Self-Similar Graph Actions and Partial Crossed Products

Charles Starling (joint work with Ruy Exel)

UFSC
May 15, 2014

Self-Similar Actions

G group, $\quad X$ finite set, $\quad X^{*}$ words in X (including an empty word)
Suppose we have an action of G on X^{*} and a restriction $G \times X \rightarrow G$

$$
\left.(g, x) \mapsto g\right|_{x} .
$$

such that the action on X^{*} can be defined recursively

$$
g(x \alpha)=(g x)\left(\left.g\right|_{x} \alpha\right)
$$

The pair (G, X) is called a self-similar action.
Restriction extends to words

$$
\begin{gathered}
\left.g\right|_{\alpha_{1} \alpha_{2} \cdots \alpha_{n}}:=\left.\left.\left.g\right|_{\alpha_{1}}\right|_{\alpha_{2}} \cdots\right|_{\alpha_{n}} \\
g(\alpha \beta)=(g \alpha)\left(\left.g\right|_{\alpha} \beta\right)
\end{gathered}
$$

Example: The Odometer

$G=\mathbb{Z}=\langle z\rangle$
$X=\{0,1\}$
Then the action of \mathbb{Z} on X^{*} is determined by

$$
\begin{array}{ll}
z 0=1 & \left.z\right|_{0}=e \\
z 1=0 & \left.z\right|_{1}=z
\end{array}
$$

A word α in X^{*} corresponds to an integer in binary (written backwards), and z adds 1 to α, ignoring carryover.

$$
\begin{array}{cc}
z(001)=101 & \left.z\right|_{001}=e \\
z^{2}(011)=000 & \left.z^{2}\right|_{011}=z
\end{array}
$$

Self-Similar Actions

(G, X) - self-similar action
Σ_{X} - infinite words in X.
The action of G on X^{*} induces an action on Σ_{X} :
If $\alpha \in \Sigma_{X}$, then

$$
(g \alpha)_{n}=\left.g\right|_{\alpha_{1} \cdots \alpha_{n-1}} \alpha_{n}
$$

Each $g \in G$ is a homeomorphism on Σ_{X} (product topology).
Odometer: \mathbb{Z} acts by the usual odometer transformation $\lambda: \Sigma_{X} \rightarrow \Sigma_{X}$

Self-Similar Actions

(G, X) self-similar action
$\mathcal{T}(G, X)$ is the universal C^{*}-algebra generated by elements

$$
\left\{u_{g}\right\}_{g \in G}, \quad\left\{s_{x}\right\}_{x \in X}, \quad \text { such that }
$$

(1) u_{g} is unitary for all $g \in G\left(u_{g} u_{g}^{*}=1=u_{g}^{*} u_{g}\right)$
(2) s_{x} is an isometry for all $x \in X\left(s_{x}^{*} s_{x}=1\right)$
(3) $s_{x}^{*} s_{y}=0$ if $x \neq y$
(1) $u_{g} s_{x}=s_{g x} u_{\left.g\right|_{x}}$ for all $g \in G, x \in X$.

If α is a word, $s_{\alpha}:=s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{|\alpha|}}$, then

$$
\mathcal{T}(G, X)=\overline{\operatorname{span}\left\{s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G\right\}}
$$

If we add the condition $\sum s_{x} s_{x}^{*}=1$, we get the quotient $\mathcal{O}(G, X)$.

Self-Similar Actions

Question: can $\mathcal{T}(G, X)$ and $\mathcal{O}(G, X)$ be written as partial crossed products?

Answer: sometimes!
$\mathcal{T}(G, X)$ is generated by

$$
\mathcal{S}(G, X):=\left\{s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G\right\} \cup\{0\}
$$

Consists of partial isometries, closed under multiplication, and so forms an inverse semigroup.
$\mathcal{T}(G, X)$ is universal for representations of $\mathcal{S}(G, X)$, and $\mathcal{O}(G, X)$ is universal for tight representations.

Milan, Steinberg (2011) - when the inverse semigroup is strongly E^{*}-unitary, the answer is yes.

Inverse Semigroups

A semigroup S is called an inverse semigroup if for every element $s \in S$ there is a unique element s^{*} such that

$$
s s^{*} s=s \quad \text { and } \quad s^{*} s s^{*}=s^{*}
$$

$E(S)=$ set of idempotents, that is, elements e such that $e^{2}=e$.
It is true that

- Idempotents are self-inverse $\left(e^{*}=e\right)$
- If $e, f \in E(S)$, then $e f \in E(S)$ and $e f=f e$
- For every $s \in S$, we have $s^{*} s, s s^{*} \in E(S)$
- $\left(s^{*}\right)^{*}=s$
- $(s t)^{*}=t^{*} s^{*}$

Strongly E^{*}-unitary Inverse Semigroups

S - inverse semigroup with zero
G - group
A function $\phi: S \backslash\{0\} \rightarrow G$ is called a prehomomorphism if

$$
\phi(s t)=\phi(s) \phi(t) \quad \text { whenever } s t \neq 0
$$

$U(S)$ - group generated by the set S subject to the relations $s \cdot t=s t$ whenever st $\neq 0$. This is the universal group of S
$\sigma: S \backslash\{0\} \rightarrow U(S)$
$\sigma(s)=s \quad$ is a prehomomorphism.

Strongly E^{*}-unitary Inverse Semigroups

$\phi: S \backslash\{0\} \rightarrow G$ prehomomorphism
If $e^{2}=e$, then $\phi(e)=1_{G}$.
ϕ is idempotent pure if $\phi^{-1}\left(1_{G}\right)=E(S) \backslash\{0\}$.

Definition

An inverse semigroup with zero S is called strongly E^{*}-unitary if there exists a group G and an idempotent pure prehomomorphism $\phi: S \backslash\{0\} \rightarrow G$.

This is equivalent to saying $\sigma: S \backslash\{0\} \rightarrow U(S)$ is idempotent pure

Partial Crossed Products

S - strongly E^{*}-unitary inverse semigroup with zero
$\widehat{E}_{0}(S)$ - spectrum of S
$\widehat{E}_{\text {tight }}(S)$ - tight spectrum of S
Milan, Steinberg (2011) - exist partial actions of $U(S)$ on $\widehat{E}_{0}(S)$ and $\widehat{E}_{\text {tight }}(S)$ such that

$$
\begin{aligned}
C_{u}^{*}(S) & \cong C_{0}\left(\widehat{E}_{0}(S)\right) \rtimes U(S) \\
C_{\text {tight }}^{*}(S) & \cong C_{0}\left(\widehat{E}_{\text {tight }}(S)\right) \rtimes U(S)
\end{aligned}
$$

Self-Similar Actions

$$
\begin{aligned}
& \mathcal{S}(G, X)=\left\{s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G\right\} \cup\{0\} \\
& \mathcal{T}(G, X) \cong C_{u}^{*}(\mathcal{S}(G, X)) \\
& \mathcal{O}(G, X) \cong C_{\text {tight }}^{*}(\mathcal{S}(G, X)) \\
& \widehat{E}_{0}(S) \cong \Sigma_{X} \cup X^{*} \\
& \widehat{E}_{\text {tight }}(S) \cong \Sigma_{X}
\end{aligned}
$$

Self-Similar Actions

(G, X) is called residually free if whenever $g \in G$ and $\alpha \in X^{*}$, then

$$
\begin{gathered}
g \alpha=\alpha \\
\left.g\right|_{\alpha}=1_{G}
\end{gathered} \quad \Longrightarrow g=1_{G}
$$

Proposition

$$
\mathcal{S}(G, X) \text { strongly } E^{*} \text {-unitary } \Longleftrightarrow(G, X) \text { residually free }
$$

Corollary

$$
(G, X) \text { residually free } \Longrightarrow \underset{\substack{\mathcal{T}(G, X), \mathcal{O}(G, X) \text { are partial crossed } \\ \text { products }}}{ }
$$

Example: The Odometer

$(\mathbb{Z},\{0,1\})$ - The Odometer
If $z^{n} \alpha=\alpha$, then n is a multiple of $2^{|\alpha|}$.
If $\left.z^{n}\right|_{\alpha}=e$, then $|n|<2^{|\alpha|}$
$\Rightarrow(\mathbb{Z},\{0,1\})$ is residually free.
If we write $H:=U(\mathcal{S}(\mathbb{Z},\{0,1\}))$
Then, $\mathcal{O}(G, X) \cong C\left(\Sigma_{\{0,1\}}\right) \rtimes H$.
What is H ?
What is the action?

Example: The Odometer

$$
\sigma: \mathcal{S}(\mathbb{Z},\{0,1\}) \backslash\{0\} \rightarrow H
$$

The images of s_{0}, s_{1} and z generate H

$$
\begin{gathered}
\sigma\left(s_{0}\right):=a, \quad \sigma\left(s_{1}\right):=b, \quad \sigma(z):=Z \\
Z a=b, \quad Z b=a Z \\
Z=b a^{-1}, \quad Z=a Z b^{-1} \\
H=\left\langle a, b \mid b a^{-1}=a b a^{-1} b^{-1}\right\rangle \\
\left.H=\langle a, b| b a^{-1}=a^{n} b a^{-1} b^{-n} \text { for all } n \in \mathbb{Z}\right\rangle
\end{gathered}
$$

One can show that elements of H of the form $\alpha \beta^{-1}$ with $|\alpha|=|\beta|$ are images of powers of z.

Example: The Odometer

$$
\left.H=\langle a, b| b a^{-1}=a^{n} b a^{-1} b^{-n} \text { for all } n \in \mathbb{Z}\right\rangle
$$

Descrption of the partial homeomorphisms $\left\{\theta_{g}\right\}_{g \in H}$ on Σ_{X} :
If $\alpha \in\{a, b\}^{*}$, let $\tilde{\alpha} \in\{0,1\}^{*}$ with $a \rightarrow 0$, and $b \rightarrow 1$.

$$
\begin{gathered}
\theta_{\alpha}: \Sigma_{X} \rightarrow \tilde{\alpha} \Sigma_{X} \\
\theta_{\alpha}(y)=\tilde{\alpha} y \\
\theta_{\beta^{-1}}: \tilde{\beta} \Sigma_{x} \rightarrow \Sigma_{X} \\
\theta_{\beta^{-1}}(\tilde{\beta} y)=y
\end{gathered}
$$

If $|\alpha|=|\beta|$, then

$$
\theta_{\alpha \beta^{-1}}=\lambda^{n_{\tilde{\alpha}}-n_{\tilde{\beta}}}
$$

where $n_{\tilde{\alpha}}$ is the integer equal to $\tilde{\alpha}$ in binary (backwards).

Self-Similar Graph Actions

Exel, Pardo (2013) - generalized the construction of self-similar actions to finite paths in a graph.
$E=\left(E^{0}, E^{1}, r, d\right)$ - finite graph E^{*} - finite paths in E (including vertices)

A self-similar action of a group G on E is an action of graph automorphisms which extends to E^{*} recursively:

$$
\begin{gathered}
g(e \alpha)=\operatorname{ge}\left(\left.g\right|_{e} \alpha\right) \\
\mathcal{S}(G, E)=\left\{s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in E^{*}, g \in G, d(\alpha)=g d(\beta)\right\}
\end{gathered}
$$

Proposition

$$
\mathcal{S}(G, E) \text { strongly } E^{*} \text {-unitary } \Longleftrightarrow(G, E) \text { residually free }
$$

