
Stochastic Scheduling on a Repairable Machine
with Erlang Uptime Distribution

Wei Li∗, Chinese Academy of Sciences

W. John Braun†, University of Winnipeg

Yiqiang Q. Zhao†, University of Winnipeg

Abstract

A set of jobs is to be processed on a machine which is subject to break-
down and repair. When the processing of a job is interrupted by a
machine breakdown, the processing later resumes at the point at which
the breakdown occurred. We assume that the machine uptime is Erlang
distributed and that processing and repair times follow general distribu-
tions. Simple permutation policies on both machine parameters and the
processing distributions are given which minimize the weighted number
of tardy jobs, weighted flow times, and the weighted sum of the job
delays.

Key words: Stochastic scheduling, breakdowns, Erlang uptimes, Non-
preemptive resume model.

∗Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, 100080, China and also with the

Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, Manitoba, Canada, R3B 2E9.
†Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, Manitoba, Canada, R3B 2E9.

1



1 Introduction

In this paper, we consider the problem of optimally scheduling a set of jobs on a single machine

which is susceptible to occasional breakdowns. When a breakdown occurs, the job currently being

processed is halted until the machine is repaired; then the job is resumed at the point at which it was

interrupted. Scheduling problems of this sort have been studied thoroughly in the case of reliable

machines and in cases where job processing times and due dates are known in advance. However,

such assumptions are not very realistic; machines are often subject to unpredictable breakdowns

and possibly lengthy repairs. Furthermore, processing times and deadlines may be more adequately

modelled as random variables.

Single-machine stochastic scheduling models incorporating breakdowns and repairs were first

studied by Glazebrook [14]. Subsequently, many authors have investigated stochastic problems on

unreliable or repairable machines (see references [1]-[7], [10]-[25]). However, almost all of the results

are based on one or more strong assumptions.

Allahverdi and Mittenthal [3, 4, 5], and Birge et al. [6] obtained some powerful results in the case

of deterministic processing times. In case of exponential uptimes, it is always possible to transform

a scheduling problem on an unreliable machine to a problem on a reliable machine by extending

the processing time of a particular job to the total time that the job occupies the machine. For

some examples, see Glazebrook [14], Pinedo and Rammouz [23], Allahverdi and Mittenthal [3], and

Li and Cao [18]. Under the assumption of exponential processing times, some simple policies have

been obtained (see, for example, Pinedo and Rammouz [23], Chang et al. [7], Du and Pinedo [10],

and Li and Cao [17]), but these are usually based on some stronger conditions, and the policies

obtained are not related to the machine parameters. Few results have been obtained when specific

distributional assumptions have not been made about the machine uptime.

In stochastic scheduling problems where specific distributional assumptions have not been made

about processing requirements, or machine uptimes and downtimes, optimal processing strategies

could depend upon both the elapsed time since the last repair period and the elapsed processing

time of the current job. Therefore, it would seem very difficult to find optimal index policies which

depend on uptime and downtime distributions as well as the processing time distribution.

In view of this, we investigate a single machine scheduling model in which the machine is subject

to breakdowns with Erlang uptimes and general repair times. Each job’s processing time is also

a random variable with a general distribution. This model would seem to be as general as can be

2



realistically considered, if one seeks a schedule which depends on the machine parameters as well

as the processing distribution. Li and Glazebrook [19] have considered the completely general case,

but their results are not related to the machine parameters.

In order to proceed, we restrict our attention to the class of simple recourse strategies. Under

such a strategy, the sequence of job completion times in a schedule is fixed, but the completion

times may be postponed as a result of the machine breakdowns (see Allahverdi and Mittenthal

[4, 5] or Frenk [12]). Further assumptions and notation are as follows:

A set of jobs J = {1, 2, · · ·, N} (N < ∞) is to be processed on a single machine which is subject

to breakdown and repair. Job j has weight hj ≥ 0, which is basically a priority factor, denoting

the importance of job j relative to the other jobs in the system. For example, this weight may

represent the actual cost of keeping the job in the system. This cost could be a holding or inventory

cost; it could also be the amount of value already added to the job. All jobs have a common due

date d which is a random variable with an exponential distribution and rate r; this index represents

the committed shipping or completion date (the date the jobs are promised to the customer). The

completion of a job after its due date is allowed, but a penalty is incurred.

The jth job has a random processing requirement Xj with distribution function Fj(·), having

hazard rate function µj(·) and finite expectation 1/µj . The machine is available for processing from

time 0 until the first breakdown occurs at time U1. The machine then takes time D1 to be repaired,

while no processing takes place. The repair having been completed, the machine is again available

for processing from time U1 + D1 until time U1 + D1 + U2, and so on. The machine up times

U1, U2, · · ·, are independent random variables with an Erlang distribution function U(·) having m

phases and where each phase is exponentially distributed with parameter α. That is,

U(t) = 1 − e−αt
m−1
∑

k=0

(αt)k

k!
.

The repair times D1, D2, · · · are also independent and identically distributed but with general

distribution function D(·), having hazard rate β(·) and finite expectation 1/β.

All of the above random variables are assumed to be mutually independent.

Under the above assumptions, we shall consider the so-called non-preemptive resume model;

that is, if a job is being processed when a breakdown occurs, the processing time is cumulative

after the machine is repaired. Our goal is to find schedules, depending on both machine parameters

and the processing distributions, for the jobs which minimize one of several possible objectives.

The objectives we consider are the weighted flow time, the weighted numbers of tardy jobs, and

the weighted sum of job tardiness. General results are obtained which can be simplified for certain

3



special cases already in the literatures [18], [19] and [23]. In addition, some new results are obtained

for special cases not yet considered in the literature.

2 A Relation Between Completion Time and System Parameters

Completion times are important random variables in scheduling theory. Since our goal is to optimize

performance characteristics related to job completion time, it is the purpose of this section to find

a useful relationship between the completion time of job n and the parameters of the system.

We first set out some notation which will be used throughout this paper. Let

• EY represent the expectation of a random variable Y .

• Cπ(n) represent the completion time of the nth job (n = 1, 2, · · · , N) under the scheduling

policy π; π is a permutation of the vector (1, 2, · · · , N).

• ωi = exp
(

2πi
m

√
−1
)

(i = 1, 2, · · · , m), the mth roots of unity.

• φi(s) = α + s − αωi
m
√

Ee−sD (i = 1, 2, · · · , m), where D is a random variable having the

repair time distribution.

• γi(s) = s
(

Ee−sD
)

1−i
m (i = 1, 2, · · · , m − 1) and γm(s) =

[

s + α(1 − Ee−sD)
] (

Ee−sD
)

1−m
m .

• e = (1, 1, · · · , 1), ei = (0, · · · , 0, 1, 0, · · · , 0) and eτ represent the transpose of e.

• π(n;i,j) denote a scheduling policy in which job i and job j have been assigned to the nth and

(n + 1)st positions, respectively, (n = 1, 2, · · · , N − 1; i, j = 1, 2, · · · , N). π(n;j,i) is the policy

which is identical to π(n;i,j) except for a switch in the nth and (n + 1)st positions.

For the purpose of considering the completion time of the nth job (n = 1, 2, · · · , N) in any

given policy π, we define Sn(t) to be the state of the system at time t before the nth job has been

completed. This stochastic process can be in any of the following states

{∗}
⋃

{(i, k) : i = 0, 1, 2, · · · , m; k = 1, 2, · · · , n}

where ∗ denotes the absorbing state corresponding to the completion of the nth job, and (i, k)

denotes the state in which the machine is processing the kth job while the uptime is in phase i

(i = 1, 2, · · · , m); phase 0 corresponds to machine downtime. That is, state (0, k) corresponds to

the machine being repaired after having broken down while the kth job is being processed.

4



Clearly, the process Sn(t) is not Markovian, but it can be extended to a Markov process with

the use of supplementary variables (e.g. Cox[9], Chaudhry and Templeton[8]). To do this, we

denote the elapsed processing time of the kth job at t by Vk(t), and the elapsed repair time at t by

V (t). Then {(Sn(t), Vk(t), V (t)); t ≥ 0, k = 1, 2, · · · , n} is a Markov process.

Set

pi,k(t, x)dx = P{Sn(t) = (i, k), x ≤ Vk(t) < x + dx|Sn(0) = (1, 1), V1(0) = 0}

p0,k(t, x, y)dy = P{Sn(t) = (0, k), Vk(t) = x, y ≤ V (t) < y + dy|Sn(0) = (1, 1), V1(0) = 0}

where i = 1, 2, · · · , m and k = 1, 2, · · · , n. Notice that the kth job in the schedule π is the job whose

processing time has hazard function µπ(k).

Lemma 2.1 The system is governed by the following differential equations:

[

∂

∂t
+

∂

∂x
+ α + µπ(k)(x)

]

p1,k(t, x) =

∫ ∞

0
p0,k(t, x, y)β(y)dy, k = 1, 2, · · · , n (1)

[

∂

∂t
+

∂

∂x
+ α + µπ(k)(x)

]

pi,k(t, x) = αpi−1,k(t, x) i = 2, · · · , m; k = 1, · · · , n (2)

[

∂

∂t
+

∂

∂y
+ β(y)

]

p0,k(t, x, y) = 0 k = 1, 2, · · · , n (3)

with boundary conditions

pi,1(t, 0) = 0 (i = 1, 2, · · · , n) (4)

pi,k(t, 0) =

∫ ∞

0
pi,k−1(t, x)µπ(k−1)(x)dx, i = 1, 2, · · · , m; k = 2, · · · , n (5)

p0,k(t, x, 0) = αpm,k(t, x), k = 1, 2, · · · , n (6)

and initial conditions

pi,k(0, x) = δi,1δk,1δ(x), i = 1, 2, · · · , m; k = 1, 2, · · · , n (7)

p0,k(0, x, y) = 0 k = 1, 2, · · · , n (8)

where δ(x) denotes the Dirac distribution and δi,k denotes the Kronecker delta.

Some details of the proof are supplied in the appendix to this paper.

The previous lemma allows us to find a relation between the Laplace transform of the completion

times and the Laplace transform of the processing times and downtimes, a result which is crucial

to most of the scheduling policies provided later.

5



Lemma 2.2 For n = 1, 2, · · · , N, and s ≥ 0,

Ee−sCπ(n) = 1 − 1

m

m
∑

i=1

m
∑

k=1

γi(s)ω
1−i
k

φk(s)



1 − E exp



−φk(s)
n
∑

j=1

Xπ(j)









The proof is supplied in the appendix.

As a special case, we can obtain the following result, previously obtained in [23] .

Corollary 2.3 When the uptime is exponentially distributed with rate α, then for n = 1, 2, · · · , N,

and s ≥ 0,

Ee−sCπ(n) = E exp



−[s + α(1 − Ee−sD)]
n
∑

j=1

Xπ(j)





Proof: This follows directly from Lemma 2.2, since when m = 1, γ1(s) = φ1(s) = s + α(1 −
Ee−sD) .

Remark. We note that when the uptime has a more general form it is not always possible to obtain

the Laplace transform of Cπ(n) in terms of system parameters. Even if the Laplace transform of

the completion times can be found, it is not always convenient for obtaining optimal scheduling

policies. In the case discussed, as we will see in later sections, the above result gives an exceedingly

useful relation.

3 The Optimal Schedule for the Weighted Flow Time

In this section, we shall find schedules which minimize the expectation of the total weighted

completion times,
∑

k hπ(k)Cπ(k). This quantity gives an indication of the total holding or inventory

costs incurred by a schedule. The sum of the completion times is often referred to as the flow

time while the total weighted completion time is referred to as the weighted flow time. Some

simple permutation policies have been found, under the assumption that the machine’s uptime

is exponentially distributed (see [13], [18] and [22], for example). However, as far as we know,

results depending on parameters of both processing and the machine for the case of nonexponential

uptime have not been reported. Here, we shall consider this often-studied scheduling problem in the

sense of expectation. Frequently, however, the policies that minimize the objective in expectation

minimize the objective stochastically as well (see pp. 181, [22]).

We have the following necessary and sufficient condition:

6



Theorem 3.1 The scheduling policy π(n;i,j) is better than the policy π(n;j,i) if and only if

µjhj

{

1 +
α

mβ
+

αµi

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXi ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xj

)]}

≤ µihi

{

1 +
α

mβ
+

αµj

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXj ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xi

)]}

where φl = φl(0) = α(1 − ωl) (l = 1, 2, · · · , m − 1).

Proof: According to Lemma 2.2, we know that for any policy π the expected completion time

of the nth job is:

ECπ(n) =

(

1 +
α

mβ

) n
∑

i=1

1

µπ(i)
+

α

mβ

m−1
∑

i=1

ωid
π
in

where dπ
in = 1

φi

[

1 − E exp

(

−φi

n
∑

k=1
Xπ(k)

)]

. Therefore, by direct calculation, we obtain:

E

(

N
∑

k=1

hπ(n;i,j)(k)Cπ(n;i,j)(k)

)

−
(

N
∑

k=1

hπ(n;j,i)(k)Cπ(n;j,i)(k)

)

= −hi

{

(

1 +
α

mβ

)

1

µj

+
α

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXj ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xi

)]}

+hj

{

(

1 +
α

mβ

)

1

µi

+
α

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXi ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xj

)]}

Thus, the Theorem is proved.

It should be pointed out that the above necessary and sufficient condition is dependent on

the sequence before the nth job in a schedule, so it is impossible to get an index optimal policy

related to both the parameters of the processing times and the machine. However, since the above

condition has a nice structure, some optimal schedule policies can still be found as follows:

Theorem 3.2 The scheduling policy π0 = (1, 2, · · · , N) is optimal if for i < j and t ≥ 0

HC(t; i, j) ≥ HC(t; j, i)

where

HC(t; i, j) = hiµi

[

1 +
αµj

mβ

∫ ∞

0
hC(x + t)P (Xi ≤ x ≤ Xi + Xj)dx

]

and the quantity

hC(x) = me−αx
∞
∑

k=1

(αx)km−1

(km − 1)!
, x ≥ 0

is only dependent on the parameters of the uptime distribution of the machine.

7



Proof: Let EWFT [π] represent the expected sum of the weighted flow times under policy

π. We shall prove that EWFT [π0] ≤ EWFT [π] for every policy π. Without loss of generality,

suppose there exists a policy π and an n as well as i < j satisfying π(n) = j and π(n + 1) = i. We

next show that EWFT [π(n;i,j)] ≤ EWFT [π(n;j,i)]. In fact, by the identity:

m−1
∑

l=1

ωle
−φlx = −1 + me−αx

∞
∑

k=1

(αx)km−1

(km − 1)!

and

hi

{

(

1 +
α

mβ

)

1

µj

+
α

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXj ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xi

)]}

= hi







1

µj

+
α

mβ

∞
∫

0

hC(x)P

(

n−1
∑

k=1

Xπ(k) + Xi ≤ x ≤
n−1
∑

k=1

Xπ(k) + Xi + Xj

)

dx







=
1

µiµj

∞
∫

0

HC(t; i, j)dP

(

n−1
∑

k=1

Xπ(k) ≤ t

)

as well as the result in Theorem 3.1, we see that EWFT [π(n;i,j)] ≤ EWFT [π(n;j,i)]. Thus, the

theorem follows from a pairwise interchange argument (see [26]).

The following consequence was previously found in [23].

Corollary 3.3 The expected weighted flow time is minimized by the schedule where the jobs are

arranged in decreasing order of hiµi, provided one of the following conditions holds:

1. m = 1;

2. the job processing times are all exponentially distributed.

Proof: 1. This follows directly from Theorem 3.2, since HC(t; i, j) = hiµi

(

1 + α
β

)

if m = 1.

2. This follows directly from Theorem 3.2. However, we offer an alternative proof to show how

to use the conclusion in Theorem 3.1 to obtain the result for this special case. Note that, in this

case,

µihi

{

1 +
α

mβ
+

αµj

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXj ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xi

)]}

= µihi







1 +
α

mβ

∞
∫

0

[

m
∑

l=1

ωle
−φlx

]

dP

(

n−1
∑

k=1

Xπ(k) + Xi + Xj ≤ x

)







8



using the corresponding equation with j and i interchanged together with

m
∑

l=1

ωle
−φlx = me−αx

∞
∑

k=1

(αx)km−1

(km − 1)!
≥ 0

We see that the condition in Theorem 3.1 holds if µjhj ≤ µihi. A pairwise interchange argument

completes the proof.

If we are interested only in optimal policies which are independent of the machine parameters

we can get the following result previously obtained in [19].

Corollary 3.4 The policy π0 = (1, 2, · · · , N) minimizes the expected weighted flow time if

hjP (Xj ≤ t ≤ Xi + Xj) ≤ hiP (Xi ≤ t ≤ Xi + Xj)

holds for i < j and t ≥ 0.

Proof: This is a straightforward application of Theorem 3.2, since the above condition implies

hiµi ≥ hjµj .

4 The Optimal Schedule for the Weighted Number of Tardy

Jobs

In this section, we shall consider the problem of minimizing the expectation of the weighted

number of tardy jobs,
∑

k hπ(k)Uπ(k). Here,

Uπ(k) =

{

1, if Cπ(k) > d

0, if Cπ(k) ≤ d

where d, the common due date of the jobs, is an exponential random variable with rate r. This

quantity is an often-used objective in practice since it is a measure that can be recorded very easily.

It is a more general cost function than the one studied in Section 3. Now, the cost is discounted

at a rate of r per unit time. That is, if the jth job is not completed by time t, an additional

expected cost hjre
−rtdt is incurred over the period [t, t + dt]. If job j is completed at time t, the

total expected cost incurred over the period [0, t] is hj(1 − e−rt).

In the present paper, we shall find optimal schedules which minimize the expected value of this

objective. Some simple permutation policies have been found previously in the case of exponential

uptime (see [13] and [18], for example), but in the nonexponential case, no results have been

reported.

9



Since

EUπ(n;i,j)(k) = 1 − E exp[−rCπ(n;i,j)(k)]

holds for k = 1, 2, · · · , N , a direct calculation using Lemma 2.2 gives the following necessary and

sufficient condition:

Theorem 4.1 The scheduling policy π(n;i,j) is better than the policy π(n;j,i) if and only if

hj

m
∑

l=1

m
∑

p=1

ω1−p
l γp(r)

φl(r)

(

1 − Ee−φl(r)Xi

)

E exp

[

−φl(r)

(

n−1
∑

k=1

Xπ(k) + Xj

)]

≤ hi

m
∑

l=1

m
∑

p=1

ω1−p
l γp(r)

φl(r)

(

1 − Ee−φl(r)Xj

)

E exp

[

−φl(r)

(

n−1
∑

k=1

Xπ(k) + Xi

)]

(9)

We note here that it is not possible to obtain a general index optimal policy since the above

necessary and sufficient condition depends on the sequence before the nth job. However, one

optimal scheduling policy can still be found :

Theorem 4.2 The policy π0 = (1, 2, · · · , N) is optimal, if for i < j and t ≥ 0,

HU (t; i, j) ≥ HU (t; j, i)

where HU (t; i, j) = hi

∫∞
0 hU (x + t)P (Xi ≤ x ≤ Xi + Xj)dx and the quantity

hU (x) = me−(α+r)x
m
∑

p=1

∞
∑

k=0

(

αx
m
√

Ee−rD
)km+p−1

γp(r)

(km + p − 1)!
, x ≥ 0

is only dependent on the parameters of the machine.

Proof: The left-hand-side of (9) can be written as

hj

m
∑

l=1

m
∑

p=1

ω1−p
l γp(r)

φl(r)
E

[

exp

(

−φl(r)(Xj +
n−1
∑

k=1

Xπ(k))

)

− exp

(

−φl(r)(
n−1
∑

k=1

Xπ(k) + Xj + Xi)

)]

= hj

∞
∫

0





m
∑

l=1

m
∑

p=1

γp(r)ω
1−p
l e−φl(r)x



P

(

n−1
∑

k=1

Xπ(k) + Xj ≤ x ≤
n−1
∑

k=1

Xπ(k) + Xi + Xj

)

dx

=

∞
∫

0

HU (t; j, i)dP

(

n−1
∑

k=1

Xπ(k) ≤ t

)

The result now follows from a pairwise interchange argument and Theorem 4.1.

The following special cases can be found in [23].

10



Corollary 4.3 When m = 1, the schedule which minimizes the expected weighted number of tardy

jobs is in decreasing order of hiEe−φXi

1−Ee−φXi
, where φ = r + α(1 − Ee−rD).

Proof: This follows from Theorem 4.2 upon noting that

HU (t; i, j) = e−φthiEe−φXi

(

1 − Ee−φXj

)

or, more simply, by using Theorem 4.1 directly and a pairwise interchange argument.

Corollary 4.4 If the processing times are all exponential, the schedule which minimizes the ex-

pected weighted number of tardy jobs is in decreasing order of hiµi

Proof: This is a straightforward application of Theorem 4.2. Alternatively, this result can be

obtained by using the same idea as in Corollary 3.3 and

m
∑

l=1

ω1−p
l e−φl(r)x ≥ 0 , x ≥ 0

Theorem 4.2 yields a simple optimal policy related only to the parameters of the processing

time distribution as in [19].

Corollary 4.5 The policy π0 = (1, 2, · · · , N) minimizes the expected weighted number of tardy jobs

if

hjP (Xj ≤ t ≤ Xi + Xj) ≤ hiP (Xi ≤ t ≤ Xi + Xj)

holds for any i < j and t ≥ 0.

5 The Optimal Schedule for the Sum of Weighted Tardiness

In this section, we shall consider schedules which minimize the expectation of the sum of

weighted tardiness,
∑

k hπ(k)Tπ(k), where Tπ(k) = max{0, Cπ(k) − d}.

Many papers have dealt with this scheduling problem in the deterministic case, but few have

considered the stochastic case. Pinedo [21] was the first to consider this scheduling problem. He

assumed that the processing time of job i is an exponential random variable with rate µi, the

weight associated with job i is hi and job i is due at time di, which is a random variable. By

using a compatibility condition, i.e., µihi ≥ µkhk implies di ≤st dk , he proved that the policy

11



that minimizes this objective is the one where the jobs are arranged in decreasing order of hiµi.

However, when the machine is unreliable, the question is more complicated. The case in which

uptimes are arbitrary has been considered by [23] in case of exponential processing times. We now

consider the case of arbitrary processing times with Erlang uptimes.

We have the following necessary and sufficient condition:

Theorem 5.1 The scheduling policy π(n;i,j) is better than the policy π(n;j,i) if and only if

hj

{

(

1 +
α

mβ

)

1

µi

+
α

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXi ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xj

)]

− 1

mr

m
∑

l=1

m
∑

p=1

ω1−p
l γp(r)

φl(r)

(

1 − Ee−φl(r)Xi

)

E exp

[

−φl(r)

(

n−1
∑

k=1

Xπ(k) + Xj

)]







≤ hi

{

(

1 +
α

mβ

)

1

µj

+
α

mβ

m−1
∑

l=1

ωl

φl

[1 − Ee−φlXj ]E exp

[

−φl

(

n−1
∑

k=1

Xπ(k) + Xi

)]

− 1

mr

m
∑

l=1

m
∑

p=1

ω1−p
l γp(r)

φl(r)

(

1 − Ee−φl(r)Xj

)

E exp

[

−φl(r)

(

n−1
∑

k=1

Xπ(k) + Xi

)]







Proof: The argument follows the same lines as the proofs of Theorems 3.1 and Theorem 4.1,

after one notes that

ETπ(n;i,j)(k) = ECπ(n;i,j)(k) −
1

r

[

1 − Ee
−rCπ(n;i,j)(k)

]

holds for k = 1, 2, · · · , N .

Theorem 5.2 The policy π0 = (1, 2, · · · , N) is optimal if, for i < j and t ≥ 0,

HT (t; i, j) ≥ HT (t; j, i)

where HT (t; i, j) = hi

∫∞
0 hT (x + t)P (Xi ≤ x ≤ Xi + Xj)dx and the quantity

hT (x) = 1 +
α

β
e−αx

∞
∑

k=1

(αx)km−1

(km − 1)!
− 1

r
e−(α+r)x

∞
∑

k=0

m
∑

p=1

(

αx
m
√

Ee−rD
)km+p−1

γp(r)

(km + p − 1)!

(x ≥ 0) is only dependent on the parameters of the machine.

Proof: This follows from Theorem 5.1 and

1 +
α

mβ

m
∑

k=1

ωke
−φkx − 1

mr

m
∑

p=1

m
∑

k=1

γpω
1−p
k e−φk(r)x

= 1 +
α

β
e−αx

∞
∑

k=1

(αx)km−1

(km − 1)!
− 1

r
e−(α+r)x

∞
∑

k=0

m
∑

p=1

(

αx
m
√

Ee−rD
)km+p−1

γp(r)

(km + p − 1)!

12



Theorem 5.1 also yields the following result

Corollary 5.3 When m = 1, the optimal schedule arranges the jobs in the order (1, 2, · · · , N) if

the compatibility conditions

hjµj ≤ hiµi and
hjEe−φXj

1 − Ee−φXj
≥ hiEe−φXi

1 − Ee−φXi

hold for i < j, where φ = r + α(1 − Ee−rD).

Theorem 5.2 yields three additional results, of which the first is new, and the others were

ontained in [23] and [19].

Corollary 5.4 When m = 1, the schedule which minimizes the expected sum of the weighted

tardiness of the jobs arranges the jobs in the order (1, 2, · · · , N) if

µihi

[(

1 +
α

β

)

r − e−φtµjEe−φXi

(

1 − Ee−φXj

)

]

≥ µjhj

[(

1 +
α

β

)

r − e−φtµiEe−φXj

(

1 − Ee−φXi

)

]

holds for i < j and t ≥ 0.

Proof: Here, we note that

HT (t; i, j) =
hi

rµj

[(

1 +
α

β

)

r − e−φtµjEe−φXi

(

1 − Ee−φXj

)

]

Corollary 5.5 If the processing times are all exponential, the schedule which minimizes the ex-

pected sum of the weighted tardiness of the jobs arranges the jobs in decreasing order of hiµi.

Corollary 5.6 The policy π0 = (1, 2, · · · , N) minimizes the expected sum of the weighted tardiness

if

hjP (Xj ≤ t ≤ Xi + Xj) ≤ hiP (Xi ≤ t ≤ Xi + Xj)

holds for any i < j and t ≥ 0.

13



6 Conclusions and Further Research

In this paper, we have studied a class of single unreliable machine stochastic scheduling problems,

with general processing time, Erlang uptime and general downtime distributions. We have ob-

tained some general optimal scheduling policies which are not index policies and which depend

on both processing parameters and machine parameters, under the nonpreemptive resume model

assumption. Some of the special cases provided are also new to the literature.

The method of supplementary variables has been used successfully here to find useful represen-

tations for the completion times. It should be noted that, because objective functions are often

functions of completion times, much research focuses on completion times, a problem for which the

method of supplementary variables seems well-suited.

It should be emphasized that finding optimal schedules which depend on machine parameters

has proved difficult in cases where the uptime distribution is nonexponential. Thus, the extension

to Erlang uptimes given here represents a significant step forward.

We also wish to point out here that the optimality conditions found in this paper are both

necessary and sufficient. This is in contrast to other papers in the field which usually provide only

sufficient conditions.

When conditions sufficient for optimal policies of simple structure fail, it is beneficial to under-

stand the cost implications of implementing simple policies nevertheless. Li and Glazebrook [19]

established an upper bound on the loss incurred when a processing policy is adopted under the

simplifying assumption of an exponential processing requirement. Several suboptimality bounds

for the nonexponential case shall be given in another paper.

One question for future research that was pointed out by the referee concerns the case of

deterministic uptime. By relaceing α by mα0 and letting m become infinitely large, we can obtain

the special cases of all our results for constant uptime α0. Obtaining simple policies will require

some effort and will be the subject of a subsequent paper in which numerical implementation of

our policies will also be considered.

We have restricted our attention to the nonpreemptive resume model, but it would be interesting

to see if similar results can be found for the nonpreemptive repeat model. In that case, the makespan

would seem to be an important objective to study first. So far, we have found that if the uptime

has an Erlang distribution, the Laplace transform of the completion time of the nth job in any

14



given policy π possesses a nice structure, but optimality results are still sought.

Acknowledgements

The authors would like to thank the referee for a careful reading of the original manuscript.

His/Her comments and suggestions have led to a much better presentation of the paper.

The authors acknowledge that this work was supported by research grants from the Natural

Sciences and Engineering Research Council of Canada (NSERC). Dr. Wei Li also acknowledges

that this work was supported by research grants from the National Natural Science Foundation of

China (NNSFC) and from the University of Winnipeg, Manitoba, Canada.

15



Appendix

Proof of Lemma 2.1:
The proof of these equations follows a standard probabilistic argument (for example, see [8] or [9]).
Since these equations are the starting point for all other developments in the paper, we provide
some details of the proof for (1) and (7). The arguments for (2), (3), (4), (5) and (6) are similar to
that for (1), and equation (8) is immediate from the definition.

To obtain equation (1), consider the state of the system at t and at t + ∆t. In order that
Sn(t + ∆t) = (1, k) and Vk(t + ∆t) = x + ∆t (x > 0), it is necessary that

(a) at time t, Sn(t) = (1, k) and Vk(t) = x. Within (t, t + ∆t), the uptime of the machine is still
in phase 1 and the kth job has not been completed; or

(b) at time t, Sn(t) = (0, k), and Vk(t) = x, V (t) = y for any y > 0. Within (t, t + ∆t), the repair
of the machine has been completed.

Using a conditioning argument, we have

p1,k(t + ∆t, x + ∆t) = p1,k(t, x)[1 − α∆t − µπ(k)(x)∆t] +

∞
∫

0

p0,k(t, x, y)β(y)∆tdy + o(∆t)

Thus,

p1,k(t + ∆t, x + ∆t) − p1,k(t, x + ∆t) + p1,k(t, x + ∆t) − p1,k(t, x)

= −p1,k(t, x)[α∆t + µπ(k)(x)∆t] +

∞
∫

0

p0,k(t, x, y)β(y)∆tdy + o(∆t)

Dividing by ∆t and letting ∆t → 0 gives equation (1).

Most of the equations given by (7) follow immediately from the model assuptions. The only
exception needing more proof is p1,1(0, x) = δ(x). That is, we must show

p1,1(0, x) = 0

for all x > 0, while
∫ ∞

0
p1,1(0, x)dx =

∫ ε

0
p1,1(0, x)dx = 1

for any ε > 0.

The first relation is obvious, because it is impossible for the machine to have processed the first
job for a non-zero amount of time at time t=0. Next, by the definition of p1,1(0, x), it follows that

∫ ∞

0
p1,1(0, x)dx =

∫ ∞

0
P{Sn(0) = (1, 1), x ≤ V1(0) < x + dx|Sn(0) = (1, 1), V1(0) = 0} = 1

Thus, together with the first relation, we can get the second relation.

16



Remark:
∫∞
0 p1,1(0, x)dx = 1 can be also directly obtained from the general relation in the

equation (17) used in the following proof of the Lemma 2.2.

Proof of Lemma 2.2:
Solving the Laplace transformed version of (3) with the boundary condition (6) gives

p∗0,k(s, x, y) = αe−sy[1 − D(y)]p∗m,k(s, x), k = 1, 2, · · · , n (10)

where p∗(s) denotes the Laplace transform of a function p(t).

Using (1), (2), (7) and the corresponding definitions, we can obtain

∂

∂x
p∗

k(s, x) = Ap∗
k(s, x) − µπ(k)(x)p∗

k(s, x), +δk1δ(x)eτ
1 (k = 1, 2, · · · , n) (11)

where pk(t, x) = (p1,k(t, x), p2,k(t, x), · · · , pm,k(t, x))τ , and

A =

















−s − α 0 · · · 0 αEe−sD

α −s − α · · · 0 0
...

...
. . .

...
...

0 0 · · · −s − α 0
0 0 · · · α −s − α

















m×m

Noting that −φ1(s),−φ2(s), · · · ,−φm(s) are the m different eigenvalues of matrix A, we can write

A = ∆

{

(

Ee−sD
)

1−i
m

}

T ∆ {−φi(s)}T−1 ∆

{

(

Ee−sD
)

i−1
m

}

(12)

where ∆{xi} = diag{xi},

T =













1 1 · · · 1

ω−1
1 ω−1

2 · · · ω−1
m

...
...

. . .
...

ω1−m
1 ω1−m

2 · · · ω1−m
m













and T−1 =
1

m













1 ω1 · · · ωm−1
1

1 ω2 · · · ωm−1
2

...
...

. . .
...

1 ωm · · · ωm−1
m













Substituting (12) into (11) and solving, we have

p∗
1(s, x) = [1 − Fπ(1)(x)] ∆

{

(

Ee−sD
)

1−i
m

}

T ∆{−φi(s)x}T−1 ∆

{

(

Ee−sD
)

i−1
m

}

U(x)eτ
1 (13)

and

p∗
k(s, x) = [1 − Fπ(k)(x)] ∆

{

(

Ee−sD
)

1−i
m

}

T ∆{−φi(s)x}T−1 ∆

{

(

Ee−sD
)

i−1
m

}

Lk (14)

where Lk (k = 2, · · · , n) is a column vector to be determined, and U(x) is one if x > 0 and zero
otherwise. Using boundary conditions (4), (5) and the above two results and defining L1 = eτ

1 ,
vectors Lk (k = 2, · · · , n) can be recursively determined as

Lk = ∆

{

(

Ee−sD
)

1−i
m

}

T ∆{E exp[−φi(s)Xπ(k−1)]}T−1 ∆

{

(

Ee−sD
)

i−1
m

}

Lk−1

17



= · · · · · ·

= ∆

{

(

Ee−sD
)

1−i
m

}

T ∆







(

e−φi(s)x
)

E exp



−φi(s)
k−1
∑

j=1

Xπ(j)











×

T−1 ∆

{

(

Ee−sD
)

i−1
m

}

eτ
1 (15)

Then substituting (15) into (14) gives us

p∗
k(s, x) = [1 − Fπ(k)(x)]∆

{

(

Ee−sD
)

1−i
m

}

T ∆







(

e−φi(s)x
)

E exp



−φi(s)
k−1
∑

j=1

Xπ(j)











× T−1 ∆

{

(

Ee−sD
)

i−1
m

}

eτ
1 (k = 2, 3, · · · , n) (16)

Since

P (Cπ(n) > t) =
n
∑

k=1





m
∑

i=1

∞
∫

0

pi,k(t, x)dx +

∞
∫

0

∞
∫

0

p0,k(t, x, y)dxdy



 (17)

the results in equations (10), (13) and (16) can be combined to give

∫ ∞

0
e−stP (Cπ(n) > t)dt =

n
∑

k=1





m
∑

i=1

∞
∫

0

p∗i,k(s, x)dx +

∞
∫

0

∞
∫

0

p∗0,k(t, x, y)dxdy





=

[

e +
α

s
(1 − Ee−sD)em

] n
∑

k=1

∞
∫

0

p∗
k(s, x)dx

=
1

s

[

se + α(1 − E−sD)
]

∆

{

(

Ee−sD
)

1−i
m

}

T∆







1

−φi(s)



1 − E exp



−φi(s)
n
∑

j=1

Xπ(j)















× T−1∆

{

(

Ee−sD
)

i−1
m

}

eτ
1

=
1

s
e∆ {γi(s)}T∆







1

−φi(s)



1 − E exp



−φi(s)
n
∑

j=1

Xπ(j)















T−1∆

{

(

Ee−sD
)

i−1
m

}

eτ
1

=
1

sm

m
∑

i=1

m
∑

k=1

γi(s)ω
1−i
k

φk(s)



1 − E exp



−φk(s)
n
∑

j=1

Xπ(j)







 (18)

The last equation above follows since it is a special case of the formula

e∆{yi}T∆{di}T−1∆{xi}eτ =
1

m

m
∑

k=1

dk

(

m
∑

i=1

yiω
−i
k

)





m
∑

j=1

xjω
j
k





when x1 = 1 and xi = 0 (i = 2, 3, · · · , m).

Now, by using the relationship:

E[e−sCπ(n) ] = 1 − s

∫ ∞

0
e−stP (Cπ(n) > t)dt

18



the proof is readily completed.

References

[1] Adiri, I., Bruno, J., Frostig, E. and Rinnooy Kan, A.H.G. (1989) Single machine flow-time
scheduling with a single breakdown. Acta Informatica 26: 679–696.

[2] Allahverdi, Ali. (1995) Two-stage production scheduling with separated setup times and
stochastic breakdowns. The Journal of the Operational Research Society 46: 896–904.

[3] Allahverdi, Ali. and Mittenthal, J. (1994) Scheduling on M parallel machines subject to ran-
dom breakdowns to minimize expected mean flow time. Naval Research Logistics 41: 677–682.

[4] Allahverdi, Ali. and Mittenthal, J. (1994) Two-machine ordered flowshop scheduling under
random breakdowns. Mathematical and Computer Modeling 20: 9–17.

[5] Allahverdi, Ali. and Mittenthal, J. (1995) Scheduling on a two-machine flowshop subject to
random breakdowns with a makespan objective function. European Journal of Operational
Research 81: 376–387.

[6] Birge, J., Frenk, J.B.G., Mittenthal, J., and Rinnooy Kan, A.H.G. (1990) Single machine
scheduling subject to stochastic breakdowns. Naval Research Logistics 37: 660–677.

[7] Chang, C.S., Chao, X.L., Pinedo, M. and Weber, R. (1992) On the optimality of LEPT and
Cµ Rules for machines in parallel. J. Appl. Prob. 29: 667–681.

[8] Chaudhry, M.L. and Templetion, J.G.C. (1983) A First Course in Bulk Queues, Wiley, New
York.

[9] Cox, D.R. (1955) The analysis of non-Markovian stochastic processes by the inclusion of sup-
plementary variables. Proceedings of the Cambridge Philosophical Society, 51: 433-441.

[10] Du, Q. and Pinedo, M. (1995) A note on minimizing the expected makespan in flowshops
subject to breakdowns. Naval Research Logistics, 1251–1262.

[11] Frenk, J.B.G. (1987) Renewal theory and completely monotone functions. Report No. 8759/A,
Econometric Institute, Erasmus University, Rotterdam.

[12] Frenk, J.B.G. (1991) A general framework for stochastic one-machine scheduling problems with
zero release times and no partial ordering. Probability in the Engineering and Informational
Sciences 5: 297–315.

[13] Frostig, E. (1991) A note on stochastic scheduling on a single machine subject to breakdown
— the preemptive repeat model. Probability in the Engineering and Informational Sciences 5:
349–354.

19



[14] Glazebrook, K.D. (1984) Scheduling stochastic jobs on a single machine subject to breakdowns.
Naval Research Logistics Quarterly 31: 251–264.

[15] Glazebrook, K.D. (1987) Evaluating the effects of machine breakdowns in stochastic scheduling
problems. Naval Research Logistics Quarterly 34: 319–335.

[16] Glazebrook, K.D. (1991) On non-preemptive policies for stochastic single machine scheduling
with breakdown. Probability in the Engineering and Informational Sciences 5: 77–87.

[17] Li, W. and Cao, J.H. (1994) Stochastic scheduling on an unreliable machine with general
uptimes and general setup times. Journal of System Engineering and System Sciences 3: 279–
288.

[18] Li, W. and Cao, J.H. (1995) Stochastic scheduling on a single machine subject to multiple
breakdowns according to different probabilities. Operations Research Letters 18: 81–92.

[19] Li, W. and Glazebrook, K.D. (1997) On stochastic machine scheduling with general distribu-
tional assumptions. To appear in European Journal of Operational Research .

[20] Mittenthal, I. (1986) Scheduling on single machine subject to breakdowns. Ph.D. dissertation.
University of Michigan, Ann Arbor, MI.

[21] Pinedo, M. (1983) Stochastic scheduling with release dates and due dates. Operations Research
31: 559–572.

[22] Pinedo, M. (1995) Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood
Cliffs, NJ.

[23] Pinedo, M. and Rammouz, E. (1988) A note on stochastic scheduling on a single machines
subject to breakdown and repair. Probability in the Engineering and Informational Sciences
2: 41–49.

[24] Righter, R. (1994) Scheduling. Stochastic Orders and Their Applications. ed. Shaked, M. and
Shanthikumar, J.G., Academic Press, New York, 381–432.

[25] Righter, R. and Shanthikumar,J.G. (1989) Scheduling multiclass single server queueing systems
to stochastically maximise the number of successful departures. Probability in the Engineering
and Informational Sciences 3: 323–333.

[26] Ross, S.M. (1983) Introduction to stochastic dynamic programming. Academic Press, New
York.

20


