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Abstract: Markov chains with block-structured transition matrices find
many applications in various areas. Such Markov chains are characterized by
partitioning the state space into subsets called levels, each level consisting
of a number of stages. Examples include Markov chains of GI/M/1 type
and M/G/1 type, and, more generally, Markov chains of Toeplitz type, or
GI/G/1 type. In the analysis of such Markov chains, a number of properties
and measures which relate to transitions among levels play a dominant role,
while transitions between stages within the same level are less important.
The censoring technique has been frequently used in the literature in study-
ing these measures and properties. In this paper, we use this same technique
to study block-structured Markov chains. New results and new proofs on
factorizations and convergence of algorithms will be provided.
Keywords: Censored Markov chains, block-structured transition matrices,
factorizations, convergence of algorithms.

1 Introduction

In this paper, we consider Markov chains of Toeplitz type or GI/G/1 type,
whose transition matrix is given by

P =




D0 D1 D2 D3 · · · · · ·
D−1 C0 C1 C2 · · · · · ·
D−2 C−1 C0 C1 · · · · · ·
D−3 C−2 C−1 C0 · · · · · ·

...
...

...
...

...
...




, (1)

where all entries are blocks (submatrices) of size m×m. Entries Ci are called
repeating blocks and Di the boundary blocks. Examples include: Quasi-
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birth-and-death (QBD) processes if Di = D−i = Ci = C−i = 0 for i ≥ 2.
Markov chains of GI/M/1 type if Di = Ci = 0 for i ≥ 2. Markov chains
of M/G/1 type if D−i = C−i = 0 for i ≥ 2. Markov chains of non-skip-free
GI/M/1 type if Di = Ci = 0 for i > N with N a positive integer. Markov
chains of non-skip-free M/G/1 type if D−i = C−i = 0 for i > N with N a
positive integer.

For such a Markov chain, a number of measures and properties which
relate to transitions among levels play a dominant role, while transitions
between stages within the same level are less important. The censoring tech-
nique has been found useful and often used in the literature in studying this
type of Markov chains.

There exists a large volume of references on Markov chains with repeat-
ing transition blocks. For example, see Neuts (1981, 1989), Latouche and
Ramaswami (1999) and the references therein. References on the censoring
technique are also plenty. Among them are Kemeny, Snell and Knapp (1966),
Freedman (1983), Hajek (1982), Grassmann and Heyman (1990, 1993), La-
touche (1993), Zhao, Li and Braun (1998a, 1998b), Zhao, Li and Alfa (1999),
and Latouche and Ramaswami (1999). The censoring technique applies not
only for the case where all transition blocks have the same size and also for the
case where the boundary blocks have different sizes. Moreover, this technique
can be used to study Markov chains with other types of block structures, for
example, the level-dependent quasi-birth-and-death (LDQBD) processes or
Markov chains with repeating block-entries of countable size.

Definition 1 Consider a discrete-time irreducible Markov chain {Xn; n =
1, 2, . . .} with state space S. Let E be a non-empty subset of S. Suppose that
the successive visits of Xn to E take place at time epochs 0 < n1 < n2 < · · ·.
Then the process {XE

t = Xnt
; t = 1, 2, . . .} is called the censored process with

censoring set E.

Censored Markov chains are also called restricted, watched or embedded
Markov chains.

In the following, we define four probabilistic measures, called the R, G,
A and B-measures, that play a dominant role in studying Markov chains of
Toeplitz type.

Consider an arbitrary discrete-time Markov chain {Xn; n = 1, 2, . . .}
whose state space S is partitioned as S = ∪∞

i=0Li, where Li = {(i, j); j =
1, 2, . . . ,mi}. In a state (i, j), i is called a level and j a phase. We also write
L≤i = ∪i

k=0Lk and L≥i for the complement of L≤(i−1). Partition the transi-
tion matrix of the Markov chain according to levels as: P = (Pi,j)i≥0,1≤j≤mi

,
where Pi,j is a matrix of mi × mj.



For 0 ≤ i < j or 1 ≤ i ≤ j, Ri,j is defined as a matrix of size mi × mj

whose (r, s)th entry is the expected number of visits to state (j, s) before
hitting any state in L≤(j−1), given that the process starts in state (i, r), or

Ri,j(r, s) = E[number of visits to (j, s) before hitting L≤(j−1)|X0 = (i, r)].

For i > j ≥ 0, Gi,j is defined as a matrix of size mi ×mj whose (r, s)th entry
is the probability of hitting state (j, s) when the process enters L≤(i−1) for
the first time, given that the process starts in state (i, r), or

Gi,j(r, s) = P [ hitting (j, s) upon entering L≤(i−1) for first time |X0 = (i, r)].

For i ≥ 0 and j ≥ 0 with i 6= j, Ai,j is defined as a matrix of size mi × mj

whose (r, s)th entry is the expected number of visits to state (j, s) before
hitting any state in level i, given that the process starts in state (i, r), or

Ai,j(r, s) = E[ number of visits to (j, s) before hitting Li|X0 = (i, r)].

For i ≥ 0 and j ≥ 0, Bi,j is defined as a matrix of size mi×mj whose (r, s)th
entry is the probability of visiting (or returning if i = j) level j for the first
time by hitting state (j, s), given that the process starts in state (i, r), or

Bi,j(r, s) = P [ hitting (j, s) upon entering Lj for first time |X0 = (i, r)].

In Section 2, we provide some preliminary results on censoring, including
the relationship between these four probabilistic measures. Results in Sec-
tion 2 will be used to prove factorizations in Section 3 and the convergence
of computational algorithms in Section 4. Our main focus is on discussing
new results or new proofs.

Throughout the paper, we will only consider discrete-time Markov chains.
Parallel results for continuous-time Markov chains can be similarly obtained.
In many situations, we will not distinguish a Markov chain and its transition
matrix. We will allow a transition matrix to be only sub-stochastic. The
transpose of a matrix M is denoted by M t and the complement of a set E by
Ec. For a sequence Mn of matrices, we say limn Mn = M if for every entry
there is a limit.

2 The censored Markov chain

The most important property about the censored process is that the cen-
sored process is also a Markov chain. For a non-negative matrix M , let
M̂ =

∑∞
k=0 Mk, which is often called the fundamental matrix for M . For



an arbitrary non-negative matrix M , entries in the fundamental matrix M̂
might be infinite. However, if M is the transition matrix, either stochastic
or sub-stochastic, of a transient Markov chain, then the fundamental matrix
is finite.

Theorem 2 Let P be the transition probability matrix of the Markov chain
{Xn; n = 1, 2, . . .} partitioned according to subsets E and Ec:

P =
E
Ec

E Ec

[
T U
D Q

]
. (2)

Then, the censored process is a Markov chain and its transition probability
matrix is given by

PE = T + UQ̂D (3)

with Q̂ =
∑∞

k=0 Qk. If P has a unique stationary distribution {xk}, then the
stationary distribution {xE

k } of the censored Markov chain is given by

xE
k =

xk∑
i∈E xi

, k ∈ E. (4)

One may refer to Kemeny, Snell and Knapp (1966) for a proof. In general,
entries of Q̂ might be infinite. In that case, it should be understood that
0 · ∞ = 0 in the above theorem.

A probabilistic interpretation for each of the components in the expression
for PE is provided below. Here, Ci,j stands for the (i, j)th entry in matrix
C.

1. (Q̂)i,j is the expected number of visits to state j ∈ Ec before entering
E given that the process started in state i ∈ Ec.

2. (UQ̂)i,j is the expected number of visits to state j ∈ Ec before returning
to E given that the process started in state i ∈ E.

3. (Q̂D)i,j is the probability that the process leaves E and upon entering
E the first state visited is j ∈ E, given that the process started in state
i ∈ Ec.

4. (UQ̂D)i,j is the probability that upon returning to E the first state
visited is j ∈ E, given that the process started in state i ∈ E.

5. (T + UQ̂D)i,j is the probability that the next state visited in E is j
given that the process started in state i ∈ E.



Freedman (1983) studied the convergence of censored Markov chains to
the original Markov chain. One of the consequences of his study is

Lemma 3 Let P be a transition matrix with state space S and let En for n =
1, 2, . . . be a sequence of subsets of S such that En ⊆ En+1 and limn→∞En =
S. Then, for any i, j ∈ En, limn→∞ PEn

i,j = Pi,j.

It follows from the definition that the censored Markov chain has a clear
sample path structure. One consequence from this sample path structure
is that the R, G, A and B-measures defined above are all invariant under
censoring. More specifically, for an arbitrary block-partitioned transition
matrix P , let R

(n)
i,j and G

(n)
i,j be the R and G-measures, respectively, defined

for the censored Markov chain with censoring set L≤n. Then, given 0 = i < j

or 0 ≤ i ≤ j, R
(n)
i,j = Ri,j for all n ≥ j, and given 0 ≤ j < i, G

(n)
i,j = Gi,j for

all n ≥ i. Similarly, let A
(n)
i,j and B

(n)
i,j be the A and B-measures, respectively,

defined for the censored Markov chain with censoring set L≤n. Then, given

j > 0, A
(n)
0,j = A0,j for all n ≥ j, and given i > 0, B

(n)
i,0 = Bi,0 for all n ≥ i.

One may refer to Zhao, Li and Braun (1998b) for a proof based on censoring.
We mentioned in the Introduction that the R, G, A and B-measures

are important in the analysis of block-structured Markov chains. For exam-
ple, they can be used to express the stationary probability distribution and
other interesting measures and to characterize conditions of classification of
the states. Numerically, these measures can be efficiently computed. The
invariant property under censoring allows us to study the R, G, A and B-
measures for a censored Markov chain (usually finite) instead of studying
these measures for the original Markov chain (usually infinite).

For an arbitrary block-partitioned matrix P , let Qn be the southeast
corner of P from level n, that is, Qn = (Pi,j)i≥n,1≤j≤mi

. For convenience, the

ith block-row and the jth block-column of Q̂n are denoted by Q̂n(i, ·) and
Q̂n(·, j), respectively. Notice that i and j here do not correspond to level i
and level j. We also define P[i] to be the matrix obtained by deleting the ith
block-row and ith block-column in matrix P .

The following expressions are useful and can be verified based on proba-
bilistic interpretations. They also apply to finite Markov chains.

Lemma 4 (a) For 0 = i < j or 1 ≤ i ≤ j,

Ri,j = (Pi,j, Pi,j+1, Pi,j+2, . . .)Q̂j(·, 1);

(b) for i > j ≥ 0,

Gi,j = Q̂i(1, ·)(Pi,j, Pi+1,j, Pi+2,j, . . .)
t;



(c) for i ≥ 0 and j ≥ 0 with i 6= j,

(Ai,0, . . . , Ai,i−1, Ai,i+1, Ai,i+2, . . .) = (Pi,0, . . . , Pi,i−1, Pi,i+1, Pi,i+2, . . .)P̂[i];

(d) for i ≥ 0 and j ≥ 0 with i 6= j,

(B0,j, . . . , Bj−1,j, Bj+1,j, Bj+2,j, . . .)
t = P̂[j](P0,j, . . . , Pj−1,j, Pj+1,j, Pj+2,j, . . .)

t;

(e) for i = j ≥ 0,

Bj,j = Pj,j + (Pj,0, Pj,1, . . . , Pj,j−1, Pj,j+1, Pj,j+2, . . .)

P̂[j](P0,j, P1,j, . . . , Pi−1,j, Pi+1,j, Pi+2,j, . . .)
t.

These expressions can be significantly simplified for the transition matrix of
Toeplitz type. Details are left for readers.

The following equations provide a relationship between probabilistic mea-
sures defined above. These equations are a key to develop computational
algorithms for the stationary probabilities and to study properties of these
measures and the Markov chain itself.

Theorem 5 For an arbitrary block-partitioned transition matrix P , let A0,0 =
P (0), the censored chain with censoring set L0. Then

A0,j = P0,j +
∞∑

i=1

A0,iPi,j, j ≥ 0, (5)

and

Bj,0 = Pj,0 +
∞∑

i=1

Pj,iBi,0, j ≥ 0. (6)

Proof: We only prove the first result; the second one can be proved
similarly.

Write P as

P =

[
P0,0 U
D Q

]
.

By using (c) of Lemma 4 and the definition of the fundamental matrix Q̂,
we have

(A0,1, A0,2, . . .) = UQ̂ = U(I + Q̂Q) = U + UQ̂Q = U + (A0,1, A0,2, . . .)Q

which gives (5) for j ≥ 1. When j = 0,

P
(0)
0,0 = P0,0 + UQ̂D = P0,0 + (A0,1, A0,2, . . .)D.



Therefore, the result is also true when j = 0.

The stationary equations in block-form for an arbitrary transition matrix
P can be written as

xj = x0P0,j +
∞∑

i=1

xiPi,j, j ≥ 0, (7)

where xi is a row vector of size mi. It is clear that if we let xi = x0A0,i, then
equations in (5) are equivalent to stationary equations. Therefore, A0,i lead
to a determination of the stationary probability vectors except x0.

The following result was obtained by Zhao, Li and Braun (1998b). Here,
we provide a new proof.

Theorem 6 Let the R, G, A and B-measures be defined for an arbitrary
transition matrix P . Then, matrices A0,n and Rk,n satisfy

A0,n =

{
R0,1, if n = 1,
R0,n +

∑n−1
k=1 A0,kRk,n, if n ≥ 2,

(8)

and matrices Bn,0 and Gn,k satisfy

Bn,0 =

{
G1,0, if n = 1,
Gn,0 +

∑n−1
k=1 Gn,kBk,0, if n ≥ 2.

(9)

Proof: We only prove the first result; the second one can be proved
similarly.

For the transition matrix P , consider the censored Markov chain P (n) =
(P

(n)
i,j ) with censoring set L≤n. Applying Theorem 5 to P (n) gives us

A
(n)
0,n = P

(n)
0,n +

n∑

i=1

A
(n)
0,i P

(n)
i,n ,

or

A
(n)
0,n(I − P (n)

n,n) = P
(n)
0,n +

n−1∑

i=1

A
(n)
0,i P

(n)
i,n .

Since P (n) is irreducible due to the irreducibility of P , the inverse of (I−P (n)
n,n)

exists. Therefore,

A
(n)
0,n = P

(n)
0,n (I − P (n)

n,n)−1 +
n−1∑

i=1

A
(n)
0,i P

(n)
i,n (I − P (n)

n,n)−1 = R
(n)
0,n +

n−1∑

i=1

A
(n)
0,i R

(n)
i,n .



Since both A and R-measures are invariant under censoring, the proof is
complete now.

Another basic property about censoring is the following limit theorem,
which was proved recently in Grassmann and Stanford (1999). This theorem
is very helpful in dealing with the convergence of computational algorithms.
In the literature, the convergence was often treated case by case, though
some efforts have been made to unify the treatment. We will discuss the
usage of this limiting theorem in a later section.

Theorem 7 Let P = (Pi,j)i,j=0,1,... be the transition matrix of a recurrent
Markov chain on the non-negative integers. For an integer ω ≥ 0, let P (ω) =
(pi,j(ω))i,j=0,1,... be a matrix such that

pi,j(ω) = pi,j, for i, j ≤ ω

and P (ω) is either stochastic or substochastic matrix. For any fixed n ≥ 0,
let En = {0, 1, . . . , n} be the censoring set. Then,

lim
ω→∞

PEn(ω) = PEn . (10)

3 Factorizations

In this section, we consider the transition matrix of Toeplitz type defined in
(1). By using the repeating property, the expressions in Lemma 4 can be
simplified except for the case involving boundary transition blocks. These
expressions, together with the fact of Q̂1 = Q̂2 = Q̂3 = · · ·, prove that Ri,j

and Gi,j only depend on the difference between i and j, except for R0,j with
j = 1, 2, . . ., and Gi,0 with i = 1, 2, . . .. Thus, we can define

Rk = Ri,j, for k = 0, 1, . . . , with k = j − i and j ≥ i > 0 (11)

and
Gk = Gi,j, for k = 1, 2, . . . , with k = i − j and i > j > 0. (12)

We also define R =
∑∞

i=1 Ri and G =
∑∞

i=1 Gi.
In the following, we write Q̂ = Q̂i. There are two matrix equations, which

bridge the R and G-measures, and the repeating transition probability blocks
Ci. They can be considered as Wiener-Hopf-type equations. These equa-
tions are useful, especially in developing computational algorithms. These
two equations were first mentioned in Grassmann and Heyman (1990). We
provide a rigorous proof based on censoring. First, we prove a lemma.



Lemma 8 Let P be the transition matrix of Toeplitz type given in (1) and

let P (n) = (P
(n)
i,j ) be the block-partitioned transition matrix of the censored

Markov chain with censoring set L≤n with n ≥ 0. Then,

P
(n)
i,j = P

(n+1)
i+1,j+1 = · · · , for all i, j = 1, 2, . . . , n.

Proof: It follows from the repeating structure of transition blocks in (1)
and the expression for the censored Markov chain (3) that

P
(n)
n−i,n−j = Ci−j + (Ci+1, Ci+2, . . .)Q̂




C−(j+1)

C−(j+2)
...


 ,

which equals P
(n+1)
(n+1)−i,(n+1)−j for i, j = 0, 1, . . . , n − 1.

This lemma says that for any two levels n1 < n2, the southeast corner of
the transition matrix P (n1) corresponding to levels from 1 to n1 are the same
as the southeast corner of the transition matrix P (n2) of the same size, which
corresponds to levels from n2 − n1 + 1 to n2. We also notice that for a fixed
n, blocks in the transition matrix P (n) for the censored chain are generally
no longer repeating. As a special case of the above lemma, for i = 0, 1, 2, . . .,
we can define

Φi = P
(n)
n−i,n and Φ−i = P

(n)
n,n−i, (13)

where n > i.

Corollary 9 For i = 0, 1, 2, . . ., Ri = Φi(I − Φ0)
−1, and for j = 0, 1, 2, . . .,

Gj = (I − Φ0)
−1Φ−j.

Proof: Consider the censored Markov chain P (n) with n > i. Define
the R-measure for P (n) and denote it by R

(n)
i,j , i = 0, 1, . . . , n. For i =

0, 1, . . . , n − 1, R
(n)
n−i,n can be expressed as

R
(n)
n−i,n = P

(n)
n−i,n(I − P (n)

n,n)−1 = Φi(I − Φ0)
−1

according to the above definition and Lemma 4. It follows from the invariance
of the R-measure under censoring that Ri = R

(n)
n−i,n. The other half of the

corollary can be proved similarly.

Theorem 10 For the transition matrix of Toeplitz type given in (1),

Ri(I − Φ0) = Ci +
∞∑

k=1

Ri+k(I − Φ0)Gk, i ≥ 0, (14)



(I − Φ0)Gj = C−j +
∞∑

k=1

Rk(I − Φ0)Gj+k, j ≥ 0, (15)

and

Φ0 = C0 +
∞∑

i=1

Ri(I − Φ0)Gi. (16)

Proof: We only prove the first equation and the other two can be proved
similarly.

Based on the censored matrix P (n+1), the transition blocks P
(n)
n−i,n for the

censored Markov chain with censoring set L≤n can be expressed as

P
(n)
n−i,n = P

(n+1)
n−i,n + P

(n+1)
n−i,n+1(I − P

(n+1)
n+1,n+1)

−1P
(n+1)
n+1,n

= P
(n+1)
n−i,n + R

(n+1)
i+1 P

(n+1)
n+1,n

= P
(n+1)
n−i,n + Ri+1(I − P

(n+1)
n+1,n+1)(I − P

(n+1)
n+1,n+1)

−1P
(n+1)
n+1,n

= P
(n+1)
n−i,n + Ri+1(I − Φ0)G1

= P
(n+2)
n−i,n + Ri+1(I − Φ0)G1 + Ri+1(I − Φ0)G2

= P
(n+K)
n−i,n +

K∑

k=1

Ri+k(I − Φ0)Gk.

The first equality holds due to (3), the second one due to Lemma 4, the
fourth one due to Lemma 4 and (13), and the next two hold by repeating

the previous steps. The proof is complete by noticing that limK→∞ P
(n+K)
n−i,n =

Pn−i,n (Lemma 3), Corollary 9 and (13).

The version for the scalar case was obtained in Grassmann (1985).
For the repeating blocks in the transition matrix (1), we defined char-

acteristic functions: C(z) = −I +
∑∞

i=−∞ Ciz
i, R(z) = −I +

∑∞
i=1 Riz

i and
G(z) = −I +

∑∞
i=1 Giz

−i.

Theorem 11 For the characteristic functions C(z), R(z) and G(z) of the
transition matrix P given in (1) with both P and C =

∑∞
i=−∞ Ci stochastic

and irreducible,
C(z) = −R(z)(I − Φ0)G(z). (17)

In the above factorization, C(z) is a Laurent series in matrix form. This
factorization is equivalent to the Wiener-Hopf-type factorization. Each of
the two factorizations has its own advantages and disadvantages. Both of
them can be used to develop numerical algorithms for computing R and G-
measures. The Laurent series factorization was considered in Zhao, Li and
Braun (1998a, 1998b), which can be conveniently used in spectral analysis of



the transition matrix of Toeplitz type. An equivalent form of the factorization
to (17) was obtained in Gail, Hantler and Taylor (1997) for Markov chains
of non-skip-free GI/M/1 type and M/G/1 type. However, only one of the
two factors in the factorization was probabilistically interpreted by them.
Notice that the above factorizations provide us with a method to study non-
boundary behaviour. For a complete study, the boundary blocks have to
be included. One of the methods is to prove a similar Wiener-Hopf-type
equations for the boundary blocks, which leads to a factorization of matrix
I − P . Let Ψ0 = P (0), the censored Markov chain with censoring set L0.

Theorem 12 For the transition matrix of Toeplitz type,

R0,k(I − Φ0) = Dk +
∞∑

i=1

R0,i+k(I − Φ0)Gi, k ≥ 1, (18)

(I − Φ0)Gk,0 = D−k +
∞∑

j=1

Rj(I − Φ0)Gj+k,0, k ≥ 1, (19)

and

Ψ0 = D0 +
∞∑

i=1

R0,i(I − Φ0)Gi,0. (20)

Combining the both sets of Wiener-Hopf-type equations for the repeating
blocks and for the boundary blocks, we can directly verify the following
factorization.

Theorem 13 For the transition matrix P of Toeplitz type, the following
factorization holds:

(I − P ) = (I − RU)(I − PD)(I − GL), (21)

where PD = diag(Ψ0, Φ0, Φ0, . . .) is the block diagonal matrix with block en-
tries Ψ0, Φ0, Φ0, . . . ,

RU =




0 R0,1 R0,2 R0,3 · · ·
0 R1 R2 · · ·

0 R1 · · ·
0 · · ·

. . .




(22)

and

GL =




0
G1,0 0
G2,0 G1 0
G3,0 G2 G1 0

...
...

...
...

. . .




. (23)



The above factorization is called the RG-factorization, which is a version
of UL-factorization for an infinite matrix. This type of factorization was
proved by Heyman (1985) for the recurrent case. Our presentation of the
factorization is slightly different from that in Heyman (1985) and is also valid
for the transient case. This factorization can be used to obtain expressions
for the stationary probability vectors in terms of the R and G-measures.

4 Convergence of algorithms

We will only discuss convergence of certain algorithms. It is also possi-
ble to deal with the convergence of other algorithms if one can modify the
limiting theorem, Theorem 7, mentioned earlier. From the construction of
P (ω) in Theorem 7, we can find that it does not include some of the often
used augmentations as its special cases. For example, the main diagonal
augmentation and many of the linear augmentations are not covered by this
theorem. However, it does include several important approximations, includ-
ing the northwest corner matrix approximation, Zhao, Braun and Li (1999),
which can be used to approximate both recurrent and non-recurrent Markov
chains; the last block-column augmentation, Li and Zhao (1998), which is
the best in the sense of stochastic block-monotonicity; and of course the
censored matrix, Zhao and Liu (1996), which is the best in the sense of l1
norm. We first start with a discussion on convergence of an algorithm for
computing R = R1 matrix and G = G1 matrix for the transition matrix of a
QBD process. Then, we discuss the convergence of algorithms for GI/M/1
type and M/G/1 type.

Recall that for a stochastic or substochastic matrix Q, the fundamental
matrix of Q is Q̂ =

∑∞
k=0 Qk. It is possible that an entry of Q̂ is infinite. In

this case, 0 ×∞ = 0 as defined earlier. If the size of matrix Q is finite and
Q < ∞, then Q̂ = (I − Q)−1. In practical situations, we often choose an
initial matrix such that the fundamental matrix is finite. This is equivalent to
the resulting censored Markov chain being irreducible. For more information,
one may refer to Remark 8.3.2 of Latouche and Ramaswami (1999).

Theorem 14 For the transition matrix P of a recurrent QBD process,

Yk = C0 + C1Ŷk−1C−1

converges to Y = P (n)
n,n = Φ0 as k → ∞ for an initial non-negative matrix Y0

such that C−1 + Y0 is either a stochastic or substochastic matrix. Therefore,
R(k) = C1Ŷk converges to R and G(k) = ŶkC−1 to G as k → ∞. Here, Ŷi is
the fundamental matrix of Yi.



Proof: In order to use Theorem 7, for ω ≥ 1, define block-partitioned
transition matrix P (ω) = (Pi,j(ω)) as follows: All Pi,j(ω) = 0 if i > ω + 1 or
j > ω+1 and all Pi,j(ω) are the same as that in P if i ≤ ω+1 and j ≤ ω+1,
except that Pω+1,ω+1(ω) = Y0. It follows from Theorem 7 that for a fixed n,

lim
ω→∞

P (n)(ω) = P (n).

Let k = ω − n. Because of Lemma 8, the only thing we need to show is that
the farthest element, denoted as Yk, in the southeast corner of P (n)(ω) can
be expressed as

Yk = C0 + C1Ŷk−1C−1.

If k = 1, it is clear from (3) that

Y1 = C0 + C1Ŷ0C−1.

For k > 1, censor P (ω) using the censoring set L≤ω first and then censor
the resulting process level by level until the censoring set equals L≤n. It is
clear that P (n)(ω) = (· · · (P (ω)(ω))(ω−1) · · ·)(n). The rest of the proof follows
from the invariant property under censoring of the R and G-measures and
the expressions for the R and G-measures of the censored Markov chain.

The algorithm given in the theorem is the same as one of the algorithms
discussed in Latouche (1993). This theorem was recently proved by Grass-
mann and Stanford (1999), also based on censoring and Theorem 7. The
censoring technique was also used in Grassmann and Stanford (1999) to dis-
cuss the Markov chains of GI/M/1 type and M/G/1 type. Mathematically,
our following discussion is essentially equivalent to theirs.

For the transition matrix P of GI/M/1 type, consider the censored
Markov chain P (n). It is clear from the expression (3) that only the last
block-row in P (n) is different from that in P . Thus, the R = R1 matrix has
the same expression as that for the QBD process:

R = C1P̂
(n)
n,n ,

where P̂ (n)
n,n is the fundamental matrix of P (n)

n,n . Therefore, it is enough to

compute Φ0 = P (n)
n,n in order to compute R. The G-measure: Gi for i =

1, 2, . . ., can then be computed also.

Theorem 15 For the transition matrix P of a recurrent Markov chain of
GI/M/1 type, let

C
(k−i)
−i = C−i + C1Ĉ

(k−i−1)
0 C

(k−i−1)
−(i+1) , for i = k − 1, k − 2, . . . , 1, 0. (24)



Then, C
(k−i)
−i converges to P

(n)
n,n−i = Φ−i for i = 0, 1, . . . , n − 1, as k → ∞

for an initial non-negative matrix C
(0)
0 such that

∑∞
i=1 C−i + C

(0)
0 is either a

stochastic or substochastic matrix. Therefore, R(k) = C1Ĉ
(k)
0 converges to R

and G
(k)
i = Ĉ

(k)
0 C

(k−i)
−i to Gi for i = 1, 2, . . . , n − 1 as k → ∞. Here, Ĉ

(k)
i is

the fundamental matrix of C
(k)
i .

Proof: For ω ≥ 1, define block-partitioned transition matrix P (ω) =
(Pi,j(ω)) as follows: All Pi,j(ω) = 0 if i > ω + 1 or j > ω + 1 and all
Pi,j(ω) are the same as that in P if i ≤ ω + 1 and j ≤ ω + 1, except that

Pω+1,ω+1(ω) = C
(0)
0 . Let k = ω−n. It is clear that the censored Markov chain

P (n)(ω) can be obtained by censoring P (ω) using censoring set L≤ω first and
then censoring the resulting process level by level until that the censoring set
equals L≤n. Denote the block-entries, except the first one, in the last block-

row in P (ω+1−k)(ω) by C
(k)
k−ω), C

(k)
k+1−ω, . . . , C

(k)
0 for k = 1, 2, . . . , ω + 1 − n. It

follows from Theorem 2 that C
(k−i)
−i can be expressed as in (24). Therefore,

Theorem 7 says that for a fixed n,

lim
ω→∞

P (n)(ω) = P (n);

or
lim

ω→∞
C

(ω+1−n)
−(n−i) = P

(n)
n,n−i = Φ−i, for i = 0, 1, . . . , n − 1.

The last equality follows from Theorem 8. Now, the expressions for R and Gi

follow from the invariant property under censoring of the R and G-measures
and the expressions for the R and G-measures of the censored Markov chain.

As the dual, an algorithm for computing the R and G-measures for a
Markov chain of M/G/1 type can be also developed based on censoring.

Theorem 16 For the transition matrix P of a recurrent Markov chain of
M/G/1 type, let

C
(k−i)
i = Ci + C

(k−i−1)
i+1 Ĉ

(k−i−1)
0 C−1, for i = k − 1, k − 2, . . . , 1, 0. (25)

Then, C
(k−i)
i converges to P

(n)
n−i,n = Φi for i = 0, 1, . . . , n − 1, as k → ∞ for

an initial non-negative matrix C
(0)
0 such that C−1 + C

(0)
0 is either a stochas-

tic or substochastic matrix. Therefore, G(k) = Ĉ
(k)
0 C−1 converges to G and

R
(k)
i = C

(k−i)
i Ĉ

(k)
0 to Ri for i = 1, 2, . . . , n − 1 as k → ∞. Here, Ĉ

(k)
i is the

fundamental matrix of C
(k)
i .

Based on the same technique, algorithms for computing the R and G-
measures for a transition matrix of non-skip-free GI/M/1 type, non-skip-free
M/G/1 type or Toeplitz type can also be similarly developed.



5 Concluding remarks

In this paper, we addressed the censoring technique in studying Markov
chains of block-repeating transition entries. Since the censoring technique is
independent of a structure of the transition matrix, it can be also used to
deal with other types of transition matrices; for example, transition matrices
of level dependent queues and matrices where the size of a block-entry is
countable.
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