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1 Introduction

We consider an irreducible aperiodic Markov chain {Xn; n = 1, 2, . . . } of
M/G/1 type, whose transition matrix P is partitioned into block-form:

P =




D1 D2 D3 D4 · · ·
D0 C1 C2 C3 · · ·

C0 C1 C2 · · ·
C0 C1 · · ·

. . . . . .




, (1)

where D1 is a matrix of size m0 × m0, all Ci are square matrices of finite
size m, the sizes of the other block-entries are determined accordingly and all
empty entries are zero. P is assumed to be stochastic or strictly substochastic.
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By strictly substochastic, we mean that P ≥ 0, Pe ≤ e and Pe 6= e, where e
is a column vector of ones.

The state space of the above block-partitioned Markov chain can be
expressed as S = ∪∞i=0Li, where L0 = {(0, j); j = 0, 1, 2, . . . , m0} and
Li = {(i, j); j = 0, 1, 2, . . . , m} for i ≥ 1. In state (i, j), variable i is called the
level and variable j, the phase. Therefore, Li is the set of all states at level
i. For convenience, we write L≤i = ∪i

k=0Lk and L≥i for the complement of
L≤(i−1).

Let α be the radius of convergence for the transition matrix P =
(p(i,r),(j,s)). We know that α = sup{z > 0;

∑∞
n=0 znp

(n)
(i,r),(j,s) < ∞} ≥ 1,

where p
(n)
(i,r),(j,s) is the n-step transition probability and α is independent of

states (i, r) and (j, s).
A nonnegative nonzero row vector π is said to be an invariant measure of

P if π = πP . For 0 < β ≤ α, a nonnegative nonzero row vector π is said to
be a β-invariant measure of P if π = πβP . Call βP the discounted transition
matrix at rate β. Then, a β-invariant measure is simply an invariant measure
of the discounted matrix. It follows from the definition that a 1-invariant
measure is simply an invariant measure.

For the transition matrix P of M/G/1 type, we are interested in

a) the radius of convergence α;

b) the α-classification of the process if α > 1; and

c) β-invariant measures for 0 < β ≤ α.

There are a number of reasons why the above items are of interest.
1) It is well-known that π = (πi) is a quasistationary distribution if and

only if for some β > 1 π is a β-invariant measure satisfying
∑

i πi < ∞.
The study of quasistationary behavior of a Markov chain is not only the-
oretically important, but also finds interesting and important applications
in many areas, including biology (Scheffer 1951, Holling 1973, Pakes 1987
and Pollett 1987), chemistry (Oppenheim, Shuler and Weiss 1977, Parsons
and Pollett 1987 and Pollett 1988), and telecommunications (Schrijner 1995),
among others.

2) When the entries πi in π cannot be summed, the concept of the β-
invariant measure is a generalization of invariant measures for a nonergodic
chain (Derman 1955, Harris 1957, Latouche, Pearce and Taylor 1998, Gail,
Hantler and Taylor 1998, Zhao, Li and Braun 1998). In this case, π can
still be interpreted probabilistically in terms of the movement of particles
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whose initial states are governed by Poisson distributions (Derman 1955 and
Kelly 1983). Also, π can be used to define a time-reversed matrix or dual
matrix, which has important applications (Kelly 1979, Ramaswami 1990, As-
mussen and Ramaswami 1990, Bright 1996 and Zhao, Li and Alfa 1999).

3) It is well known how important the Perron-Frobenius Theorem is in
the theory of finite nonnegative matrices. The decay parameter 1

α of P can
be considered the Perron-Frobenius eigenvalue of the nonnegative matrix P
and an α-invariant measure of P a Perron-Frobenius eigenvector of P .

It is believed that the study of quasistationary behavior was originated
by Yaglom (1947). Since then, significant advances in the theory of qua-
sistationarity have been made through the efforts of many researchers. A
detailed review on the literature can be found in the Ph.D. dissertation of
Schrijner (1995). This study has also been successfully advanced to consider
transition matrices with a block-structure since Kijima (1993) made a break
through on the determination of the radius of convergence for Markov chains
of GI/M/1 type and M/G/1 type without boundaries. For transition matrices
with a block-structure, studies have been centered on obtaining probabilistic
measures to express the radius of convergence and quasistationary distribu-
tions, including classifications of the states in terms of these measures. People
are searching for expressions which are numerically preferable. Results on
quasi-birth-and-death (QBD) processes can be found in Kijima (1993), Maki-
moto (1993), Bean et al. (1997), and Bean, Pollett and Taylor (1998, 2000).
Some preliminary results on the expressions for the matrices of GI/M/1 type
and M/G/1 type were obtained in Li (1997). A survey on quasistationary
distributions of Markov chains arising from queueing processes was given by
Kijima and Makimoto (1999).

In this paper, we will study the matrix of M/G/1 type with boundary
blocks as defined in (1). The issue on the radius of convergence will be ad-
dressed by combining a result (see Lemma 5) obtained by Kijima (1993) and
the boundary treatment based on censoring. For the case without boundaries,
the matrix is always α-transient. With the presence of the boundary, the ma-
trix can be either α-transient or α-recurrent. Conditions on classifications
of the transient states will also be discussed in this paper. For the matrix
of M/G/1 type, we have not noticed the existence of an expression for the
β-invariant measure in the literature. We will provide a constructive way of
expressing such a measure.

The technique used in this paper to study the radius of convergence and
conditions on classifications of the transient states is based on censoring. A
censored process is also referred as the imbedded process. For any subset, as
the censoring set, of the state space of a process, the censored process is the
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process obtained by watching the original process only when it travels in the
censoring set. This technique has been successfully used in studying many
other aspects of block-structured stochastic or strictly substochastic matrices
(for example, see Grassmann and Heyman 1990, Latouche 1993, Zhao, Li and
Braun 1998, 2001, Zhao, Li and Alfa 1999, Latouche and Ramaswami 1999,
and Zhao 2000). In order to use the censoring technique to deal with the
issue on the β-invariant measure, we need to generalize results on stochastic
or strictly substochastic matrices to that on nonnegative matrices.

What we will use to obtain expressions for the β-invariant measure is the
method of factorization, where I − βP is factorized into the product of an
upper triangular matrix and a lower triangular matrix. We shall call it the
RG-factorization, since the factors in the factorization involve the R- and G-
measures, two key probabilistic measures in our study, which will be defined
later. This factorization may be viewed as an LU -factorization for the infinite
matrix I − βP . The procedure of obtaining a solution for the β-invariant
measure can be considered a generalization of using an LU -factorization to
solve a finite system of linear equations. Expressions for the β-invariant mea-
sure are different according to the classification of the states and the value of
β. When we use the factorization technique, it is a key how to associate the
middle factor or the diagonal matrix with either the upper triangular or the
lower triangular matrix. Our study will give a way to successively identify two
different sets of solutions for the β-invariant measure. When β = 1, an equiv-
alent form of this factorization was obtained and studied by Heyman (1995),
Zhao, Li and Braun (1997, 2000) and Zhao (2000). In Li (1997), the matrix
I − βP was factored into an equivalent form of the RG-factorization with-
out using the R-measure. There are three possible difficulties when using
the RG-factorization on infinite matrices. Firstly, the associativity of matrix
multiplications cannot be taken for granted, secondly, the existence of a non-
trivial solution to a linear system of infinitely many equations cannot be taken
for granted, and thirdly, the method of dealing with a recurrent matrix and a
transient matrix should be distinguished. When the Markov chain is positive
recurrent, these issues have been successfully addressed in the literature, for
example, see Heyman (1995). Ramaswami (1988) presented a stable recur-
sion, equivalent to the factorization of Heyman, for the steady state vector
for Markov chains of M/G/1 type. Also, Meini (1997) studied the matrix
of M/G/1 type in terms of a method of factorization. For quasistationary
distributions, the method employed by Bean, Pollett and Taylor (2000) to
the quasi-birth-and-death process is essentially equivalent to the factorization
method used in this paper. However, they did not indicate how the expres-
sions for the β-invariant measure are constructed.
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It is our belief that the idea presented here can also be used to study
other types of block-structured matrices, for example, matrices of GI/M/1
type and, more generally, GI/G/1 type.

The rest of the paper is organized as follows.
In Section 2, some basic properties about the matrix βP are provided,

including properties on the existence of an inverse of I − βP , the minimal
nonnegative inverse and the fundamental matrix. These properties are needed
in later sections.

When P is transient, the states of P can be further classified as α-
recurrent or α-transient according to α̂P =

∑∞
k=0 αkP k = ∞ or < ∞, re-

spectively. The matrix α̂P is referred as the fundamental matrix of αP . If P

is α-recurrent, either limn→∞ αnp
(n)
(i,r),(j,s) > 0 for all states (i, r) and (j, s), or

limn→∞ αnp
(n)
(i,r),(j,s) = 0 for all states (i, r) and (j, s). In the former case, P is

called α-positive and in the latter case, α-null. In Section 3, we determine the
radius α of convergence and the α-classification of the transient states, based
on the combination of the result on determining the radius ᾱ of convergence
for the matrix of M/G/1 type without boundaries and a new treatment for
the boundary.

In Section 4, the RG-factorization for matrix I − βP is proved. We show
that

I − βP = [I −RU (β)][I − UD(β)][I −GL(β)],

where RU (β) is a block-form upper triangular matrix involving only the R-
measure, GL(β) is a block-form lower triangular matrix involving only the
G-measure, and UD(β) is a block-form diagonal matrix. The R-measure is
a sequence of matrices defined by (15) and (16) and the G-measure for the
matrix M/G/1 type consists of two matrices defined by (7) and (17). Prob-
abilistic interpretations for both R- and G-measuers are provided after the
definition formulas. In this section, we also show that the RG-factorization
exists for the matrix of level-dependent M/G/1 type.

In Section 5, based on the RG-factorization, expressions for the β-
invariant measure are obtained. There are two different sets of expressions:
One is for the α-invariant measure when P is α-recurrent. In this case, the
α-invariant measure is unique up to a multiple of a positive constant. For
all other cases, we provide a common expression for the β-invariant measure.
When the β-invariant measure cannot be summed, this uniqueness is no longer
guaranteed.

The Final section, Section 6, consists of concluding remarks.
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2 Preliminaries

In this section, we provide some properties of the discounted matrix βP ,
which will be used in later sections. Most of these results can be viewed as
generalizations of the counterparts for a stochastic or strictly substochastic
matrix. Proofs of these properties may not be obvious. However, since they
can be proved either in the same way as that for a stochastic or strictly sub-
stochastic matrix or in a similar fashion, we omit most of the proofs. Relevant
references are Seneta (1981), Kemeny, Snell and Knapp (1976), Çinlar (1975)
among possible others.

A general statement on the existence and uniqueness of an α-invariant
measure can be found in the literature, for example Seneta (1981) which is
stated in the following lemma. In order to do so, we need the concept of
subinvariant measure (or superregular measure). A row vector x is called a
subinvariant measure of P if x ≥ xP . A row vector x is called a β-subinvariant
measure of P if x ≥ βxP . A 1-subinvariant measure is simply subinvariant.
Lemma 1 For irreducible aperiodic matrix P , there always exists a positive
α-subinvariant measure x. If P is α-recurrent, then the unique α-subinvariant
measure x, up to a multiple of a positive constant, of P is α-invariant and
positive.

The following are some basic properties about the existence of an inverse,
minimal nonnegative inverse and the fundamental matrix.
Lemma 2 (i) For 0 < β < α if P is α-recurrent, or for 0 < β ≤ α if P is
α-transient, (I − βP ) is invertible. (ii) If (I − βP ) is invertible, then

β̂P =
∞∑

k=0

βkP k (2)

is the minimal nonnegative inverse of (I − βP ), which is often referred to as
the fundamental matrix of βP . (iii) Let P be partitioned into

P =
[

T H
L Q

]
. (3)

Then, both (I − βT ) and (I − βQ) are invertible for 0 < β ≤ α.
The following lemma plays an important role in later sections, which will

be used to establish a relationship between block-entries of the fundamental
matrix β̂P .
Lemma 3 Let P be partitioned as in (3) and let βP be partitioned accordingly
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as

βP =
[

βT βH
βL βQ

]
, 0 < β ≤ α. (4)

Assume that I −βP is invertible. Then, the minimal nonnegative inverse β̂P
of (I − βP ) is given by

β̂P =

[
(I − βT − βHβ̂QβL)−1

min (I − βT − βHβ̂QβL)−1
minβHβ̂Q

β̂QβL(I − βT − βHβ̂QβL)−1
min β̂Q + β̂QβL(I − βT − βHβ̂QβL)−1

minβHβ̂Q

]

(5)

or equivalently,

β̂P =

[
β̂T + β̂TβH(I − βQ− βLβ̂TβH)−1

minβLβ̂T β̂TβH(I − βQ− βLβ̂TβH)−1
min

(I − βQ− βLβ̂TβH)−1
minβLβ̂T (I − βQ− βLβ̂TβH)−1

min

]
,

(6)

where (I −X)−1
min =

∑∞
i=0 Xi is the minimal nonnegative inverse of I −X.

Remark 1 By a sample path argument or the above lemma, we can show
that the fundamental matrix is invariant under censoring. Let E be a subset
of the state space. Let βP be partitioned according to E and its complement
Ec as in (4). And let the fundamental matrix β̂P of βP be expressed as in
(3). Then, the fundamental matrix of the censored matrix (βP )E is equal to
the block-entry corresponding to the states in E in the fundamental matrix
β̂P .

3 Radius of convergence and classification of states

Let α be the radius of convergence for P . If α = 1, the classification of states
is conventional. So, we are only interested in the classification of states when
α > 1. This corresponds to a further classification of the transient states.
The main purpose of this section is to determine the radius of convergence
α and to provide conditions on classification of the states. To pursue that,
we first define the matrix G(β) which, together with matrix G1,0(β) defined
in Section 4, is referred to as the G-measure for the transition matrix P of
M/G/1 type. The main results in this section will be expressed in terms of
the G-measure through the analysis of the fundamental matrix and censored
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matrices N(β) and N0(β). By introducing the G-measure, not only can the
theoretical analysis be carried out, but it is also computable.

Partition the discounted transition matrix βP of M/G/1 type as in
(4) with βT = βD1, and βH, βL and βQ being determined accordingly.
Notice that, in the partition, Q is the transition matrix of M/G/1 type
without boundaries. Let β̂Q = (Q̂i,j(β))i,j=1,2,... be the fundamental ma-
trix for βQ partitioned in blocks, where Q̂i,j(β) is the (i, j)th block. Write
N(β) = Q̂1,1(β).

The matrix G(β) is defined by

G(β) = N(β)βC0. (7)

G(β) is a matrix of size m. The (r, s)th entry of G(β) can be interpreted
as the total expected discounted reward with rate β induced by hitting state
(i, s) upon the process entering L≤i for the first time, given that the process
starts in state (i + 1, r).
Remark 2 Though the matrix G(β) is defined as the product of N(β) and
βC0, we usually first compute G(β) and then determine N(β) in terms of
G(β). To do so, we need the following lemma, that says that all the other
block-entries in the first block-column in β̂Q can be explicitly expressed in
terms of N(β), the (1, 1)st block-entry in β̂Q.

Lemma 4 For the fundamental matrix β̂Q = (Q̂i,j(β))i,j=1,2,...,

Q̂j,1(β) = G(β)j−1N(β), j ≥ 1. (8)

Proof: It follows from (3) in Lemma 3 that

(Q̂2,1(β)T , Q̂3,1(β)T , . . . )T = β̂QβLN(β).

The repeating structure and the property of skip-free-to-left of the transition
matrix βQ leads to

(Q̂2,1(β)T , Q̂3,1(β)T , . . . )T = (N(β)T , Q̂2,1(β)T , . . . )T βC0N(β).

The proof is completed by the above recursive expression and repeatedly using
N(β)βC0 = G(β).

For the discounted transition matrix βP of M/G/1 type, we partition the
fundamental matrix β̂P of βP according to levels. The block-entries of β̂P
are denoted by P̂i,j(β). It is clear that to study the radius of convergence
and to classify the states, it is sufficient to only consider an arbitrary block-
entry in β̂P . For the block-structured transition matrix P in (1), partition P
according to (3) with T = D1. It suffices to consider the (1, 1)st block-entry,
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denoted by N0(β), in β̂P . We express N(β) in terms of G(β) and N0(β) in
terms of N(β). This will enable us to determine the radius of convergence α
and provide conditions for classification of the states.
Theorem 1 For the transition matrix of M/G/1 type, the (1, 1)st block-entry
N(β) in β̂Q can be expressed as

N(β) = [I −
∞∑

k=1

βCkG(β)k−1]−1, (9)

or N(β) is the fundamental matrix for U(β) = β
∑∞

k=1 CkG(β)k−1. The
(1, 1)st block-entry N0(β) in β̂P can be expressed as

N0(β) = [I − U0(β)]−1, (10)

where

U0(β) = βD1 +
∞∑

k=1

βDk+1G(β)k−1N(β)βD0, (11)

or N0(β) is the fundamental matrix for U0(β).
Proof: Apply Lemma 3 to the discounted transition matrix βQ. It

follows from (3) that N(β) = Q̂1,1(β) is the fundamental matrix for βT +
βHβ̂QβL. Then,

βT + βHβ̂QβL=βC1 + βH(Q̂1,1(β), Q̂2,1(β), . . . )T βC0

=βC1 +
∞∑

k=2

βCkQ̂k−1,1(β)βC0.

Noticing that N(β)βC0 = G(β) and using Lemma 4 will complete the proof
to the first assertion.

To prove the second, apply Lemma 3 to the discounted transition matrix
βP . Then, N0(β) is the fundamental matrix for βT +βHβ̂QβL, where βT =
βD1, βH = β(D2, D3, . . . ), β̂Q is the fundamental matrix of βQ and βL =
β(D0, 0, . . . ). Therefore,

U0(β) = βD1 +
∞∑

k=2

βDkQ̂k−1,1(β)βD0.

The proof is complete by using Lemma 4.
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Remark 3 It follows from the definition equation (7) and equation (9) that
G(β) satisfies the following equation:

G(β) =
∞∑

k=0

βCkG(β)k. (12)

We can further prove that G(β) is the minimal nonnegative solution to equa-
tion (12).

The determination of the radius of convergence α and the conditions on
classification of the states given below are based on the combination of the
classification result for the matrix without boundaries given by Kijima (1993)
and the treatment of the boundary. For convenience, we state two results by
Kijima here.

For the transition matrix P of M/G/1 type in (1) without boundaries, or
all Dk = Ck for k = 0, 1, . . . , Kijima (1993) provided a method for determining
the radius of convergence ᾱ and showed that P is always α-transient.
Lemma 5 (Kijima) Let C∗(z) be defined by

C∗(z) =
∞∑

k=0

Ckzk, 0 ≤ z < z0. (13)

Let χ(z) be the Perron-Frobenius eigenvalue of C∗(z). If z0 > 1, then there
always exists a unique γ such that χ(z) ≥ γz for all 0 < z < z0, and there
exists some θ with 0 < θ ≤ z0 such that χ(θ) = θγ. If θ = z0, then γ =
χ(z0)/z0. Otherwise, γ and θ can be determined by solving the simultaneous
equations

χ(θ) = γθ and χ′(θ) = γ. (14)

By using this lemma, Kijima was able to show the following result.
Theorem 2 (Kijima) For the transition matrix P of M/G/1 type without
boundaries (Dk = Ck for all k ≥ 0), if γ is the quantity determined in
Lemma 5, then the radius of convergence ᾱ of P satisfies ᾱ = 1/γ and P
is ᾱ-transient.
Remark 4 In fact, θ given in the above lemma is the maximal eigenvalue of
the G(ᾱ). Makimoto (1993) obtained two types of expressions for the quasis-
tationary distributions of the PH/PH/c queue in terms of θ and γ, Li (1997)
and Kijima and Makimoto (1999) generalized those results to the matrix of
GI/M/1 type without boundaries.
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Remark 5 Kijima (1993) also related θ and γ to the mean drift. The fact
that the matrix of M/G/1 type without boundaries is always ᾱ-transient is
independent of the mean drift. However, the matrix with boundaries can be
α-transient, α-positive recurrent or α-null recurrent.

For P of M/G/1 type in (1) with boundaries, we can perform the spectral
analysis on the censored matrix to level 0 to obtain conditions on classifica-
tions of the transient states and a determination of the radius of convergence.
The censored matrix can be calculated according to Lemma 3 and Remark 1
as U0(β). However, it seems more convenient to reach this goal by consider-
ing the relationship between the censored matrix U0(β) and its fundamental
matrix N0(β).

Let u0(β) and n0(β) be the maximal eigenvalues of the censored matrix
U0(β) and its fundamental matrix N0(β), respectively. Then n0 (β) = 1

1−u0(β) .
It follows from results of linear algebra that the first two statements of the
following lemma are true, for example, Seneta (1981), and the other two follow
from the definitions of the radius of convergence and N0(β).
Lemma 6 Let ᾱ and α be the radii of convergence of Q and P respectively.
In i) and ii), assume 0 < β ≤ ᾱ.

i) Both u0(β) and n0(β) are strictly increasing in β, and

ii) u0(β) < 1 if and only if N0(β) < ∞.

iii) N0(β) < ∞ if β < α and N0(β) = ∞ if β > α.

iv) α ≤ ᾱ.

The classification of the states is characterized by the following conditions.
Theorem 3

i) If for all 0 < β ≤ ᾱ, u0(β) < 1, then N0(ᾱ) < ∞ and α = ᾱ. Therefore,
P is α-transient;

ii) If there exists a β∗ with 0 < β∗ ≤ ᾱ such that u0(β∗) = 1, then α = β∗

and N0(α) = ∞. Therefore, P is α-recurrent.

Proof: Based on the facts: n0 (β) = 1
1−u0(β) and n0(β) < ∞ if and

only if N0 (β) < ∞, we discuss the following two cases: i) there exists no
solution to 1 − u0(β) = 0 for 0 < β ≤ ᾱ, and ii) there exists a solution β∗

to 1 − u0(β) = 0 for 0 < β∗ ≤ ᾱ. In the first case, n0(ᾱ) < ∞. Hence
N0(ᾱ) < ∞. Therefore, α ≥ ᾱ. This, together with iv) of Lemma 6, implies
α = ᾱ. Hence, P is α-transient. In the second case, n0(β∗) = ∞, hence
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there exists at least one infinite entry of N0 (β). This leads to α = β∗ ≤ ᾱ.
Therefore, P is α-recurrent. This completes the proof.

Remark 6 Theorem 3 is also a generalization of classifying an irreducible
stochastic matrix into either a recurrent or transient matrix based on censor-
ing. For example, P is recurrent if and only if every censored matrix of P is
stochastic. Therefore, the maximal eigenvalue of the censored matrix is one,
or u0(1) = 1. P is transient if and only if every censored finite matrix of P
is strictly substochastic. Therefore, u0(1) < 1 and α ≥ 1. If we replace u0(1)
mentioned above by u0(α), we then have the conditions for α-recurrence and
α-transience.

The above result provides a way to classify the states into either α-
transient or α-recurrent and to determine the radius of convergence of P .
For an α-recurrent P , the following theorem further provides conditions to
determine when it is α-positive or α-null.

Theorem 4 If
∞∑

k=1

kDkG(α)k−1 < ∞,
∞∑

k=1

kCkG(α)k−1 < ∞ and α < α,

then the α-recurrent Markov chain is α-positive; otherwise, it is α-null.

Proof: This proof is long and needs results in Section 5. Therefore, it
is given as an Appendix.

Remark 7 If α = 1 and α > 1, then, the three conditions in Theorem 4
are the same conditions as that in Remark b of Neuts (1989) (pp. 140-
141). This is because in this situation, G (1) is stochastic. Therefore,

i)
∞∑

k=1

kDkG (1)k−1
< ∞ if and only if

∞∑
k=1

kDk < ∞; ii)
∞∑

k=1

kCkG (1)k−1
<

∞ if and only if
∞∑

k=1

kCk < ∞; and iii) for the recurrent matrix, α < α if and

only if I −R∗ (1) is invertible, which is equivalent to ρ < 1.

Remark 8 If Dk = 0 and Ck = 0, k ≥ 3, then the transition matrix in
(1) is a level-independent QBD process with boundary. In this case, Theorem
4 illustrates that the α-recurrent QBD process is α-positive if and only if
α < α. A similar analysis as in Appendix will show that an α-recurrent level-
dependent QBD process is α-positive if and only if α < α. Now, we compare
this result with Lemma 15 in Bean, Pollett and Taylor (2000). If α < α,
then since α < α ≤ α2, where α = α1, N (2) (z) is analytic at z = α.Thus,
d

dαN (2) (α) = d
dz N (2) (z)|z=α < ∞. On the contrary, if d

dαN (2) (α) < ∞, then
α < α, since N (2) (α) = ∞ and N (2) (z) is increasing for 1 ≤ z < α2.
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4 RG-factorization

The RG-factorization of (I−P ), where P is stochastic or strictly substochas-
tic, is a version of LU -factorization having probabilistic interpretations. This
factorization was discussed by Heyman (1995), Zhao, Li and Braun (1997,
2000), and Zhao (2000). Heyman showed how to use this factorization to
determine the stationary probability vector of a positive recurrent Markov
chain. When studying the quasistationary behavior of transition matrix P of
M/G/1 type without boundaries, Li (1997) obtained an LU -factorization for
(I − βP ) without using the R-measure defined in this paper.

The RG-factorization of (I−βP ) can be proved for an arbitrary transition
matrix P , with or without a block-structure. However, in this paper, we only
concentrate on the transition matrix of M/G/1 type defined in (1). We first
need to define the R-measure and the matrix G1,0(β).

Consider the fundamental matrix β̂Q of βQ. Let the first block-column
of β̂Q be (Q̂1,1(β)T , Q̂2,1(β)T , . . . )T . The R-measure for the matrix βP in (1)
consists of two sequences of matrices R0,k(β) and Rk(β), k = 1, 2, . . . , defined
by

R0,k(β) =
∞∑

l=1

βDk+lQ̂l,1(β) (15)

and

Rk(β) =
∞∑

l=1

βCk+lQ̂l,1(β). (16)

The (r, s)th entry of R0,k(β) can be interpreted as the total expected dis-
counted reward with rate β induced by all visits to state (k, s) before hitting
any state in L≤k−1, given that the process starts in state (0, r). Similarly, the
(r, s)th entry of Rk(β) can be interpreted as the total expected discounted
reward with rate β induced by all visits to state (i + k, s) before hitting any
state in L≤i+k−1, given that the process starts in state (i, r), where i ≥ 1.

The G-measure for βP of M/G/1 type consists of two matrices, G(β) as
defined in (7) and G1,0(β) defined by

G1,0(β) = Q̂1,1(β)βD0 = N(β)βD0. (17)

The (r, s)th entry of G1,0(β) can be interpreted as the total expected dis-
counted reward with rate β induced by hitting state (0, s) upon the process
entering level 0 for the first time, given that the process starts in state (1, r).
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Applying Lemma 4 to (15) and (16), the R-measure can then be expressed
as

R0,k(β) =
∞∑

i=1

βDk+iG(β)i−1N(β) (18)

and

Rk(β) =
∞∑

i=1

βCk+iG(β)i−1N(β) (19)

for k = 1, 2, . . . .
Remark 9 Up to now, we have obtained all components needed in the fac-
torization equation and expressed then in terms of G(β) only.

For the matrix P of M/G/1 type with boundaries, the RG-factorization
can be stated in the following theorem.
Theorem 5 For the matrix P of M/G/1 type in (1), I−βP can be factorized
as

I − βP = [I −RU (β)][I − UD(β)][I −GL(β)], (20)

where

[I −RU (β)] =




I −R0,1(β) −R0,2(β) −R0,3(β) · · ·
I −R1(β) −R2(β) · · ·

I −R1(β) · · ·
I · · ·

. . .




, (21)

UD(β) is the diagonal matrix in block-form with the first block-entry on the
diagonal equal to U0(β) and all the other diagonal block-entries equal to U(β),
or UD(β) = diag (U0(β, U(β), U(β), . . . ), and

[I −GL(β)] =




I
−G1,0(β) I

−G(β) I
−G(β) I

. . . . . .




. (22)

Proof: We only prove the factorization equation for the first block row
and first block-column entries. The remaining can be similarly proved.

The entry (1, 0) on the right-hand side is −[I − U(β)]G1,0(β), which is
equal to −βD0 from the definition of G1,0(β).
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The entry (0, k) with k ≥ 1 on the right-hand side is

−R0,k(β)[I − U(β)] + R0,k+1(β)[I − U(β)]G(β)

=−
∞∑

i=1

βDi+kG(β)i−1 +
∞∑

i=1

βDi+k+1G(β)i−1G(β)

=−βDk+1,

where the first equality is due to Lemma 4.
Finally, to see that the entry (0, 0) on the right-hand side is equal to the

corresponding entry on the left-hand side, we have

[I − U0(β)] + R0,1(β)[I − U(β)]G1,0(β)

=[I − U0(β)] +
∞∑

i=1

βDi+1G(β)i−1N(β)βD0

=[I − βD1 −
∞∑

k=1

βDk+1G(β)k−1N(β)βD0] +
∞∑

i=1

βDi+1G(β)i−1N(β)βD0

=I − βD1.

where the first equality is due to Lemma 4 and the second one due to (11).
Remark 10 As we mentioned earlier, the RG-factorization can be obtained
for an arbitrary transition matrix P. Therefore, the approach of this paper
is still valid for using the RG-factorization to obtain expressions for the β-
invariant measure of a level-dependent transition matrix of M/G/1 type.

5 β-invariant measures

In this section, we use the RG-factorization to obtain β-invariant measures for
the transition matrix P of M/G/1 type with boundaries, where 0 < β ≤ α.
Since the RG-factorization is a version of the LU -factorization for a matrix
of infinite size, the procedure of obtaining an expression for the β-invariant
measure is similar to the Gaussian elimination for solving a finite linear sys-
tem. We present two sets of expressions, one for an α-recurrent matrix with
β = α and the other for all the other cases. Since for an α-recurrent matrix,
its α-invariant measure is unique up to a multiple of a positive constant, the
solution given here is a unique solution up to a multiple of a positive constant.
When P is α-transient, the β-invariant measure may not be unique. Examples
and remarks will be given.

In the RG-factorization in (20), the three matrices, [I − RU (β)], [I −
UD(β)] and [I − GL(β)], are associative. We can also prove that they are
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associative with any nonnegative vector π, which will lead to solutions for the
β-invariant measure.
Lemma 7 Let P be the transition matrix of M/G/1 type and let π be any
nonnegative row vector. Then,

π[I − βP ] = {π[I −RU (β)]}{[I − UD(β)][I −GL(β)]}
= {π[I −RU (β)][I − UD(β)]}[I −GL(β)].

Proof: This is clear, for example, from the sufficient conditions provided
in Corollary 1-9 of Kemeny et al..

5.1 α-recurrent with β = α

In this case, we solve π(I − αP ) = 0 by two steps. In the first step, we let

x = π[I −RU (α)]. (23)

If x = (x0, x1, . . . ) and π = (π0, π1, . . . ) are partitioned according to levels,
then (23) is equivalent to

x0=π0,

xk=−π0R0,k(α)−
k−1∑

i=1

πiRk−i(α) + πk, k ≥ 1.

Expressing πk in terms of xk, we have

π0=x0, (24)

πk=π0R0,k(α) +
k−1∑

i=1

πiRk−i(α) + xk, k ≥ 1. (25)

In the second step, we solve

x[I − UD(α)][I −GL(α)] = 0 (26)

for a nontrivial nonnegative x. If such a solution exists, then π given in (24)
and (25) will be nonnegative and nonzero. According to Lemma 7, the above
π is an α-invariant measure of P and it is unique up to a multiple of a positive
constant.

Equation (26) is equivalent to

x0[I − U0(α)]− x1[I − U(α)]G1,0(α) = 0,

xk[I − U(α)]− xk+1[I − U(α)]G(α) = 0, k ≥ 1.
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Since P is α-recurrent, it follows from Theorem 3 that the maximal eigenvalue
of U0(α) is u0(α) = 1. Therefore, for nonnegative and irreducible U0(α), there
exists a positive x0 such that

x0[I − U0(α)] = 0.

Hence, (x0, 0, 0, . . . ) is a solution to (26).
Theorem 6 If P is α-recurrent, then the unique, up to multiplication by a
positive constant, α-invariant measure is given by

π0=x0, (27)

πk=π0R0,k(α) +
k−1∑

i=1

πiRk−i(α), (28)

where x0 is the unique, up to a multiple of positive constant, solution to x0[I−
U0(α)] = 0.

We may notice that this form of solution is the same as that of the in-
variant measure for a recurrent Markov chain as obtained using the same
procedure in Heyman (1995) or an equivalent method in Ramaswami (1988).

5.2 α-recurrent with β < α or α-transient with β ≤ α

In this case, we also proceed in two steps, but the matrices are associated
differently. In the first step, let

y = π[I −RU (β)][I − UD(β)]. (29)

This is equivalent to

y0=π0[I − U0(β)],
y1=[−π0R0,1(β) + π1][I − U(β)],

yk=

[
−π0R0,k(β)−

k−1∑

i=1

πiRk−i(β) + πk

]
[I − U(β)], k ≥ 2.

Since both [I−U0(β)] and [I−U(β)] are invertible in this case, we can express
πk in terms of yk:

π0=y0[I − U0(β)]−1, (30)

π1=π0R0,1(β) + y1[I − U(β)]−1, (31)

πk=π0R0,k(β) +
k−1∑

i=1

πiRk−i(β) + πk[I − U(β)]−1, k ≥ 2. (32)
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In the second step, solve

y[I −GL(β)] = 0 (33)

for nonnegative nonzero y. If such a solution exists, then π calculated by (30),
(31) and (32) is nonnegative and nonzero. According to Lemma 7, the above
π is a β-invariant measure of P . Though in many cases such a β-invariant
measure is unique up to a multiple of a positive constant, in some other cases,
it is simply not unique.

Equation (33) is equivalent to

y0 − y1G1,0(β) = 0,

yk − yk+1G(β) = 0, k ≥ 1.

In the following, we construct a nonnegative nonzero solution y to (33). First,
we need the following lemma.

Lemma 8 For every 0 < β ≤ α, there exist a θβ > 0 and a nonnegative
nonzero vector z such that

θβz = zG(β). (34)

Proof: Since G(β) ≥ 0, the maximal eigenvalue θβ of G(β) is non-
negative. If θβ > 0, then the lemma is proved by choosing z to be the left
eigenvector of G(β) associated with θβ .

It follows from Neuts (1989), by using irreducibility of P , that θ1 > 0.
Therefore, θβ > 0 for all β ≥ 1 since G(β) is increasing in β.

For 0 < β < 1, the proof also relies on the irreducibility of P . Suppose
that there were an s with 0 < s < 1 such that θs = 0. Then, θβ = 0 for all
0 < β ≤ s. Therefore, all the eigenvalues of G(β), when 0 < β ≤ s, would be
zero according to the Perron-Frobenius theorem for nonnegative matrices. It
follows from the Cayley-Hamilton theorem that

Gm(β) = 0, for all 0 < β ≤ s, (35)

where m is the size of matrix G(β). On the other hand, according to the
probabilistic interpretation of Gm(β) and the assumption of irreducibility on
P , Gm(β) 6= 0, which contradicts (35).

By using Lemma 8 and letting y0 = zG1,0(β), we can easily check that y =
(y0, z, z/θβ , z/θ2

β , . . . ) is a nonnegative nonzero solution to (33). Substituting
y into (30), (31) and (32), a β-invariant measure is found.
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Theorem 7 For β < α if P is α-recurrent, or for β ≤ α if P is α-transient,
a β-invariant measure of P is given by

π0=y0N0(β), (36)
π1=z[N(β) + G1,0(β)N0(β)R0,1(β)], (37)

π2=
z

θβ
{N(β) + G(β)N(β)R1(β) (38)

+G(β)G1,0(β)N0(β)[R0,1(β)R1(β) + R0,2(β)]} , (39)

π3=
z

θ2
β

{
N(β) + G(β)N(β)R1(β) + G(β)2N(β)[R1(β)2 + R2(β)] (40)

+G(β)2G1,0(β)N0(β)[R0,1(β)R2(β) + R0,1(β)R1(β)2 (41)
+R0,2(β)R1(β) + R0,3(β)]}
· · · · · ·

or it can be written as one common expression for k ≥ 1:

πk=
z

θk−1
β





N(β) +

k−1∑
i=1

G(β)iN(β)
∑

0≤j1≤···≤ji≤i
∑

t jt=i

Rj1(β)Rj2(β) · · ·Rji(β)

+G(β)k−1G1,0(β)N0(β)

k∑
i=1

R0,i(β)
∑

0≤j1≤···≤jk−i≤k−i
∑

t jt=k−i

Rj1(β)Rj2(β) · · ·Rjk−i(β)





,

(42)

where R0(β) = I.

Remark 11 For a QBD process with Di = 0 and Ci = 0 for i ≥ 3 in (1),
Ri = R0,i = 0 for i ≥ 2 and

U0(β) = βD1 + R0,1(β)βD0 = βD1 + βD2G1,0(β),

where

R0,1(β) = βD2N(β), G1,0(β) = N(β)βD0.
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The β-invariant measure is then given as

π0=y0N0,

πk=
z

θk−1
β

[N(β) +
k−1∑

i=1

G(β)iN(β)R1(β)i

+ G(β)k−1G1,0(β)N0(β)R0,1(β)R1(β)k−1]. (43)

The expression (43) is the same as the one provided in Theorem 8 of Bean,
Pollett and Taylor (2000). To see this, noting that in Theorem 8 of Bean,
Pollett and Taylor (2000) we have the relations: xk = z for k ≥ 1, ρ0 = 1,
ρn = θβ for n ≥ 1, G(1) (β) = G1,0 (β), G(l) (β) = G (β) for l ≥ 2, and
R(1) (β) = R0,1 (β), R(l) (β) = R (β) for l ≥ 2. Then, by taking l = 0,

mk = xk

(
k−1∏
n=0

ρ−1
n

)
k∑

v=0

([
k−v−1∏

u=0

G(k−u) (β)

]
N (v) (β)

[
k−v−1∏

u=0

R(v+1+u) (β)

])

=
1

θk−1
β

z

k∑
v=1

G (β)k−v
N (β)R (β)k−v

+
1

θk−1
β

z
[
G (β)k−1

G1,0 (β)
]
N0 (β)

[
R0,1 (β)R (β)k−1

]

=
z

θk−1
β

[N(β) +
k−1∑

i=1

G(β)iN(β)R1(β)i

+ G(β)k−1G1,0(β)N0(β)R0,1(β)R1(β)k−1].

We also remark that a QBD process can be treated as a matrix of GI/M/1
type, the same approach used in this paper for a matrix of GI/M/1 type will
lead to a different expression of the β-measure from (43), e.g., see Makimoto
(1993), Li (1997) and Bean, Pollett and Taylor (1998). Furthermore, this
expression should be equivalent to the expression obtained in (43).
Remark 12 For a fixed value of β, G(β) can be effectively computed by
a similar computational scheme for the case of β = 1, for example, Ra-
maswami (1988), Latouche (1994) and Meini (1997). When G(β) becomes
available, other matrices, including U(β), N(β), U0(β), N0(β), and the R-
measure can be computed. Finally, the β-invariant measure πk can be com-
puted up to a desired index value. A detailed analysis of the computational
scheme has been carried out and computational complexity has been analyzed.
We omit all the details here. People should notice that significant efforts
should be made for the calculation of G(β) when β → α. This is because α
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is exactly the point where the underlying series diverges. In other words, it
is exactly where the very long sample paths of very low probability get such a
large reward that they start to contribute a significant amount. This means
that many steps are required and this can involve terms with many exponents
multiplied by each other to get terms of reasonable order.

Remark 13 To see why we need two different sets of expressions for the β-
invariant measure, let us consider the scalar case. If P is α-transient, one is
not an eigenvalue of U0(α). Therefore, x0[I − U0(α)] = 0 only provides the
trivial solution. This means that the method used for the case in 5.1 is not
valid. If P is α-recurrent, y given in Section 5.2 is zero. In fact, this y cannot
satisfy (29) unless y0 = 0. For example, I − U0(α) = 1− 1 = 0 for the scalar
case, which gives y0 = 0.

While in many cases there exists a unique β-invariant measure up to a
multiple of a positive constant, in some other cases, the β-invariant measure
is simply not unique. One such example was provided by Gail, Hantler and
Taylor (1998).

6 Concluding remarks

In this paper, we considered the matrix of M/G/1 type with boundaries. We
generalized the censoring technique such that it can be used to deal with the
nonnegative matrix βP . Based on the generalized censoring technique, we
proposed a method for determining the radius of convergence, we obtained
conditions for classifying transient states, and proved a factorization theorem
for the matrix I−βP . This factorization was then used to obtain expressions
for the β-invariant measure.

The method developed here can also be used to study the radius of con-
vergence and β-invariant measures for transition matrices with other types
of block-structure, such as, for the matrix of GI/M/1 type and even for the
matrix of GI/G/1 type.
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Appendix

In this appendix, we provide a proof to Theorem 4, which follows from the
three lemmas provided here. For simplicity, we assume that the matrix C∗ (1)
is irreducible and stochastic.

This proof is based on a result in Theorem 6.4 in Seneta (1981), which is
restated in the following lemma in the block-partitioned form.

Lemma 9 Suppose π = (π0, π1, π2, · · · ) is a β-invariant measure and v =(
vT
0 , vT

1 , vT
2 , · · · )T is a β-invariant vector of the transition matrix P , parti-

tioned according to levels. Then, P is α-positive if πv =
∞∑

k=0

πivi < +∞, in

which case β = α, π is (a multiple of) the unique α-invariant measure of P
and v is (a multiple of) the unique α-invariant vector of P . Conversely, if P
is α-positive, and π and v are respectively an invariant measure and vector,
then πv < +∞.

Based on this lemma, besides the α-invariant measure π provided in The-
orem 6, we also need to similarly express the α-invariant vector v according
to Subsection 5.1. This is given as

v0 = w0, vk = G (α)k−1
G1,0 (α) w0, k ≥ 1, (44)

where w0 is the unique, up to a multiplication of a positive constant, solution
of [I − U0 (α)] w0 = 0.

For convenience, we express the α-invariant measure explicitly in terms
of the R-measure, instead of an iterative expression given in Theorem 6.

To do this, Let Π∗ (z) =
∞∑

k=1

zkπk, R∗ (z) =
∞∑

k=1

zkRk (α) and R∗0 (z) =
∞∑

k=1

zkR0,k (α). We denote by tk ∗ sk the convolution of two sequences {tk}

and {sk}, and t∗nk = tk ∗ t
∗(n−1)
k , n ≥ 2. It follows from Theorem 6 that

Π∗ (z) = x0R
∗
0 (z) [I −R∗ (z)]−1 = x0R

∗
0 (z)

∞∑
n=0

[R∗ (z)]n ,

which gives

πk = x0R0,k (α) ∗
∞∑

n=0

Rk (α)∗n , k ≥ 1. (45)
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It follows from (44) and (45) that
∞∑

k=0

πivi = x0v0 + x0

∞∑

k=1

[
R0,k (α) ∗

∞∑
n=0

Rk (α)∗n
]

G (α)k−1
G1,0 (α) v0. (46)

Clearly,
∞∑

k=0

πivi < ∞ if and only if

∞∑

k=1

[
R0,k (α) ∗

∞∑
n=0

Rk (α)∗n
]

G (α)k−1
< ∞. (47)

Let gα and H (α) be the maximal eigenvalue and the associated right eigen-
vector of G (α), respectively. Since C∗ (1) is irreducible, we have H (α) > 0.
It follows from (47) that
∞∑

k=1

[
R0,k (α) ∗

∞∑
n=0

Rk (α)∗n
]

G (α)k−1
H (α) =

1
gα

R∗0 (gα)
∞∑

n=0

[R∗ (gα)]n H (α) .

Then, (47) is true if and only if, i) R∗0 (gα) < ∞, ii) R∗ (gα) < ∞, and iii) the
matrix I −R∗ (gα) is invertible.

The following lemma provides the conditions under which, i) R∗0 (gα) < ∞
and ii) R∗ (gα) < ∞.

Lemma 10 i) R∗0 (gα) < ∞ if and only if
∞∑

k=1

kDkG (α)k−1
< ∞. ii)

R∗ (gα) < ∞ if and only if
∞∑

k=1

kCkG (α)k−1
< ∞.

Proof: We only prove i) and ii) can be similarly proved.
It follows from (20) that

R∗0 (gα) =
∞∑

k=1

gk
αR0,k (α) =

∞∑

k=1

gk
α

∞∑

i=1

αDk+iG (α)i−1
N (α) .

Hence we obtain

R∗0 (gα) N (α)−1
H (α) =

∞∑

k=1

∞∑

i=1

αgk+i−1
α Dk+iH (α) = α

∞∑

k=1

kg (α)k−1
DkH (α) ,

which illustrates that R∗0 (gα) < ∞ if and only if
∞∑

k=1

kg (α)k−1
Dk < ∞, and

if and only if
∞∑

k=1

kDkG (α)k−1
< ∞.

In what follows we provide a condition under which, iii) the matrix I −
R∗ (gα) is invertible.
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For the discounted matrix αP , a similar analysis to that used by Zhao,
Li and Braun (2001) to obtain the RG-factorization in Theorem 14 (also see
Theorem 11 in Zhao (2000)) leads to

zI − αC∗ (z) = [I −R∗ (z)] [I − U (α)] [zI −G (α)] . (48)

Let χ (z) be the maximal eigenvalue of the matrix C∗ (z) for z > 0. It
is clear that property 7 about χ (z) in Bean, Pollett and Taylor (1998) (pp.
393-394) also holds for the transition matrix of M/G/1type. Noting that the
matrix C∗ (1) is irreducible and stochastic, then the equation z = αχ (z) has
two different roots in (0, z0) if 1 ≤ α < α, and one root repeated twice in (0, z0)
if α = α, where z0 is the radius of convergence of C∗ (z). Furthermore, the
equation det (zI − αC∗ (z)) = 0 has two different roots in (0, z0) if 1 ≤ α < α,
and one root repeated twice in (0, z0) if α = α.
Lemma 11 i) If α < α, then the matrix I−R∗ (gα) is invertible. ii) If α = α,
then the matrix I −R∗ (gα) is singular.

Proof: i) If α < α, then the equation det (zI − αC∗ (z)) = 0 has two
different roots in (0, z0). Since

{0 < z < z0 : det (zI − αC∗ (z)) = 0} = {0 < z < z0 : det (I −R∗ (z)) = 0}
∪ {0 < z < z0 : det (zI −G (α)) = 0}

and z = gα is a positive root to the equation det (zI −G (α)) = 0, it is not
a positive root to the equation det (I −R∗ (z)) = 0. Thus, I − R∗ (gα) is
invertible.

ii) If α = α, then the equation det (zI − αC∗ (z)) = 0 has one root re-
peated twice in (0, z0). Since z = gα is a positive and simple root to the
equation det (zI −G (α)) = 0, it must be a positive and simple root to the
equation det (I −R∗ (z)) = 0. Thus, I −R∗ (gα) is singular.
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