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Abstract

In this paper, we present sufficient conditions, under which the stationary prob-

ability vector of a QBD process with both infinite many levels and phases decays

geometrically, characterized by the convergence norm η and the 1/η-left-invariant

vector x of the rate matrix R. We also present a method to compute η and x based

on spectral properties of the censored matrix of a matrix function constructed with

the repeating blocks of the transition matrix of the QBD process. What makes this

method attractive is its simplicity; finding η reduces to determining the zeros of a

polynomial. We demonstrate the application of our method through a few interesting

examples.
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1 Introduction

For two-dimensional models with both infinitely many levels and phases, the computation

of the exact stationary probability distributions is usually very difficulty. Even when the

computation is possible, one often has to develop a special mothod for each specific model.

For example, the compensation method introduced by Adan [1] is used to compute the

joint probability distribution of a specific class of two-dimensional processes. However,

this method does not work for the two-stage inventory-queue considered in Haque, Liu

and Zhao [5]. The analysis of tail behaviors to characterize the stationary probability

distributions along either the level or the phase direction (or some other fixed direction)

has been partially motivated by such difficulties.

Takahashi, Fujimoto and Makimoto [17] provide a set of sufficient conditions under

which the invariant probability measure of a QBD process with countably many levels

and phases has a geometric tail along the level direction, i.e. πm,i ∼ cηmxi for each i as

m → ∞, or

lim
m→∞

πm,i

cηmxi

= 1.

Similar conditions are obtained by Foley and McDonald [4] (for a specific queueing model)

and Miyazawa [12]. To determine the tail behavior in a specific model, one needs η

and x = (x0, x1, . . .) to verify whether these conditions are satisfied. However, neither

Takahashi et al. [17], nor Foley and McDonald [4], nor Miyazawa [12] provides a method

to compute η and x. This shortcoming makes it difficult to apply these conditions in

practical analysis. In this paper, we propose a set of sufficient conditions equivalent

to those of Takahaski et al. [17] for the existence of a geometric tail of the stationary

distribution of a QBD process. Based on these conditions, we develop a practical method

for finding η and x, which can be used to verify whether the stationary distribution for

a specific process has a geometric tail. Specifically, we construct the so-called spectral

equation φ(η) − 1 = 0 by censoring the matrix D(η), as defined in equation (3) for the

given Markov chain. The root of φ(η)−1 = 0, which lies in the interval (0, 1) and satisfies

the conditions specified in Theorem 3 of Li and Zhao [8] (see, also [9]), is then the desired

η. With η, we can compute the vector x using the RG-factorization of ηI−D(η) according

to [19]. In fact, the reciprocal of η is the radius of convergence of both D(η) and the rate

matrix R for the Markov chain, and x is the 1

η
-invariant measure of D(η) and R.

The main contributions of this paper are: improving the results in Takahashki et al. [17]
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and Miyazawa [12]; providing a method for computing η, the reciprocal of the radius of

convergence for the R measure; and demonstrating explicitly that the tail asymptotics of

the stationary distribution of the Markov chain for some interesting models are geometric

along the level direction. We will define the Markov chain in Section 2 and then provide

new sufficient conditions for the existence of a geometric tail along its level direction in

Section 3. Section 4 shows how to verify 1/η-positivity, while Section 5 provides a method

for determining the 1/η-invariant measure x and 1/η-invariant vector y. In Section 6, we

illustrate the above results through a few examples and show how to verify the boundary

condition for each of them.

2 Mathematical Model

Consider an ergodic discrete-time Markov chain {X(n);n ≥ 0} on a two-dimensional state

space S = {(m, i);m, i = 0, 1, 2, . . .} with transition probability matrix

P =























B0 A0

C0 B A

C B A

C B A

. . .
. . .

. . .























(1)

after partitioning the state space into levels Lm = {(m, i); i = 0, 1, 2, . . .} for m =

0, 1, 2, . . .. Let

Q =

















B A

C B A

C B A

. . .
. . .

. . .

















,

which is the matrix constructed from P by deleting the boundaries. In this paper, we

assume that the repeating blocks A, B and C have a tridiagonal structure, e.g.

A =























a1 a0

a2 a1 a0

a2 a1 a0

a2 a1 a0

. . .
. . .

. . .























.
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Blocks A0, B0, and C0 also have the same tridiagonal structure.

Let π = (π0,π1,π2, . . .) denote the stationary probability vector or the invariant

probability measure of P , where πm = (πm,0, πm,1, πm,2, . . .). We are interested in the

conditions under which πm has an exact geometric tail asymptotic, i.e.

πm ∼ cηm
x as m → ∞, (2)

where 0 < η < 1, x = (x0, x1, . . .) is a row vector to be determined, and c is a constant.

By πm ∼ cηm
x as m → ∞ we mean that for each n,

lim
m→∞

πm,n

cηmxn

= 1.

In particular, our goal is to provide a practical method to verify the conditions for specific

processes and compute the corresponding value of the decay rate η and vector x. To this

end, we consider, for 0 < η < 1, the matrix

D(η) = A + ηB + η2C

=























γη λη 0 0 0 . . .

µη γη λη 0 0 . . .

0 µη γη λη 0 . . .

0 0 µη γη λη . . .
...

...
. . .

. . .























, (3)

where

γη = a1 + ηb1 + η2c1, γη = a1 + ηb1 + η2c1,

λη = a0 + ηb0 + η2c0, λη = a0 + ηb0 + η2c0,

µη = a2 + ηb2 + η2c2, µη = a2 + ηb2 + η2c2.

The matrix D(η) is substochastic due to our choice of η. Also, denote by E(η) the

submatrix of D(η) without the boundary row and column,

E(η) =























γη λη 0 0 0 . . .

µη γη λη 0 0 . . .

0 µη γη λη 0 . . .

0 0 µη γη λη . . .
...

...
. . .

. . .























. (4)

We will assume that both D(η) and E(η) are irreducible.

4



3 Tail asymptotics

In this section, we provide conditions under which (2) holds. The following two conditions

are obtained by Takahashi, Fujimoto and Makimoto [17].

Condition 1 There exists a positive constant η with 0 < η < 1, a positive row vector x

and a positive column vector y such that

a. x(η−1A + B + ηC) = x;

b. (η−1A + B + ηC)y = y;

c. xe < ∞ where e is a column vector of ones, xy < ∞;

d. η−1
xAy 6= ηxCy.

Let z = A(η−1I −G)y, where y is the column vector in Condition 1 and G is the minimal

non-negative solution of

G = AG2 + BG + C.

Then, x and z are the row and column 1/η-invariant vectors of R, i.e.

x =
1

η
xR and z =

1

η
Rz,

where R is the minimal non-negative solution of

R = A + RB + R2C.

Condition 2 For the column vector z given above, π1z < ∞.

Under Condition 1 and Condition 2, Takahashi, Fujimoto and Makimoto [17] showed

that the tail asymptotic result in (2) holds. However, verifying these two conditions

directly is very difficult if not impossible. This has restricted the application of the above

result. In the following we construct new conditions which are equivalent to Condition 1

and Condition 2 and can be easily verified.

Condition 3 Let α(η) be the radius of convergence of the matrix D(η) (referring to [16]

for a definition of the radius of convergence).

a. There exists an η with 0 < η < 1 such that D(η) is α(η)-positive with α(η)-invariant

measure and vector x and y, respectively, and α(η) = 1/η, and xe < ∞.
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b. η−1
xAy 6= ηxCy.

Condition 4 The column vector y is such that π1y < ∞.

It follows from Theorem 6.4 of Seneta [16] that Condition 3a implies Condition 1a,

b and c. Therefore, Condition 3 implies Condition 1. Condition 4 implies Condition 2

noticing that

z = A(η−1I − G)y ≤ η−1Ay ≤ y.

Now, a comment on the proof provided by Takahashi, Fujimoto and Makimoto [17] is

in order. Recall that the stationary probability vector π = (π0,π1,π2, . . .) for the Markov

chain defined in the previous section can be expressed in matrix (operator)-geometric form

πi+1 = π1Ri for i ≥ 0. Therefore, if the tail behavior of the infinite matrix R can be

characterized, then we can characterize the tail asymptotics of πi. Theorem 6.5 of Seneta

[16], essentially says that if R is 1/η-positive then πi has a geometric tail along the level

direction, i.e. πi ∼ cηi
x, where 1/η is the radius of convergence of R and x is the 1/η-

invariant measure of R. In order to use Theorem 6.5 of [16], R must be irreducible and

aperiodic, which cannot be verified since R is usually not available. From the following

discussion, we will see that this condition can be dropped.

We consider the submatrix R(A) of R consisting of all non-zero rows of R. We may

also interprete R(A) as follows. Let Lm(A) = {(m, i) ∈ Lm; (Ae)i ≥ 0 and (Ae)i 6= 0}.
According to Lemma 4(a) of [18], the R measure for P may be written as R = AQ̂11,

where Q̂11 is the (1, 1)st block entry of the fundamental matrix of Q. The ith row of R is

zero if (m, i) /∈ Lm(A). By reordering the levels, we may rewrite R as

R =





Lm(A) Lm(A)

Lm(A) R(A) R(A)

Lm(A) 0 0



,

where Lm(A) = Lc
m(A). Thus R(A) is the submatrix of R on the index set Lm(A)×Lm(A),

and in order to use Theorem 6.5 of [16] it is sufficient to only require R(A) to be irreducible

and aperiodic.

A sufficient condition for R(A) to be irreducible is for Q to be irreducible. If this is

so, then Q̂11 ≥ 0 but Q̂11 6= 0, thus R(A) > 0. Once R(A) is irreducible and Condition

3 holds then R(A) is 1/η-positive. If it is further assumed that R(A) is aperiodic, which
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is true when D(η) is aperiodic, then Theorem 6.5 of [16] implies the following theorem,

which is equivalent to Theorem 2 of [17]. The aperiodic condition is in fact not crucial

according to results in the periodic case.

The outcome of the above discussion can be summarized as the following theorem.

Theorem 1 Assume Condition 3 and Condition 4 hold. If Q and D(η) are irreducible

and D(η) is aperiodic, then the stationary probability vector π of P is geometric along the

level variable, i.e.

πm ∼ cηm
x as m → ∞, (5)

where c = π1z
xz

.�

Remark: Condintion 4 can be replaced by π0y < ∞ in the case that A0 = A in P

and c in Theorem 1 will be given by c = π0z
xz

. As discussed earlier, (5) also holds in the

case when D(η) is periodic. Finally, we noticed (during the revision of this paper) that

the requirement xe < ∞ in Condition 3a is a natural outcome of other conditions and

Condition 3b is not necessary according to [13].

It is also noticed that there may be many different light and heavy tailed asymptotics

for the stationary probability vector of a QBD process with countably many levels and

phases. In general, the tail asymptotics depends on both non-boundary and boundary

transition properties in A, B and C, and A0, B0 and C0, respectively. In this paper,

a set of sufficient conditions are provided, under which the stationary probability vector

decay geometrically and the decay rate is characterized by the non-boundary transition

properties, or the convergence norm of D(η). Under other conditions, the boundary

transition properties may determine the geometric decay rate, but the geometric decay

rate may not coincide with the convergence norm as characterized in this paper.

4 1/η-positivity

In this section and the next, we will address key issues on how to practically verify Con-

dition 3 given in Theorem 1. The verification of Condition 4 will be addressed through

various examples in later sections.

The radius of convergence 1/η, or the convergence norm η, for E(η) will be of interest

to us shortly. For η to be the decay rate, we require that the convergence norm of D(η)

coincides with the this η, and η > η.
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The convergence of η may be found using the result of Kijima in Theorem 2.1 in [7].

This result says that η is the convergence norm of E(η), where η is given in Lemma 2.1

of [7]. We use the method outlined by Kijima (Lemma 2.1 in [7]) to find η. We need to

determine the Perron-Frobenius eigenvalue χ(z) for the generating function C?(z) for the

blocks in D(η), or C?(z) = µη + γηz + ληz
2 in our case. Since the blocks in E(η) in our

case are scalars, C?(z) is a scalar function. The Perron-Frobenius eigenvalue of C?(z) is

simply the generating function itself, i.e. χ(z) = C?(z). Now we need to solve

χ(θ) = ηθ and χ′(θ) = η,

or

χ(θ) = µη + γηθ + ληθ
2 = ηθ (6)

and

χ′(θ) = γη + 2ληθ = η (7)

for η. Substituting η in (7) into (6) and solving for θ, we obtain

θ =

√

µη

λη

.

The positive square root is taken since θ > 0. Substituting this value for θ into (7) we

have the convergence norm of E(η)

η = γη + 2
√

ληµη = a1 + ηb1 + η2c1 + 2
√

(a0 + ηb0 + η2c0)(a2 + ηb2 + η2c2). (8)

Next, based on censoring and spectral properties of D(η), we compute the roots of

the spectral equation φ(η) − 1 = 0. Then, the determination of 1/η-positivity of D(η) or

Condition 3 will be done by comparing the convergence norm η of D(η) to η.

For matrix D(η), consider the censored entry φ(η) with a single state phase zero as

the censoring set, which is given by

φ(η) = γη/η +
ληµη

2ληµη

(

1 − γη/η −
√

(γη/η − 1)2 − 4ληµη/η2

)

.

Consider the roots of the spectral equation φ(η) − 1 = 0, which are also zeros of

[(ληµη)
2 − ληµηγηγη + ληµηγ

2
η] + η[−2γηληµη + ληµη(γη + γη)] + η2[ληµη − ληµη]. (9)

Notice that (9) is a polynomial of at most 8 degrees evaluated at η and will henceforth be

denoted by

q(η) = D0 + D1η + . . . + D8η
8, (10)
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where the coefficients Di are functions of the entries of A,B and C. Moreover, a zero η

of q(η) is a zero of φ(η) − 1 if and only if

γη

η
+

ληµη

2ληµη

(

1 − γη

η

)

− 1 ≥ 0. (11)

This provides us with a practical method to determine the value of η such that D(η) is

possibly 1/η-positive. It also provides us with a region in which the tail asymptotic prop-

erty given in Theorem 1 may hold (see the priority queueing model given in Section 6.2).

Together with the following theorem, one can check the 1/η-positivity of D(η).

Theorem 2 If η is a zero of φ(η) − 1 in the interval (0, 1) satisfying η ≥ η, then the

convergence norm of D(η) is given by η and D(η) is 1

η
-recurrent. In this case, η is the

only zero of φ(η) − 1 satisfying 0 < η < 1. Moreover, if η > η then D(η) is 1

η
-positive.

In this case, the 1/η-invariant measure x and 1/η-invariant vector y of D(η) exist and

xy < ∞.

Proof: We want to show that D(η) is 1/η-recurrent. If we can show that 1/η is the

β? in Theorem 3(ii) of [8], then D(η) is 1

η
-recurrent. This is obvious since 0 < η ≥ η and

φ(η) = 1. The uniqueness follows from the uniqueness of the radius of convergence of

D(η). If the radius of convergence 1/η of D(η) satisfies 1

η
< α and D(η) is 1/η-recurrent,

by Theorem 4 and Remark 8 of [8], D(η) is 1/η-positive.

By Theorem 6.2 of [16] an 1/η-invariant measure x of D(η) exists, i.e. xD(η) = ηx.

Similarly, we can show that D(η) has an 1/η-invariant vector y. If D(η) is 1/η-positive,

by Theorem 6.4 of [16], xy < ∞. �

5 1/η-invariant measures and vectors

In this section, we show how to explicitly determine the 1/η-invariant measure x and

1/η-invariant vector y when D(η) is 1/η-positive. We also reformulate Condition 3b in

terms of the calculated 1/η-invariant measure and 1/η-invariant vector.

By Theorem 10 in [9], the 1/η-invariant measure x = (x0, x1, x2, . . .) of D(η) is given

by

x0 = z0, xk = z0R01(1/η)Rk−1(1/η), k ≥ 1, (12)

where z0 > 0 is any positive number. R(1/η) is given by

R(1/η) =
(η − γη) −

√

(γη − η)2 − 4ληµη

2µη

9



and R01(1/η) by

R01(1/η) =
λη

λη

R(1/η).

In order to find the 1/η-invariant vector y = (y0, y1, y2, . . .)
T of D(η), we use the RG-

factorization given by equation (25) in [9]. That is using

I − 1

η
D(η) = (I − RU (1/η))(I − UD(1/η))(I − GL(1/η))

where

I − RU (1/η) =

















1 −R01(1/η)

1 −R(1/η)

1 −R(1/η)

. . .
. . .

















,

I − UD(1/η) =

















1 − U0(1/η)

1 − U(1/η)

1 − U(1/η)

. . .
. . .

















,

and

1 − GL(1/η) =























1

−G10(1/η) 1

−G(1/η) 1

−G(1/η) 1

. . .
. . .























.

We now solve

0 =

(

I − 1

η
D(η)

)

y = (I − RU (1/η))(I − UD(1/η))(I − GL(1/η))y.

Letting w = (I − GL(1/η))y, we have

0 = (I − RU (1/η))(I − UD(1/η))w. (13)

The product (I − RU (1/η))(I − UD(1/η)) expands to
















1 − U0(1/η) −R01(1/η)(1 − U(1/η))

1 − U(1/η) −R(1/η)(1 − U(1/η))

1 − U(1/η) −R(1/η)(1 − U(1/η))

. . .
. . .

















.
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Therefore, (13) becomes

0 = (1 − U0(1/η))w0 − R01(1/η)(1 − U(1/η))w1, (14)

0 = (1 − U(1/η))wn − R(1/η)(1 − U(1/η))wn+1, n ≥ 1. (15)

Since U0(1/η) = 1, we may take w = (w0, 0, 0, . . .) with w0 > 0 to satisfy (14) and (15).

Now we need to solve

w = (I − GL(1/η))y. (16)

Simplifying (16) gives us

0 = w1 = −G10(1/η)y0 + y1 or y1 = G10(1/η)y0,

0 = w2 = −G(1/η)y1 + y2 or y2 = G10(1/η)G(1/η)y0 ,

...

0 = wn = −G(1/η)yn−1 + yn or yn = Gn−1(1/η)G10(1/η)y0.

Therefore, the 1/η-invariant vector y = (y0, y1, y2, . . .)
T of D(η) is given by

y0 = w0 > 0, yn = G10(1/η)Gn−1(1/η)w0, n ≥ 1, (17)

where G(1/η) is given by

G(1/η) =
(η − γη) −

√

(γη − η)2 − 4ληµη

2λη

and G10(1/η) by

G10(1/η) =
µη

µη

G(1/η).

Using the above expressions for the 1/η-invariant measure x and vector y the result

xy < ∞ reduces to

xy =

∞
∑

i=0

xiyi = z0w0 +

∞
∑

n=1

xnyn

= z0w0

(

1 + R10(1/η)G10(1/η)

∞
∑

n=1

Rn−1(1/η)Gn−1(1/η)

)

= z0w0

(

1 +
ληµη

ληµη

∞
∑

n=1

(

µη

λη

)n

R2n(1/η)

)

< ∞,
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where G(1/η) =
µη

λη
R(1/η). So,

xy < ∞ if and only if

∞
∑

n=1

(

µη

λη

R2(1/η)

)n

< ∞.

By Theorem 5.2 of [15], x is the 1

η
-invariant measure of R. However, we require an

1/η-invariant vector z for R as well in order to explicitly determine the constant c in

Theorem 1. Condition 3b is the remaining condition required by Takahashi et al. [17],

which reduces to

1

η

(

y0(x0a1 + x1a2) + y1(a0 + x1a1 + x2a2) +

∞
∑

n=2

yn(xn−1a0 + xna1 + xn+1a2)

)

6= η

(

y0(x0c1 + x1c2) + y1(c0 + x1c1 + x2c2) +
∞
∑

n=2

yn(xn−1c0 + xnc1 + xn+1c2)

)

upon expansion. From the above we see that, if

1

η
ai = ηci, and

1

η
ai = ηci, for i = 0, 1, 2,

then

1

η
xAy = ηxCy.

Otherwise, 1

η
xAy 6= ηxCy. However, as remarked earlier this condition is not required.

6 Examples

In this section we will be looking at the application of Theorem 1 through a few examples.

The first example is the two-demand model studied by Flatto and Hahn [3]. It illustrats

the case that D(η) is 1/η-positive only if µ1 6= µ2. The second example is a priority

queueing model, by which we demonstrate how Condition 4 can be verified and when

Theorem 1 can be applied. The third example is the classic symmetric shortest queue,

which has been studied by many authors. This example is used to show when Theorem 1

can be applied, in which the verification of Condition 4 is not trivial. The last example is

a two-stage inventory queue under an echelon base-stock control policy studied in Haque,

Liu and Zhao [5]. This example again illustrates when Theorem 1 can be applied. We

notice that in the first and the last examples, Condition 4 is obviously satisfied.
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6.1 Two-demand model

A double queue [3] arises when arriving customers to the system simultaneously place two

demands to two different servers working independently. In this queue, customer arrivals

form a Poisson process with rate 1 and the service times at the two servers are exponential

with rates µ1 and µ2, respectively. Let X1(t) and X2(t) represent the numbers of customers

waiting or in service at time t in the queues with service rates µ1 and µ2, respectively. Then

X(t) = (X1(t),X2(t)) is a Markov chain with state space S = {(i, j); i, j = 0, 1, 2, . . .}.
This Markov chain is stable if and only if µ1 > 1 and µ2 > 1. Without loss of generality, we

assume that 1 < µ1 ≤ µ2. For convenience, the servers with rate µ1 and µ2 are referred to

as the slower and faster servers, respectively, and their queues as slower and faster queues,

respectively.

The equilibrium equations are given as follows,

(1 + µ2)π0,j = µ1π1,j + µ2π0,j+1, i = 0, j ≥ 1,

(1 + µ1)πi,0 = µ1πi+1,0 + µ2πi,1, i ≥ 1, j = 0,

(1 + µ1 + µ2)πi,j = µ1πi+1,j + µ2πi,j+1 + πi−1,j−1, i ≥ 1, j ≥ 1,

π0,0 = µ1π1,0 + µ2π0,1,

from which we have an infinitesimal generator, which upon uniformization gives the tran-

sition matrix P in equation (1). Specifically, let θ = 1/(1 + µ1 + µ2), then

A =

















0 θ

0 θ

0 θ

. . .
. . .

















,

B =

















1 − θ(1 + µ1)

θµ2 0

θµ2 0

. . .
. . .

















,

and C = θµ1I. In order to apply Theorem 2 we need the matrix in (3), where

γη = η(1 − θ(1 + µ1)) + η2θµ1, γη = η2θµ1,

λη = θ, λη = λη,

µη = ηθµ2, µη = µη.
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Using (8), the convergence norm η of E(η) is given by

η =
η2µ1 + 2

√
ηµ2

1 + µ1 + µ2

. (18)

The convergence norm of D(η) is given by η, where η is a zero of the function in (10).

Simplifying the equation from (9) gives

η2µ2
2

(1 + µ1 + µ2)4
(1 − µ1η)(1 − η) = 0,

which is a polynomial equation of degree two and yields two roots η = 1

µ1
and 1. Since

µ1 > 1, we have 0 < 1

µ1
< 1, and hence the convergence norm of D(η) or of the R-measure

for P is η = µ1.

Next we need to determine if D(η) is 1/η-positive, which is equivalent to determining

if η > η. Substituting η = 1

µ1
into (18), the convergence norm for E(η) is reduced to

η =
1

µ1

1 + 2
√

µ1µ2

1 + µ1 + µ2

.

We need to determine if
1+2

√
µ1µ2

1+µ1+µ2
< 1. For µ1 6= µ2,

0 < (
√

µ1 −
√

µ2)
2,

0 < µ1 − 2
√

µ1µ2 + µ2,

1 < 1 + µ1 + µ2 − 2
√

µ1µ2,

1 + 2
√

µ1µ2 < 1 + µ1 + µ2,

1 + 2
√

µ1µ2

1 + µ1 + µ2

< 1

as required. Therefore, 1/µ1 = η > η. By theorem 2, the 1/η-invariant measure x and

vector y for D(η) exist, for µ1 6= µ2. Next, we need to determine if 1

η
xAy 6= ηxCy. We

may use the expressions for the 1/η-invariant measure x and vector y given in equations

(12) and (17), respectively. The R-measure of D(η) is given by

R(1/η) =
µ1

µ2

since 1 < µ1 < µ2 and R(1/η) is non-negative. We have

R01(1/η) =
µ1

µ2

, G(1/η) = 1, and G10(α) = 1.

By equation (12) the 1/η-invariant measure of D(η) is

x =

(

1,
µ1

µ2

,

(

µ1

µ2

)2

, . . . ,

(

µ1

µ2

)n

, . . .

)

,
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and by equation (17) the 1/η-invariant vector for D(η) is y = (1, 1, 1, . . .)T = e. Finally,

since y = e and
∑∞

m,n=0
πm,n = 1, π0e < ∞, which means that Condition 4 is satisfied

due to the remark following Theorem 1. Therefore, we may conclude that

πm ∼ cηm
x =

c

µm
1

(

1,
µ1

µ2

, . . . ,

(

µ1

µ2

)n

, . . .

)

,

which is consistent with the result in Theorems 7.1 and 7.2 of [3].

When µ1 = µ2, the polynomial equation from (10) reduces to

µ2
1

(1 + 2µ1)4
(1 − µ1η)(1 − η) = 0,

which again implies η = 1 or η = 1

µ1
. Therefore η = 1

µ1
< 1 since 1 < µ1. We now have

η =
η2µ1 + 2

√
ηµ1

1 + 2µ1

=
1

µ1

(1 + 2µ1)

(1 + 2µ1)
=

1

µ1

= η.

Therefore by Theorem 3 of [8], D(η) is 1

η
-recurrent since φ(η) = 1. In order to determine

if D(η) is 1

η
-positive, we need to check whether η > η holds. From the above discussion,

we see that η = η. So D(η) is not 1

η
-positive, but 1

η
-null. In this case, Theorem 1 cannot

be applied. It turns out that πm does not have an exact geometric asymptotic tail, as

shown in Theorem 7.1 and 7.2 of Flatto and Hahn [3].

6.2 Priority queue

Consider the classical preemptive priority queue (Miller [11]). Two classes of Poisson

customers arrive independently at rate λl for the lower priority customers and at rate λh for

higher priority customers. For simplicity, we assume that both classes of customers require

the same exponential service time at rate µc from a single server. With the preemptive

rule, a higher priority customer, upon arrival, passes all lower priority customers in the

queue or takes over the service if a lower priority customer is currently being served.

Let Xl(t) and Xh(t) be the number of lower and higher priority customers in the system

at time t, respectively. Then, X(t) = (Xl(t),Xh(t)) is a continuous-time Markov chain

with state space S = {(i, j); i, j = 0, 1, 2, . . .}. Take Xl(t) as the level. The infinitesimal

generator upon uniformization gives the transition matrix P as in equation (1), where
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A = λlI,

B =

















0 λh

µc 0 λh

µc 0 λh

. . .
. . .

. . .

















,

C =

















µc

0

0

. . .

















.

In order to apply Theorem 2 we need matrix (3), where

γη = λl + µcη
2, γη = λl,

λη = λη = λhη,

µη = µη = µcη.

Using (8), the convergence norm η of E(η) is given by

η = λl + 2η
√

λhµc. (19)

The convergence norm of D(η) is given by η, where η is a zero of function (10). (10)

simplifies to

λhµ2
cη

4(λl + λh − η + µcη
2),

which is reduced to a polynomial equation of degree two for our purpose. The only zero

η in (0, 1) is

η = ρ =
λl + λh

µc

.

The condition η < 1 coincides with the stability condition of the system. Let

ρl =
λl

µc

and ρh =
λh

µc

.

To see if φ(ρ) = 1, we need to verify inequality (11), which in this case is equivalent to

λlµc + 2(λl + λh)2 − (λl + λh) > 0.

Substituting λl + λh + µc = 1, the above becomes (λl + λh)2 > λhµc or ρ2 > ρh.
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For D(η) to be 1/η-positive, we need η > η or equivalently

λl + λh

µc

> λl + 2(λl + λh)

√

λh

µc

. (20)

Inequality (20) provides us a region within which Thoerem 1 holds.

We use the expressions in (12) and (17) for the 1/η-invariant measure x and vector y

which become, after some calculations,

x =

(

1,
ρh

ρ
,

(

ρh

ρ

)2

, . . .

)

and

y =

(

1,
1

ρ
,

(

1

ρ

)2

, . . .

)T

.

It is clear now that the verification of Condition 4 is not trivial. We recall that the

marginal distribution π·,n =
∑

m πm,n of the number of customers in the system with the

higher priority is the same as the distribution of the number of customers in the system

for the standard M/M/1 queue. Therefore,

π·,n = (1 − ρh)ρn
h, n ≥ 0.

Condition 4 then becomes

π1y =
∑

n

π1,nyn ≤
∑

n

π·,nyn = (1 − ρh)
∑

n

(

ρh

ρ

)n

< ∞,

since ρh/ρ ≤ √
ρh/ρ < 1. In conclusion, when (20) is true, we have πm ∼ cxρm according

to Theorem 1.

6.3 Symmetric shortest queue

The SSQ model, i.e. the symmetric shortest queue may be described as follows: Customers

arrive in a Poisson stream at rate λ to two identical exponential servers in parallel with

common service rate µ, where ρ = λ/2µ < 1 for the system stability. Each of the two

parallel server has its own queue and, upon arrival, a job joins the shortest queue. If

the queue lengths are equal, the customer joins either queue with probability 1/2. Let

Y1(t) and Y2(t) be the lengths of the two queues at time t, then Y (t) = (Y1(t), Y2(t))

is a Markov chain with state space S = {(i, j); i, j = 0, 1, 2, . . .}, but its infinitesimal

generator is level dependent. To eliminate this dependence, let X1(t) = min(Y1(t), Y2(t))
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and X2(t) = |Y2(t)−Y1(t)|. Now X(t) = (X1(t),X2(t)) is a Markov chain with state space

S = {(i, j); i, j = 0, 1, 2, . . .} and a level independent infinitesimal generator, taking X1(t)

as the level. Upon uniformization and assuming λ + 2µ = 1, we obtain the transition

probability matrix P as given in equation (1) with

A =

















0

λ 0

λ 0

. . .
. . .

















,

B =

















0 λ

µ 0 0

µ 0 0

. . .
. . .

. . .

















,

and

C =

















0 2µ

0 µ

0 µ

. . .
. . .

















.

For the matrix D(η) defined by (3), we have

γη = γη = 0,

λη = 2µη2 + λη, λη = µη2,

µη = µη = λ + µη.

Using (8), the convergence norm η of E(η) is then given by

η = 2
√

ληµη = 2η
√

µ(λ + µη). (21)

To determine the convergence norm of D(η), we first compute the zeros of (9), which can

be simplified as follows

η2(λ + µη)2[(2µη + λ)2 − η],

since 1 = (λ + 2µ)2 = λ2 + 4λµ + 4µ2. This leads to a polynomial equation of degree two

and yields η = 1 or η = ρ2. We note that η = ρ2 is the only candidate for φ(η) = 1.

Also, it is clear that the convergence norm of D(η) is η = ρ2 > η, and, based on which,
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we conclude that D(ρ2) is 1/ρ2-positive and, by Theorem 2, the 1/ρ2-invariant measure

x and vector y exist. Equations (12) and (17) may be used to show, respectively, that

x =

(

µ
2 + ρ

ρ
, 1,

ρ2

2 + ρ
,

(

ρ2

2 + ρ

)2

,

(

ρ2

2 + ρ

)3

, . . .

)

and

y =

(

1,
1

ρ
,

1

ρ2
,

1

ρ3
, . . .

)

.

So far, all conditions required by Theorem 1 can be verified except Condition 4 or π0y <

∞. This is not trivial and the method used for the priority queueing model cannot be

applied here since we do not know the marginal distribution. Following the proof of (37)

in Proposition 1 in Foley and McDonald [4], it can be shown that Theorem 14.3.7 of Meyn

and Tweedie [10] guarantees our Condition 4.

In conclusion, we have πm ∼ cηn
x.

6.4 Two-stage inventory-queue

We consider the two-stage inventory-queue model studied in Haque, Liu and Zhao [5]. An

inventory-queue is formed by a server (we only consider single server service stations) and

an output store following the server. When a demand is received from the outside or a

downstream station, it will be satisfied by an available unit from the store or backordered

if the store is empty. In either case, the arrival of a demand will trigger the creation of

a new job which will either be processed immediately by the server if it is free or join a

job queue in front of the server. The server stops when there is no job in the job queue

or when there is no material supply for the jobs. We assume that R1 units are available

initially in the output store. Then from the above description, the server will always try

to restore the initial inventory level R1 in the output store. We call R1 the base stock level

and such a system base-stock inventory-queue. Our two-stage system is formed by two

base-stock inventory-queues in tandem. We assume that station 1 at the upstream has

unlimited material supplies and hence the server will keep working as long as the job queue

is not empty. Station 2 at the downstream satisfies the external demand from its output

store. When an external demand arrives, it triggers the creation of a job at the upstream

station as well as the downstream station. A job in the job queue of station 2 can only be

processed when it has a matching unit from the output store. When server 2 is free and
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the first job of its job queue does not have a matching unit because the upstream output

store is out of stock, the server will be idle until the service completion at the upstream

station. This phenomenon is called starvation. We also note that probabilistically the

inventory level at the upstream output store has no upper bound. One may refer to [5]

for details on how this two stage system works.

Let the external demand process be Poisson with rate λ, and the service times at both

stations be exponential with rates µ1 and µ2 for station 1 and station 2, respectively. The

stability conditions for this system are ρ1 = λ/µ1 < 1 and ρ2 = λ/µ2 < 1. Let Ni(t),

i = 1, 2, be the number of jobs in the job queue of station i at time t, and U(t) the number

of jobs in the job queue of station 2 which have matching units from output store 1 at

time t. When every job in the job queue of station 2 has a matching unit, U(t) equals

N2(t), the number of jobs in the job queue in station 2 at time t. It can be shown that

(N1(t), U(t)) is a continuous-time two-dimensional Markov chain. Upon uniformization,

the transition matrix P is given by

P =



























level L≤R1
R1 + 1 R1 + 2 · · · · · · · · ·

L≤R1
B0 A0

R1 + 1 C0 B A

R1 + 2 C B A

R1 + 3 C B A
...

. . .
. . .

. . .
...

. . .
. . .

. . .



























,

where L≤R1
represents levels 0, 1, . . . , R1, and A = θλI,

B = θ





















µ2

µ2 0

µ2 0
. . .

. . .

. . .
. . .
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and

C = θ





















0 µ1

0 µ1

0 µ1

. . .
. . .
. . .

. . .





















with θ = 1/(λ + µ1 + µ2). Also recall that R1 denotes the base-stock level at stations

1. We note that details about A0, B0 and C0 are not provided here since they are not

important in our discussion.

We need to consider (3), which now has γη = θ(λ + ηµ2), λη = λη = θη2µ1, γη = θλ

and µη = µη = θηµ2. The convergence norm η of E(η) in (4) is given by

η =
λ + 2η

√
ηµ1µ2

λ + µ1 + µ2

. (22)

The convergence norm of D(η) is given by η, where η is a zero of (9) given by

θ4η4µ1µ
2
2[η

2µ1 + λ − η(λ + µ1)]. (23)

This leads to a polynomial equation of degree two and its only root in (0, 1) is λ/µ1. To

be 1/η-positive, we need λ/µ1 > η. To verify Condition 3b, we need the 1/η-invariant

measure x and vector y, respectively, of D(η). Notice that upon substitution of η = λ/µ1

into (3), we have

D(η) = ρ1θ





















µ1 + µ2 λ

µ2 µ1 λ

µ2 µ1 λ
. . .

. . .
. . .

. . .
. . .

. . .





















. (24)

This is a product of ρ1 and a positive recurrent stochastic matrix. Therefore, x is simply

equal to the stationary probability vector of this positive recurrent matrix, which is given

by x = (1 − ρ2)(1, ρ2, ρ
2
2, . . .), and y is simply e, the column vector of ones. Some simple

calculations will then justify Condition 3b. Finally, Condition 4 is satisfied since π1y =

π1e < ∞. Therefore, we have πm ∼ cρm
1 x.
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7 Conclusions

We have provided a set of verifiable new conditions for the existence of exact geometric

light tails for a large class of Markov chains with infinitely many levels and phases. Four

models are discussed as examples to illustrate how to use our conditions to obtain the

exact geometric tails.

There are some opportunities for further research along this direction. For example,

the entries of the infinite blocks A,B and etc. may be finite matrices, and/or the structure

of the infinite blocks is more general, say M/G/1 type, GI/M/1 type or GI/G/1 type.

Substantial research is needed to address the light tail issue in these kinds of systems.

We have only considered processes in which the transition matrix has a QBD structure.

Another way to generalize our method would be to consider more general transition matrix

structures, say those of the M/G/1 type, the GI/M/1 type or the GI/G/1 type. Finally,

we may also consider the case when D(η) is reducible or when P has a level dependent

structure.
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