Self-Similar Graph Actions and Partial Crossed Products

Charles Starling (joint work with Ruy Exel)

UFSC

May 15, 2014

Charles Starling (joint work with Ruy Exel) (ISelf-Similar Graph Actions and Partial Crosse

May 15, 2014 1 / 16

G group, X finite set, X^* words in X (including an empty word) Suppose we have an action of G on X^* and a restriction $G \times X \to G$

$$(g,x)\mapsto g|_x.$$

such that the action on X^* can be defined recursively

$$g(x\alpha) = (gx)(g|_x \alpha)$$

The pair (G, X) is called a self-similar action. Restriction extends to words

$$egin{aligned} g|_{lpha_1lpha_2\cdotslpha_n} &:= g|_{lpha_1} \mid_{lpha_2}\cdots\mid_{lpha_n} \ g(lphaeta) &= (glpha)(g|_{lpha}eta) \end{aligned}$$

$$G = \mathbb{Z} = \langle z \rangle$$

 $X = \{0, 1\}$

Then the action of \mathbb{Z} on X^* is determined by

$$z0 = 1$$
 $z|_0 = e$
 $z1 = 0$ $z|_1 = z$

A word α in X^* corresponds to an integer in binary (written backwards), and z adds 1 to α , ignoring carryover.

$$z(001) = 101$$
 $z|_{001} = e$
 $z^2(011) = 000$ $z^2|_{011} = z$

(G, X) – self-similar action Σ_X – infinite words in X.

The action of G on X^* induces an action on Σ_X : If $\alpha \in \Sigma_X$, then

$$(\mathbf{g}\alpha)_{\mathbf{n}} = \mathbf{g}|_{\alpha_1 \cdots \alpha_{\mathbf{n}-1}} \alpha_{\mathbf{n}}$$

Each $g \in G$ is a homeomorphism on Σ_X (product topology).

Odometer: \mathbb{Z} acts by the usual odometer transformation $\lambda: \Sigma_X \to \Sigma_X$

(G, X) self-similar action

 $\mathcal{T}(G, X)$ is the universal C*-algebra generated by elements $\{u_g\}_{g\in G}, \qquad \{s_x\}_{x\in X}, \qquad \text{such that}$

If α is a word, $s_{\alpha} := s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_{|\alpha|}}$, then

$$\mathcal{T}(G,X) = \overline{\operatorname{span}\{s_{\alpha}u_{g}s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G\}}$$

If we add the condition $\sum s_x s_x^* = 1$, we get the quotient $\mathcal{O}(G, X)$.

Question: can $\mathcal{T}(G, X)$ and $\mathcal{O}(G, X)$ be written as partial crossed products?

Answer: sometimes!

 $\mathcal{T}(G,X)$ is generated by

$$\mathcal{S}(G,X) := \{ s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G \} \cup \{ 0 \}$$

Consists of partial isometries, closed under multiplication, and so forms an inverse semigroup.

 $\mathcal{T}(G, X)$ is universal for representations of $\mathcal{S}(G, X)$, and $\mathcal{O}(G, X)$ is universal for tight representations.

Milan, Steinberg (2011) – when the inverse semigroup is strongly E^* -unitary, the answer is yes.

A semigroup S is called an inverse semigroup if for every element $s \in S$ there is a unique element s^* such that

$$ss^*s = s$$
 and $s^*ss^* = s^*$

E(S) = set of idempotents, that is, elements *e* such that $e^2 = e$.

It is true that

- Idempotents are self-inverse (e^{*} = e)
- If $e, f \in E(S)$, then $ef \in E(S)$ and ef = fe
- For every $s \in S$, we have $s^*s, ss^* \in E(S)$

•
$$(s^*)^* = s$$

• $(st)^* = t^*s^*$

S – inverse semigroup with zero G – group A function $\phi: S \setminus \{0\} \rightarrow G$ is called a prehomomorphism if $\phi(st) = \phi(s)\phi(t)$ whenever $st \neq 0$

U(S) – group generated by the set S subject to the relations $s \cdot t = st$ whenever $st \neq 0$. This is the universal group of S

 $\sigma: S \setminus \{0\} \to U(S)$ $\sigma(s) = s$ is a prehomomorphism. $\phi: \mathcal{S} \setminus \{0\} \rightarrow \mathcal{G}$ prehomomorphism

If $e^2 = e$, then $\phi(e) = 1_G$.

 ϕ is idempotent pure if $\phi^{-1}(1_G) = E(S) \setminus \{0\}$.

Definition

An inverse semigroup with zero S is called strongly E^* -unitary if there exists a group G and an idempotent pure prehomomorphism $\phi: S \setminus \{0\} \to G$.

This is equivalent to saying $\sigma: S \setminus \{0\} \to U(S)$ is idempotent pure

S – strongly E^* -unitary inverse semigroup with zero

 $\widehat{E}_0(S)$ – spectrum of S $\widehat{E}_{tight}(S)$ – tight spectrum of S

Milan, Steinberg (2011) – exist partial actions of U(S) on $\widehat{E}_0(S)$ and $\widehat{E}_{tight}(S)$ such that

$$C^*_u(S) \cong C_0(\widehat{E}_0(S))
times U(S)$$

 $C^*_{ ext{tight}}(S) \cong C_0(\widehat{E}_{ ext{tight}}(S))
times U(S)$

$$\mathcal{S}(G, X) = \{ s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in X^{*}, g \in G \} \cup \{ 0 \}$$
$$\mathcal{T}(G, X) \cong C_{u}^{*}(\mathcal{S}(G, X))$$
$$\mathcal{O}(G, X) \cong C_{tight}^{*}(\mathcal{S}(G, X))$$
$$\hat{E}_{0}(S) \cong \Sigma_{X} \cup X^{*}$$
$$\hat{E}_{tight}(S) \cong \Sigma_{X}$$

(G, X) is called residually free if whenever $g \in G$ and $\alpha \in X^*$, then

$$\begin{array}{c} g\alpha = \alpha \\ g|_{\alpha} = 1_{\mathcal{G}} \end{array} \implies g = 1_{\mathcal{G}} \end{array}$$

Proposition

$$\mathcal{S}(G,X)$$
 strongly E^* -unitary $\iff (G,X)$ residually free

Corollary

$$(G, X)$$
 residually free $\implies \mathcal{T}(G, X), \mathcal{O}(G, X)$ are partial crossed products

Example: The Odometer

 $\left(\mathbb{Z}, \{0,1\}\right)$ – The Odometer

If $z^n \alpha = \alpha$, then *n* is a multiple of $2^{|\alpha|}$. If $z^n|_{\alpha} = e$, then $|n| < 2^{|\alpha|}$

 $\Rightarrow \big(\mathbb{Z}, \{0,1\}\big)$ is residually free.

If we write $H := U(\mathcal{S}(\mathbb{Z}, \{0, 1\}))$

Then,
$$\mathcal{O}(G, X) \cong C(\Sigma_{\{0,1\}}) \rtimes H$$
.

What is H?

What is the action?

 $\sigma: \mathcal{S}(\mathbb{Z}, \{0,1\}) \setminus \{0\} \to H$

The images of s_0, s_1 and z generate H

 $\sigma(s_0) := a, \quad \sigma(s_1) := b, \quad \sigma(z) := Z$ $Za = b, \quad Zb = aZ$ $Z = ba^{-1}, \quad Z = aZb^{-1}$ $H = \langle a, b \mid ba^{-1} = aba^{-1}b^{-1} \rangle$ $H = \langle a, b \mid ba^{-1} = a^n ba^{-1}b^{-n} \text{ for all } n \in \mathbb{Z} \rangle$

One can show that elements of *H* of the form $\alpha\beta^{-1}$ with $|\alpha| = |\beta|$ are images of powers of *z*.

Example: The Odometer

$$H = \langle a, b \mid ba^{-1} = a^n ba^{-1} b^{-n}$$
 for all $n \in \mathbb{Z} \rangle$

Descrption of the partial homeomorphisms $\{\theta_g\}_{g\in H}$ on Σ_X :

If $\alpha \in \{a, b\}^*$, let $\tilde{\alpha} \in \{0, 1\}^*$ with $a \to 0$, and $b \to 1$.

$$egin{aligned} & heta_lpha: \Sigma_X o ilde lpha \Sigma_X \ & heta_lpha(y) = ilde lpha y \ & heta_{eta^{-1}}: ilde eta \Sigma_X o \Sigma_X \ & heta_{eta^{-1}}(ilde eta y) = y \end{aligned}$$

If $|\alpha|=|\beta|,$ then

$$\theta_{\alpha\beta^{-1}} = \lambda^{n_{\tilde{\alpha}} - n_{\tilde{\beta}}}$$

where $n_{\tilde{\alpha}}$ is the integer equal to $\tilde{\alpha}$ in binary (backwards).

Exel, Pardo (2013) – generalized the construction of self-similar actions to finite paths in a graph.

$$E = (E^0, E^1, r, d)$$
 – finite graph
 E^* – finite paths in E (including vertices)

A self-similar action of a group G on E is an action of graph automorphisms which extends to E^* recursively:

$$g(e\alpha) = ge(g|_e \alpha)$$

$$\mathcal{S}(G, E) = \{ s_{\alpha} u_{g} s_{\beta}^{*} \mid \alpha, \beta \in E^{*}, g \in G, d(\alpha) = gd(\beta) \}$$

Proposition

 $\mathcal{S}(G, E)$ strongly E^* -unitary $\iff (G, E)$ residually free