
 1

IP Packet Forwarding Based on Comb Extraction Scheme

Zhen Xu]1[, Ioannis Lambadaris]2[, Yiqiang Q. Zhao]1[, and Gerard Damm]3[

]1[School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, {zxu, zhao}@math.carleton.ca
]2[Department of System and Engineering, Carleton University, Ottawa, Ontario, Canada, ioannis@sce.carleton.ca
]3[Alcatel, Ottawa, Ontario, Canada, Gerard.Damm@alcatel.com

 Abstract-In this paper, we present an efficient IP packet forwarding technique and its architecture.

One forwarding table is decomposed into two balanced smaller sub-forwarding tables by a novel

splitting rule. Therefore, an IP lookup can be converted into two small sub-lookups. After comparing

the information attached by matching sub-prefixes from both sub-lookups, the output of an incoming

packet can be determined. The sub-lookups and information comparison can perform in parallel, so

our approach speeds up the Best Matching Prefix search effectively and it can reduce storage space

at the same time.

Introduction

The major function of a router is to forward packets. Since the Internet traffic is increasing rapidly,

speeding up the link rate is required in order to provide good service [1]. It is difficult to make the

performance of a router keep up with this increasing demand. In particular, the address lookup operation is

a major problem.

Many lookup algorithms create a data structure that takes advantage of the binary search tree method,

which is among the mature search algorithm [2]. The binary trie[3] method and its variations including

Patricia trie[4], multibit trie[5] and LC trie[6] have been presented in the literature. Some heuristic

approaches were designed to facilitate the use of binary trees [2], such as search on prefix range [7,8] and

search on prefix length [9]. Unfortunately, these approaches usually suffer from large storage requirement

or poor updating features. In addition, some hardware-based solutions are proposed by using large DRAM

 2

for entire forwarding table [10]. Using CAM is also presented in [11]. A good survey of these methods can

be found in [12].

The main contribution of this paper is two-fold. First, a forwarding table is decomposed into two balanced

sub-tables by using the Comb Extraction Scheme (CES). It can parallelize two independent search

processes. In order to determine which output port the packet should be sent to finally, the comparison of

information pairs, attached by those matching sub-prefixes in both sub-tables, needs to be executed at the

end. Some good characteristics of the two sub-tables result from CES, as compared to the original

forwarding table. For example, it can reduce storage space, speed up search time, alleviate distribution

dependent problems, and minimize information comparison load. Secondly, we propose an efficient

architecture to realize this methodology. The flexibility of this architecture allows IP address lookup to be

easily integrated within routing SoCs and generic network packet processing units.

In this paper, we focus on the unicast (single-source, single-destination) routing of backbone routers. In an

IP forwarding table, an entry usually has this structure: <DesPrx, PrxLen, ForInf>. DesPrx, Destination

Prefix, represents the network part of an IP address, PrxLen stands for the length of the prefix, and ForInf,

Forwarding Information, is usually a next hop address or an output port number, respectively. Suppose

},,,{ 21 MpppP ⋅⋅⋅= is the set of M prefixes recognized by a router. Let’s assume there are N outputs. When

examining the forwarding tables we can get from [13] carefully, we can find that the number of distinct

Index Prefix Len Port
1 11000110100110* 14 1
2 11000110011* 11 1
3 11000110010* 11 1
4 1101011100001011* 16 1
1 1100011001* 10 2
2 011110000011* 12 2
3 11000110100* 11 2
4 10001010110011* 14 2
5 100010101011* 12 2
6 1110111101* 10 2
7 01111000101* 11 2
8 0111100011100* 13 2
1 1100011010011010* 16 3
2 1100011001110* 13 3
3 1000101011001* 13 3
4 01111000001110* 14 3

Table 1: A Sample Forwarding Table

 3

next hops in a routing table is very small, comparing with the tens of thousands of prefixes. It is shown

clearly in sample Table 1. There are M=16 prefixes and only N=3 output ports. All the entries are sorted in

terms of ports, and the index is a number based on the same port.

New Data Structure

For IPv4, an IP address A is 32-bit long. It can be decomposed into two 16-bit long sub-sequences by the

following strategy: From the left-most bit to the right-most bit, all the bits in odd positions are extracted to

form sub-sequence α , and all the bits in even positions are extracted to form sub-sequence β . We call this

splitting approach the Comb Extraction Scheme (CES). For example, let us consider the IP address in

binary bits, 10100001 00110110 11010000 11101001, in which bits in odd positions are bold. After the

decomposition, α and β will be 11000101 10001110 and 00010110 11001001, respectively.

Similarly, a prefix also can be decomposed into two sub-sequences α and β . Both of them end by *. That

is, they are two sub-prefixes. For example, let us consider the prefix 01101100 101*, the length of which is

11. After decomposition, α will be 011011*, the length of which is 6, and β will be 10100*, the length of

which is 5.

Index Sub-Prefix Len Port
Indicator

Forwarding
Information

1 011001* 6 010 2(2)
2 0110011* 7 001 3(4)
3 011011* 6 010 2(7)
4 0110110* 7 010 2(8)
5 10010* 5 010 2(1)
6 100100* 6 100 1(3)
7 10010011* 8 100 1(4)
8 100101* 6 100 1(2)
9 1001010* 7 001 3(2)
10 100110* 6 010 2(3)
11 1001101* 7 100 1(1)
12 10011011* 8 001 3(1)
13 1011101* 7 011 2(4), 3(3)
14 101111* 6 010 2(5)
15 11110* 5 010 2(6)
Table 2: Sub-forwarding table 1 from Table 1 (extracting

bits in odd positions)

Index Sub-Prefix Len Port
Indicator

Forwarding
Information

1 000001* 6 010 2(5)
2 000010* 6 001 3(3)
3 0000101* 7 010 2(4)
4 10100* 5 010 2(3)
5 1010010* 7 100 1(1)
6 10100100* 8 001 3(1)
7 10101* 5 110 2(1), 1(2), 1(3)
8 101011* 6 010 3(2)
9 10111* 5 010 2(6)
10 11000* 5 010 2(7)
11 110001* 6 010 2(2)
12 1100010* 7 001 3(4)
13 110010* 6 010 2(8)
14 11110001* 8 100 1(4)

Table 3: Sub-forwarding table 2 from Table 1 (extracting bits

in even positions)

 4

Hence, a forwarding table can be converted into two extended sub-forwarding tables. Table 2 and Table 3

are the two examples of sub-forwarding tables when Table 1 is decomposed. Each sub-entry has this kind

of structure as <sub-prefix, length, port-indicator, forwarding information>.

In the Forwarding Information part of Table 2 and Table 3, not only is the information about the port

number noted, but also the information about the corresponding index associated with that port in Table 1

is involved. The Forwarding Information is composed of the forwarding unit a(b), which implies that, in

Table 1, the original prefix of this sub-prefix is forwarded to port a, and the associated index is b. In

general, the forwarding information of each sub-entry in a sub-table consists of several forwarding units.

For example, the sub-prefix of the 7th entry in Table 3 is 10101*, which collects the information of all

original prefixes whose bits in even positions are 10101*. It is made up of three forwarding units, 2(1), 1(2),

and 1(3). The forwarding unit is the union of the port and the corresponding index. Usually, a core router

has no more than 128 output ports. So the length of port can satisfy that ≤)(portlen 7 in bits. Therefore, a

20-bit long vector is enough to represent a forwarding unit, in which).(20)(portlenindexlen −=

In each sub-table, a −N bit port indicator vector is associated with every sub-entry. A bit i is set in the bit

vector if and only if the thi port occurs in its forwarding information. Usually the width of it is no more

than 128. The total storage cost for the extra information is shown in last column in Table 4.

What is the benefit of the CES approach? We examine it from two main aspects. (1), since a forwarding

table is decomposed into two sub-tables, one lookup will be divided into two parallel sub-lookups. Can

CES make the two sub-lookups in balance, either in time access or memory consumption? (2), after the two

parallel sub-lookups, some sub-prefixes will match each sub-search key in both sub-lookups. In order to

find the BMP, we need to combine the results, comparing the information of any reasonable pair of

matching sub-prefixes from both sub-lookups. Therefore, can CES cause heavy comparison loads, which

need to cost extra time?

First, CES makes the entries of two sub-tables well distributed.

 5

In comparing two bit patterns, the Hamming distance is the count of bits different in the two patterns. More

generally, if two ordered lists of items are compared, the Hamming distance is the number of items that do

not identically agree. Here, we give a new definition to determine the distance between two prefixes, which

is similar to the Hamming distance.

Definition 1: a and b are two prefixes in one table. || a and || b represent their lengths. Let

|)||,min(| baML = . We define Pseudo-Hamming Distance (PHD) between two prefixes as:

∑
=

−−=
ML

i
ii baiLbaPHD

0
||)(),(, where ia and ib are the bits in the thi position, from the left-most, of a

and b , L is the maximum length of sequences (In IPv4, L in the original forwarding table is 32, 16 for

sub-forwarding tables). MPHD is the mean of PHD of any two different prefixes in one table. PHD is

affected not only by the number of bits that are not identical, but also by their positions, the left-most bits

having higher weight.

For example, assuming a , b and c are 011001*, 0110010*, and 10010011* respectively. Let L be

16. 0),(=baPHD , 69),(=caPHD , and 79),(=cbPHD .

Lemma: If a and b are two prefixes, and one is a prefix of the other, then),(baPHD equals to zero.

The value of MPHD can stand for the distribution of entries in a table. If MPHD is a big value, it implies

that, in a trie of a forwarding table, nodes spread widely, rather than just focus on several deep branches.

This allows for a faster search. CES is almost the best of splitting rules to maximize the MPHD of each

sub-table, and there is not much divergence between the two values, which shows that CES leads to a

balanced distribution of entries in the two sub-tables.

Secondly, CES also balances the sub-prefix lengths in the two sub-tables.

Definition 2: Let Mean Prefix Length (MPL) in any sub-table expressed by: ∑
=

SM

i
i

i
IFOM Lenn

0

1 , where M is

the number of entries in the original forwarding table, SM is the number of sub-entries in this sub-table,

i
IFOn is the number of forwarding units in the thi sub-entry, and iLen is the length of the thi sub-entry.

 6

Let a be an original prefix in a forwarding table. After having been decomposed, it will be converted into

two sub-prefixes, named 1a and 2a . By construction, the difference between the lengths of 1a and 2a

satisfies the inequality: 1||||0 21 ≤−≤ aa . In fact, the difference between MPLs in CES results from the

number of original prefixes, whose lengths are odd values. It is a good way to prevent big difference in

searching time by making the sub-prefixes in two sub-tables almost the same.

In our example, 5.61 =MPL , 06.62 =MPL , and In short, CES is an efficient way to enable the two sub-

tables keep in pace.

Thirdly, CES makes the forwarding units well distributed in each sub-table.

Definition 3:

(1) Basic load of Forwarding Information (BLFI) of thi sub-entry in each sub-table is defined as the total

number of forwarding units in the thi sub-entry.

(2) Mean load of Forwarding Information (MLFI) of sub-entries in each sub-table is defined by

∑
=

SN

i
iSN BLFI

1

1 , where SN is the total number of sub-entries in this sub-table.

(3) Standard Deviation of Forwarding Information (SDFI) of sub-entries in each sub-table is defined by

∑
=

−
SN

i
iSN MLFIBLFI

1

21)(.

These metrics are significant to show the performance of CES. Whether the comparing time between sub-

prefixes in the second phase is reasonable or not depends on these three values. In our small example,

067.11 =MLFI , 143.12 =MLFI , 25.01 =SDFI , and 51.02 =SDFI .

Fourth, CES balances the comparison cost.

Definition 4: The comparison cost factor (CCF) is used to judge whether the comparison load of those

matching sub-prefixes in two sub-tables for an address lookup next is heavy or not. CCF is a statistical

value from experiments, by counting the pairs really need to compare.

 7

Actually, it is not necessary to compare every pair of matching sub-prefixes, for there are constraints

among the matching sub-ones, once they are the final ones we are looking for. We know that if 1α and 2α

are two the final matching sub-prefixes in the two-tables for an address, then they should satisfy the

following:

(1) || 2α only can be equal to || 1α or 1|| 1 −α ;

(2) In the two corresponding port indicator vectors, 1.PIVPIV , , 2
i

1
i ==<∃ Nii (PIV is the port indicator

vector).

Only if the matching sub-prefixes 1α and 2α , which come from different sub-tables, meet the demands

above, comparison is needed. CCF is a parameter to observe the number of pairs, which satisfy the

conditions, and need to do real comparison. Anyway, CCF has its upper bound. Let

),min(21 NumNumMinNum = , where 1Num and 2Num are the numbers of matching sub-prefixes from the

two sub-tables. MinNumCCF ×≤ 2 .

 Entries Sub-
entries

MPHD MPL Max(
BLFI)

MLFI SDFI CCF Storage Cost
(in Byte)

Sub-table 1 4026 55.22 11.18 93 11.73 13.41 186.06K Mae-
east

47206
Sub-table 2 5341 56.56 11.18 86 8.84 9.71

8
209.15K

Sub-table 1 5703 56.47 11.22 100 13.05 15.49 270.81K Mae-
west

77002
Sub-table 2 6989 57.84 11.22 78 11.02 12.57

8
241.95K

Sub-table 1 5689 56.80 11.35 110 11.25 14.28 245.14K Aads 63980
Sub-table 2 6735 57.45 11.35 89 9.50 10.84

8
261.44K

Sub-table 1 4077 54.59 11.15 40 5.42 5.35 117.65K Paix 22116
Sub-table 2 4704 55.67 11.15 28 4.70 4.23

7
127.48K

Table 4: Performance of sub-tables by using the CES

 Entries Sub-
entries

MPHD MPL Max(BLFI) MLFI SDFI

Sub-table 1 6939 59.85 16.00 280 6.80 13.63 Mae-east 47206
Sub-table 2 1349 43.24 6.47 2735 34.99 93.62
Sub-table 1 10794 23.32 16.00 253 7.13 15.33 Mae-west 77002
Sub-table 2 1692 51.63 4.79 5939 45.50 164.45
Sub-table 1 8314 61.54 16.00 465 7.69 16.65 Aads 63980
Sub-table 2 3540 49.03 9.94 3385 18.07 73.38
Sub-table 1 4540 59.68 16.00 128 4.87 7.98 Paix 22116
Sub-table 2 1238 48.85 5.03 1406 17.86 49.95

Table 5: Performance of sub-tables by such a splitting rule: extracting the higher 16 bits to form sub-table 1 and extracting
the lower 16 bits to form sub-table 2

 8

Table 4 and Table 5 give us the performances of sub-tables by using different splitting rules respectively. It

is clear that the CES is much better than the other one (extracting the higher 16 bits to form sub-table 1 and

extracting the lower 16 bits to form sub-table 2).

Comparison Set

In this section, we are going to analyze the matching sub-prefixes from two sub-tables, in order to find the

common matching prefix. This part can be implemented in an ASIC.

The first step is to decide whether further comparing is necessary, which is pointed out before.

The second step is to compare the forwarding units, only when the first step succeeds.

If iP1 and jP2 are two matching sub-prefixes coming from each sub-table, each of them contains one

forwarding information set, which is a collection of forwarding units. We need to compare every unit in a

set with the units in another set. Let iInfo1 and jInfo2 be the information sets of iP1 and jP2 , which are

composed of 1M and 2M information units. So, for each comparison, 21 MM × pairs of comparison units

are needed.

In the comparison between iInfo1 and jInfo2 , if there exists an exact match in one comparison unit, it

implicates that iP1 and jP2 are the right decomposition parts of an original prefix in a forwarding table.

Lemma: In the comparison between iInfo1 and jInfo2 , there at most exists one exact match in all pairs of

comparison units.

Proof: Assume that there exists two pairs of units, (kiInfo ,1 , mjInfo ,2) and (liInfo ,1 , njInfo ,2), match

exactly. That is, kiInfo ,1 = mjInfo ,2 , and liInfo ,1 = njInfo ,2 . It means that in the original forwarding table,

there are two entries, which have the same prefix, but will be forwarded to different ports. It is impossible

 Entries Average delay (ns) Delay(80% of comparisons) (ns)

Mae-east 47206 2.24 <4.59
Mae-west 77002 3.36 <7.87
Aads 63980 1.96 <4.72
Paix 22116 0.56 <1.21

Table 6 Cost for comparison/matching sub-prefix

 9

B

38912
...
...

39424
...

39680
...

39935
...

47616
...

48127

6
6
6
7
7
8
8
8

7
7
7

010
010
010
100
100
001
001
001

011
011
011

NULL
NULL
NULL
38912
38912
39424
39424
39424

NULL
NULL
NULL

A
A
A
B
B
C
C
C

D
D
D

A 2(3)
1(1)

C 3(1)
... ...
D 2(4) 3(3)

100110*

1001101*

10011011*

10011011*

1011101*

1011101*
...

...

... ...

... ...

Figure 2: Structure of CES + Index tables

for unicast. So the assumption is not right. Then there at most exists one exact match in all pairs of

comparison units.�

Since each forwarding unit is 20 bit long. Based on nowadays limitation of transforming width, it is

possible to input 6 forwarding units of each matching sub-prefix at the same time. Then 36 comparison

units can work in parallel. Therefore, all comparison units work in serial to the end until there is a

comparison unit exact match. The delay of every 36 parallel comparison is 280ps, when using VLSI feature

size of mµλ 13.0= . Table 6 shows the time cost for comparing every forwarding unit of two matching

sub-prefixes. We find that varies when the forwarding table’s size increases. Actually, the real cost is

smaller than this, since the comparison stops when there exists an exact match.

Architecture of the New Algorithm

Figure 1 describes a rough picture on how this system works. We provide two structures based on CES.

1) CES + Index tables

The maximum length of entries is sharply reduced due to CES. The size of the array is 162 for IPv4. Each

entry of the array has the structure: {length[4], port-indicator[128], pParent[16], pInformation[16] }, in

which, pParent is the pointer to its parent, the most specific prefix of it, and pInformation is the pointer to

its forwarding information.

IP Address

01001100 00111101 11011000 01100111

00100110 10100101 10100111 11001011

Sub-table
 1

Sub-table
 2

Comparison
Set

Judge

Yes

Output port

Figure 1: the architecture of the system

 10

Each main index table consumes 1.28Mbytes, however the additional table for forwarding information is

small (memory cost is shown in Table 4). The total memory consumption is about 3Mbytes. It is not

scalable to IPv6, for the size of the index table is 642 , which is still impossible for nowadays technology.

2) CES + Binary Trie

Binary trie is a basic structure in IP lookups. A forwarding table is decomposed into two half-level sub-

tables. The storage cost for two 16-level tries is much smaller than one 32-level trie. Table 7 gives the

memory cost when we use CES + Binary trie, smaller than only when binary trie used. Most memory is

consumed at the nodes with forwarding information. The updating time is)(2
WO , where W is the prefix

length.

Different architecture of a sub-table will lead to a different search strategy.

If CES + Index table is used, when a search starts, the first sub-prefixes we reach in two sub-tables are the

longest matching sub-prefixes. Not only is the forwarding information of both of them sent to the

comparison set, but also they will point to their own most specific parent rows, and output another pair of

forwarding information to compare. But now the lengths of sub-prefixes are shorter than the former one.

Therefore once there is an exact match in the comparison set, the search stops. The mean loop in our

experiments was 1.272, so the average of total delay in comparison is not more than 8ns (if the total entries

are not more than 80K).

If CES + Binary tries is used, when a search starts, the first matching sub-prefixes we reach in two sub-

tables are the shortest. We need to do the comparison of their forwarding information, and on the same time,

we need to continue traversing the sub-tries until they are exhausted. The last exact match is the final

output port of this IP packet. The total average delay in comparison is no more than 25ns, since the CCF is

less than 8 (if the total entries are not more than 80K).

Storage Cost Mae-east Mae-west Aads Paix
Sub-table1 215.5K 310.2K 285.6K 147.8K
Sub-table2 247.2K 288.9K 308.3K 161.6K
Original Table 1295.3K 2003.8K 1657.8K 718.8K
Table 7 Storage cost comparison (CES+Binary trie vs Binary trie) (in Byte)

 11

No matter which architecture we use, the comparison set works when both sub-lookups are preparing for

the next pair of comparing sub-prefixes. From the experiment, we can see comparison set is fast enough not

to be a speed bottleneck, if the forwarding table is not too big.

Conclusion

We proposed a new methodology and architecture for IP address lookup. Our approach advocates

discomposing a forwarding table into two smaller sub-forwarding tables by using CES. We compare the

reasonable matching sub-prefixes from the two sub-tables. Two sub-lookups and comparison can work in

parallel, which provide a new way to speed up the average search time efficiently to handle OC-192.

But unfortunately, with the size of a forwarding table increasing, the forwarding units attached by a sub-

prefix increases. If the both comparing sub-prefixes carry hundreds of forwarding units, the comparison

delay will affect the performance of the whole system. CES cannot improve the performance in worst cases,

but can make a big improvement for the average search time. There are lots of potentials to improve

performance of comparison set, when the load is heavy. The authors will focus on solving this problem in

the future.

Acknowledgement

The authors would like to acknowledge that this research is an initiative of Mathematics of Information

Technology and Complex Systems, MITACS and the National Capital Institute of Telecommunications,

NCIT in Collaboration with Alcatel’s Research and Innovation Center in Ottawa, Canada.

Reference:

[1] C. Labovitz, “Scalable of the Internet Backbone Routing Infrastructure,” Ph.D. thesis, Univ. of

Michigon, 1999.

[2] M. J. Akhbarizadeh and M. Nourani, “An IP Packet Forwarding Technique Based on Partitioned

Lookup Table,” ICC’02, April, NYC, 2002.

 12

[3] K, Sklower, “A Tree-Based Packet Routing Table for Berkeley Unix,” Proc. 1991 Winter Usenix Conf.,

1991, pp. 93-99.

[4] D. Morrison, “PATRICIA-Practical Algorithm to Receive Information Coded in Alphanumeric,”

Journal of ACM, Oct. 1968, vol. 15, no. 4, pp. 514-534.

[5] V. Srinivasan and G. Varghese, “Faster IP Lookups Using Controlled Prefix Expansion,” IEEE Trans.

on Computer Systems, Feb. 1996, vol. 17, no. 1, pp. 1-40.

[6] S. Nilsson and G. Karlsson “IP-Address Lookup Using LC-Tries,” IEEE JSAC, June 1999, vol. 17, No.

6, pp. 1083-1092.

[7] S. Suri, G. Varghese, and P. R. Warkhede, “Multiway Range Trees: Scalable IP Lookup with Fast

Updates,” Tech. Rep. 99-28, Washington Univ. 1999.

[8] B. Lanpson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway and Multicolumn Search,”

Proc. IEEE INFOCOM’98, Apr. 1998, pp. 1248-1256.

[9] M. Waldvogel, G. Varghese, J. Turner, and B. Plather, “Scalable High Speed IP Routing Lookups,”

Proc. ACM SIGCOMM’97, Spet. 1997, pp. 25-36.

[10] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory Access Speeds,” Proc.

IEEE INFOCOM’98, Apr. 1998, pp. 1-11.

[11] A. McAuley and P. Francis, “Fast Routing Table Lookup Using CAMs,” IEEE INFOCOM’93, vol. 3.

March 1993, pp. 1382-1391.

[12] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous, “Survey and taxonomy of IP address lookup

algorithms,” IEEE Network 15, 2 March / April 2001, pp. 8-23.

[13] http://www.merit.edu/ipma/.

[14] F. Baboescu, and G. Varghese, “Fast and Scalable Conflict Detection for Packet Classifiers,” Proc.

Of the 17th IEEE International Symposium on DFT’02,

