∈X
|f (x)|

If X is only locally compact, C0(X ) is a C*-algebra, but without a unit.
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Bedrocks of C*-algebra theory

Theorem (Gelfand-Naimark)

1 Every commutative C*-algebra is isomorphic to C0(X ) for some
locally compact X .

2 C0(X ) and C0(Y ) are isomorphic if and only if X and Y are
homeomorphic.

C*-algebras are “noncommutative geometry”

Theorem (Gelfand-Naimark-Segal construction)

Every C*-algebra is isomorphic to a norm-closed subalgebra of B(H) for
some Hilbert space H.

Charles Starling (University of Ottawa) Inverse Semigroups in C*-algebras June 4, 2016 4 / 25



Inverse semigroups in C*-algebras

A projection is an element p ∈ A such that

p = p2 = p∗

An isometry is an element s ∈ A such that

s∗s = 1

A partial isometry is an element s ∈ A such that

ss∗s = s

equivalently, s∗s and ss∗ are both projections

Any set of partial isometries S ⊂ A closed under multiplication and
involution is an inverse semigroup, and E (S) is a commuting set of
projections.
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Example: 2× 2 matrices

M2(C) – 2× 2 matrices over C.

S2 =

{[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]}
All matrix units, together with identity and zero.

S2 is an inverse semigroup which generates M2(C)

I2 = S2 ∪
{[

0 1
1 0

]}
All rook matrices, also an inverse semigroup which generates M2(C)

I2 is isomorphic to the symmetric inverse monoid on the two element set.
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Inverse semigroups in C*-algebras

Question: can every inverse semigroup be realized as a set of partial
isometries in some C*-algebra?

Answer: Yes – Paterson (99)

π : S → A is a representation if π(st) = π(s)π(t) and π(0) = 0.

There exists C ∗(S) which is universal for representations of S .

C ∗(S) = C ∗(Gu(S)) for an étale groupoid Gu(S) constructed from S .

Gu(S)(0) is homeomorphic to the space of filters in E (S), and
C0(Gu(S)(0)) = C ∗(E (S)) is always a commutative subalgebra of C ∗(S).
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Example: 2× 2 matrices

M2(C) – 2× 2 matrices over C

eij = matrix with 1 in (i , j) entry, 0 elsewhere.

E (S2) = {12, e11, e22, 02}

Set of filters = {{12}, {12, e11}, {12, e22}}

C (Gu(S2)(0)) = C3

Even though it “feels like” C ∗(S2) should be M2(C), it cannot be.

C ∗(S2) ∼= M2(C)⊕ C, with universal representation given by

πu

([
1 0
0 1

])
=

1 0 0
0 1 0
0 0 1

 πu

([
a b
c d

])
=

a b 0
c d 0
0 0 0

 else
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Example: 2× 2 matrices

πu

([
1 0
0 1

])
=

1 0 0
0 1 0
0 0 1

 πu

([
a b
c d

])
=

a b 0
c d 0
0 0 0

 else

πu(E (S2)) is a commuting set of projections, and two commuting
projections in a C*-algebra always have a join:

e ∨ f = e + f − ef

πu(e11) ∨ πu(e22) =

1 0 0
0 1 0
0 0 0

 6= πu(12) = πu(e11 ∨ e22)

If we want to recover M2(C), we would like to look at representations
which preserve joins.
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Exel’s tight representations

The above example was special, E (S2) is a Boolean algebra, and has joins.

In general, E (S) won’t have joins.

C ⊂fin E (S) is a cover for e ∈ E (S) if for all 0 6= f 6 e, there is a c ∈ C
such that fc 6= 0.

Exel (08) introduced the notion of a tight representation.

π is tight if whenever C is a cover for e, we have
∨

c∈C π(c) = π(e) (±ε)

C ∗tight(S) universal for tight representations.

C ∗tight(S2) ∼= M2(C)
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Example: Cuntz algebras

Example: Cuntz algebras

`2: Hilbert space of square-summable complex sequences.

Define s0, s1 ∈ B(`2) by

s0(x1, x2, x3, . . . ) = (x1, 0, x2, 0, x3, 0, . . . )

s1(x1, x2, x3, . . . ) = (0, x1, 0, x2, 0, x3, . . . )

s∗0 (x1, x2, x3, . . . ) = (x1, x3, x5, . . . )

s∗1 (x1, x2, x3, . . . ) = (x2, x4, x6, . . . )

s∗0 s0 = 1 = s∗1 s1

s0s∗0 = projection onto odd coordinates
s1s∗1 = projection onto even coordinates
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Example: Cuntz algebras

Then
s∗0 s0 = 1 = s∗1 s1

s0s∗0 s1s∗1 = 0

s0s∗0 + s1s∗1 = 1

Cuntz (77) showed that the C*-algebra generated by s0, s1, denoted O2

depended only on the relations above.

Analogous construction for On – these are the Cuntz algebras. They were
the first examples of separable simple C*-algebras which are infinite (ie,
contain a proper isometry).
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Example: Cuntz algebras

{0, 1}∗ = (possibly empty) words in {0, 1}

For α ∈ A∗, let sα := sα1sα2 · · · sα|α| , and note s∗α = s∗α|α|
· · · s∗α2

s∗α1

Let s∅ = 1

sαsβ = sαβ and s∗αs∗β = s∗βα

P2 = {sαs∗β | α, β ∈ {0, 1}∗} ∪ {0} polycyclic monoid

(sαs∗β)(sγs∗ν ) =


sαγ′s∗ν if γ = βγ′

sαs∗νβ′ if β = γβ′

0 otherwise

E (P2) = {sαs∗α | α ∈ {0, 1}∗} ∪ {0}
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Example: Cuntz algebras

s∗0 s0 = 1 = s∗1 s1

s0s∗0 s1s∗1 = 0

s0s∗0 + s1s∗1 = 1

C ∗(P2) ∼= T2. This is the universal C*-algebra generated by elements as
above, with the last relation removed.

C ∗tight(P2) ∼= O2

The last relation is the one which involves more than the multiplicative
semigroup structure.
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Boolean inverse monoids

s, t ∈ S are called compatible if s∗t, st∗ ∈ E (S). F ⊂ S is compatible if its
elements are pairwise compatible.

Definition

S is a Boolean inverse monoid if

1 for all compatible F ⊂fin S , the join
∨

F exists, and for all s ∈ S ,

s
∨

F =
∨

sF
(∨

F
)

s =
∨

Fs

2 E (S) is a Boolean algebra
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Boolean inverse monoids

Pairs of elements in P2 may have a join outside of P2

Eg: in P2, s00s∗00 and s11s∗11 don’t have a join in P2, but in O2, we have
s00s∗00 + s11s∗11

Lawson, Scott – create a Boolean inverse monoid which contains all
possible joins P2.

View P2 as a subsemigroup of I({0, 1}N):

sαs∗β : β{0, 1}N → α{0, 1}N

sαs∗β(βx) = αx

Let C2 be the set of all joins of finite compatible sets in P2, this is a
Boolean inverse monoid called the Cuntz monoid.
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C*-algebras of Boolean inverse monoids

If S is a Boolean inverse monoid, a Boolean inverse monoid representation
of S is a representation π : S → A such that for all e, f ∈ E (S)

π(e ∨ f ) = π(e) ∨ π(f ) = π(e) + π(f )− π(ef )

This is equivalent to saying that, for all compatible s, t ∈ S , we have

π(s ∨ t) = π(s) + π(t)− π(ss∗t)

C ∗B(S) – universal C*-algebra for Boolean inverse monoid representations
of S .

Observation
1 a representation is a Boolean inverse monoid representation if and

only if it is a tight representation

2 C ∗B(S) = C ∗tight(S).
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C*-algebras of inverse semigroups

Many C*-algebras have been identified as the tight C*-algebra of a
generating inverse semigroup:

Graph C*-algebras (Exel 2008)

Tiling C*-algebras (Exel-Gonçalves-S 2012)

Self-similar group C*-algebras (Exel-Pardo 2014)

Katsura algebras (Exel-Pardo 2014)

C*-algebras of right LCM semigroups (S 2015)

Carlsen-Matsumoto subshift algebras (S 2015)

AF C*-algebras (Lawson-Scott 2014, S 2016)

Any C*-algebra of an ample étale groupoid (Exel 2010)

C*-algebras of Boolean dynamical systems (Carlsen-Ortega-Pardo
2016)

C*-algebras of labeled spaces (Boava-de Castro-Mortari 2016)
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Simplicity of C*-algebras of inverse semigroups

General question: given two C*-algebras A,B, how can we tell if A ∼= B?

Recall that commutative C*-algebras ↔ locally compact Hausdorff spaces.

In topology, the problem of deciding when two spaces are homeomorphic
are aided by invariants like homology.

X – topological space, H∗(X ) =
⊕

n≥0 Hn(X ) finitely generated abelian
groups.

X ∼= Y ⇒ H∗(X ) ∼= H∗(Y ).

For some classes of spaces, isomorphism of homology implies isomorphism
of spaces – ie homology is a complete invariant of surfaces.
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Simplicity of C*-algebras of inverse semigroups

In C*-algebras, we have K-theory, K0(A),K1(A), abelian groups.

For some classes of C*-algebras, the K-theory (±ε) is a complete invariant.

Determining which classes can be classified by K-theory is the Elliott
program.

Most classes known to be classified by K-theoretical data consist of simple
C*-algebras (simple = no closed two-sided ideals).

We would like to determine when C ∗tight(S) is simple (for example), in
terms of properties of S .
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Simplicity of C*-algebras of inverse semigroups

Theorem (Renault, Brown-Clark-Farthing-Sims)

Let G be a Hausdorff étale groupoid. Then C ∗(G) is simple if and only if

1 G is minimal (every orbit is dense)

2 G is effective (the interior of the isotropy group bundle is the unit
space), and

3 G satisfies weak containment ( C ∗r (G) ∼= C ∗(G) ).

Exel-Pardo and Steinberg (2015) gave conditions on an inverse semigroup
to ensure that Gtight satisfies the conditions above (except weak
containment).
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Simplicity of C*-algebras of inverse semigroups

Gtight Hausdorff:

⇔ For all s ∈ S , the set Js = {e ∈ E (S) | e 6 s} has a finite cover.

Boolean inverse monoid case – ⇔ S is a meet Boolean inverse monoid.

Gtight Minimal:

⇔ For every nonzero e, f ∈ E (S), there exist F ⊂fin S such that
{esfs∗ | s ∈ F} is a cover for {e}.

Boolean inverse monoid case – ⇔ for every nonzero e, f ∈ E (S), there
exist F ⊂fin S such that e 6

∨
s∈F sfs∗.
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Simplicity of C*-algebras of inverse semigroups

Say an idempotent e 6 s∗s is

1 fixed by s if se = e

2 weakly fixed by s if for all 0 6= f 6 e, fsfs∗ 6= 0

Gtight Effective:

(if Hausdorff) ⇔ For every s ∈ S and every e ∈ E (S) weakly fixed by s,
there exists a finite cover for {e} by fixed idempotents.

Boolean inverse monoid case – (if Hausdorff) ⇔ for every s ∈ S , e weakly
fixed by s implies e is fixed by s.
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Remark about Boolean inverse monoids

Remark

If A ∼= C ∗tight(S) for some inverse semigroup S, it can be realized as C ∗B(T )
for some Boolean inverse monoid T .

C ∗tight(S) = C ∗(Gtight(S)) and Gtight(S) is ample. Its ample semigroup is a
Boolean inverse monoid whose C*-algebra is exactly C ∗(Gtight(S)). This is
in fact true for all C*-algebras of ample étale groupoids (Exel 2010).

Often, it is easier to describe a generating inverse semigroup
combinatorially.
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Inverse Semigroup – C*-algebra dictionary

Inverse semigroup C*-algebra Groupoid

s ∈ S partial isometry compact open bisection

e ∈ E (S) projection compact open set of units

Green’s relation D Murray-von Neumann
equivalence

Type monoid K-theory

Boolean inverse all compact
monoid open bisections

Invariant mean trace invariant measure

Coffee Coffee Coffee
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