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Abstract

An M/M/1 queue with delayed vacation is studied. If the server has
been idle for a period of time (called the delay time), the server be-
gins an exponentially distributed vacation which is repeated as long
as the number of customers in the system remains less than some
number K. For the cases of exponential and deterministic delay
time, exact expressions for the steady state probability distribution
are obtained, together with associated performance measures. Sys-
tem optimization is also considered; values of K are given which
minimize the average total cost per unit time, and it is shown that
the optimal delay period is either 0 (no delay) or infinite (no vaca-
tion), in case of Poisson arrivals.
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1 Introduction

Queueing systems with server’s vacations have been studied extensively. A comprehensive

review on vacation models, methods and results up to 1991 can be found in either Doshi

[6] or Takagi [11]. In the last few years, increasing interest in studying queueing systems

with various rules of vacation has led to many extensions of previously existing results. For

example, a batch arrival model with a finite capacity for the buffer size can be used to model

some telecommunications systems using a time division multiple access (TDMA) scheme

(Frey and Takahashi, [7]). Researchers have also done performance analysis on systems

where probability distributions of the variables are more general and closer to reality (e.g.

Chao and Zhao [2]).

In this paper, we consider vacation models which are extended in two different ways. The

first one is the queueing system in which the length of the vacations can be controlled by

means of the number of customers K arriving to the system during the vacation, and the

level K may be chosen according to the arrival rate and the service rate, the cost per unit

of waiting time and the cost of the server being transferred from vacation to work.

Secondly, we allow for a delay time before a vacation begins. During the delay time, the

server is situated in warm standby state and it will start service immediately upon arrival of

a customer to the system. It seems that the consideration of such a delayed vacation might

be reasonable if the cost of a server’s warm switch-on is lower than that of a server’s cold

switch-on.

The case of delayed vacation has also very recently been studied by Frey and Takahashi

[8] and Sakai et al [9] where the term close-down time is used. They consider general service,

delay and vacation times with Poisson (batch) arrivals, but must rely on numerical examples

to gain insights into their results. We focus on a simpler model with exponential service and

vacation which allows us to gain greater insight into the system with less effort.

In particular, we are able to consider optimization of the system with respect to the con-

trol parameter and the delay parameter. We show that for Poisson arrivals and exponential

service and vacation, there is no nontrivial optimal delay period. However, the use of the

control parameter to extend the vacation period until K customers arrive in the system can

result in improved performance of the system.
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2 Description and Analysis of the Model

We make the following assumptions.

1. Customers arrive at the system according to a Poisson process with intensity λ and

there is one server in the system. The queue discipline is FCFS.

2. Service times are assumed to be exponentially distributed with mean 1/µ. The traffic

intensity is ρ = λ/µ < 1.

3. A period of time called the delay time occurs before the server goes on vacation. The

delay can be interrupted by the arrival of a customer in which case the server resumes

service. Thus, the length of the delay time is

min(X,Y )

where X is exponentially distributed with mean 1/λ, and Y is a random variable with

mean 1/θ1. In this paper, we assume that Y is either exponentially distributed or

deterministic.

4. If the delay time is completed before the arrival of a customer, the server begins a

vacation whose length is exponentially distributed with mean 1/θ2. Upon completion

of a vacation, the server resumes service if K ( ≥ 1) or more customers are in the sys-

tem. Otherwise, it takes another vacation having length independent of and identically

distributed to the preceding one.

5. All aforementioned random variables are independent of each other.

Let S(t) = 0, S(t) = 1, and S(t) = 2 denote the events that the server is busy, in delay

period, and on vacation at epoch t, respectively. Define

p0j(t) = P (N(t) = j, S(t) = 0) (j = 1, 2, 3, . . .)

p1(t) = P (N(t) = 0, S(t) = 1)

p2j(t) = P (N(t) = j, S(t) = 2) (j = 0, 1, 2, . . .)

N(t) will denote the number of customers in the system at time t.
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2.1 Exponential Delay Case

When the delay time is exponentially distributed, {(N(t), S(t)) , t ≥ 0} is a standard continuous-

time Markov chain. From the theory of Markov chains (e.g. [3]), it follows that {(N(t), S(t)) , t ≥

0} has a unique equilibrium distribution which satisfies the following family of equations.

Setting

p0j = lim
t→∞

p0j(t) (j = 1, 2, 3, . . .)

p1 = lim
t→∞

p1(t)

p2j = lim
t→∞

p2j(t) (j = 0, 1, 2, . . .)

we have

λp20 = θ1p1

λp2j = λp2,j−1 (j = 1, 2, 3, . . . , K − 1)

(λ + θ2)p2j = λp2,j−1 (j = K,K + 1, K + 2, . . .)

(λ + θ1)p1 = µp01 (1)

(λ + µ)p01 = λp10 + µp02

(λ + µ)p0j = λp0,j−1 + µp0,j+1 (j = 2, 3, 4, . . . , K − 1)

(λ + µ)p0j = λp0,j−1 + µp0,j+1 + θ2p2j (j = K,K + 1, K + 2, . . .)

∞
∑

j=1

p0j + p1 +
∞
∑

j=0

p2j = 1

The solution of these equations is as follows (see Appendix for a derivation):

p1 =
λθ2(1 − ρ)

λθ1 + λθ2 + Kθ1θ2

(2)

p2j =







θ1

λ
p1 (j = 0, 1, 2, . . . , K − 1)

(

λ
λ+θ2

)j−k+1
p20 (j = K,K + 1, K + 2, . . .)

(3)

p0j = p1ρ
j +

j−1
∑

i=0

ρj−ip2i (j = 1, 2, 3, . . .) (4)
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2.2 Deterministic Delay Case

When the delay time is deterministic, {(N(t), S(t)) , t ≥ 0} is not a Markov chain, but it can

be extended to a continuous-state Markov chain with the use of the supplementary variable

technique (e.g. [5], [4]). In particular, we introduce the random variable X(t) which denotes

the elapsed delay time at time t. Setting

p0j = lim
t→∞

p0j(t) (j = 1, 2, 3, . . .)

p1(x)dx = lim
t→∞

P (x ≤ X(t) < x + dx, S(t) = 1), 0 < x < 1/θ1

p2j = lim
t→∞

p2j(t) (j = 0, 1, 2, . . .)

we have

λp20 = p1(1/θ1)

λp2j = λp2,j−1 (j = 1, 2, 3, . . . , K − 1)

(λ + θ2)p2j = λp2,j−1 (j = K,K + 1, K + 2, . . .)

p1(0) = µp01 (5)

(λ + µ)p01 = λ
∫ 1/θ1

0
p1(x)dx + µp02

(λ + µ)p0j = λp0,j−1 + µp0,j+1 (j = 2, 3, 4, . . . , K − 1)

(λ + µ)p0j = λp0,j−1 + µp0,j+1 + θ2p2j (j = K,K + 1, K + 2, . . .)

d

dx
p1(x) = −λp1(x), 0 < x < 1/θ1

∞
∑

j=1

p0j +
∫ 1/θ1

0
p1(x)dx +

∞
∑

j=0

p2j = 1

The solution in this case is as follows:

p1 =
(eλ/θ1 − 1)(1 − ρ)θ2

λ − θ2 − eλ/θ1θ2 − Kθ2

p2j =







(1−ρ)θ2

λ−θ2+eλ/θ1θ2+Kθ2

(j = 0, 1, 2, . . . , K − 1)
(

λ
λ+θ2

)j−k+1
p20 (j = K,K + 1, K + 2, . . .)

p0j = p1ρ
j +

j−1
∑

i=0

ρj−ip2i (j = 1, 2, 3, . . .)

5



2.3 Mean Queue Length

We are now in a position to deduce the mean numbers of customers in the system and in

the queue. Let L denote the mean number of customers in the system, and let Lq denote

the mean queue length. Then, we have

L =
ρ

1 − ρ
+

θ1θ2

λθ1 + λθ2 + Kθ1θ2





K(K − 1)

2
+

(

λ

θ2

)2

+
Kλ

θ2



 (6)

and

Lq =
ρ2

1 − ρ
+

θ1θ2

λθ1 + λθ2 + Kθ1θ2





K(K − 1)

2
+

(

λ

θ2

)2

+
Kλ

θ2



 (7)

in the exponential delay case. In the deterministic delay case, we have

L =
ρ

1 − ρ
+

2 λ2 + 2 K λ θ2 − K θ2
2 + K2 θ2

2

2 θ2

(

λ − θ2 + e
λ
θ1 θ2 + K θ2

) (8)

and

Lq =
ρ2

1 − ρ
+

2 λ2 + 2 K λ θ2 − K θ2
2 + K2 θ2

2

2 θ2

(

λ − θ2 + e
λ
θ1 θ2 + K θ2

) (9)

2.4 Waiting Time

Let Wq denote the virtual waiting time of customers arriving in the system. Then

E[Wq] = −W ∗
′

(0) =
p20

(µ − λ)θ2

[

λµ

θ2

+
λ2

µ − λ
+ Kµ

]

+
K(K − 1)µp20

2λ(µ − λ)
+

λ(p1 + p20K)

(µ − λ)2
(10)

and

E[Wq|Wq > 0] =
1

1 − p1

(

p20

(µ − λ)θ2

[

λµ

θ2

+
λ2

µ − λ
+ Kµ

]

+
K(K − 1)µp20

2λ(µ − λ)
+

λ(p1 + p20K)

(µ − λ)2

)

(11)

We also note that Little’s formula also holds for this model.

2.5 Mean Length of Operational Period

The period of time from the beginning of a delay to the end of the subsequent delay will be

defined as an operational period for the system; we denote its length by A.

6



By the model assumptions, a busy period which begins with one customer in the system,

or a vacation of length VK with a control level K will begin as soon as the delay terminates

depending on whether a customer arrives or the server goes on vacation. In the first case,

the busy period of length B1 will be followed (eventually) by another delay of length D and

then the above process will be repeated. In the latter case, a busy period of length BR will

follow the vacation of length VK where R is a random variable with values in {K,K +1, . . .}.

Another delay of length D follows BR so that the above process will then be repeated.

From the above considerations, it is clear that an operational period consists of a delay

D, a random number (say, M , a non-negative integer-valued random variable) of successive

B1 + D events, a vacation of length VK , and a busy period of length BR. In particular, we

have

E[A] = E[D] + E[M ](E[B1] + E[D]) + E[VK ] + E[BR] (12)

The mean length of a delay is easily found. That is,

D = min(X,Y )

where X is an exponential random variable with mean 1/λ, and Y is a random variable with

mean 1/θ1.

If Y is exponential, then D is an exponential random variable with mean

E[D] = 1/(λ + θ1) (13)

If Y is deterministic, then D is a truncated exponential random variable with mean

E[D] = (1 − e−λ/θ1)/λ (14)

Letting M denote the number of B1 + D events before the server takes a vacation, and

using the memoryless property of the exponential distribution, it is seen that these events

are independent, and they end with a vacation with a certain probability p0.

Therefore,

P (M = m) = p0(1 − p0)
m (m = 0, 1, 2, . . .)

so that

E[M ] =
1 − p0

p0

(15)
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When the delay time Y is exponential,

p0 = P (X > Y ) =
θ1

λ + θ1

and when Y is deterministic,

p0 = P (X > Y ) = e−λ/θ1

It is also clear that a busy period beginning with r customer in the system has mean

E[Br] =
r

µ − λ
(r = 1, 2, 3, . . .) (16)

It is shown in the appendix that the mean busy period beginning with a random number

(R) of customers is given by

E[BR] =
λ + Kθ2

(µ − λ)θ2

(17)

A vacation period with control parameter K has mean length given by

E[VK ] =
K

λ
+

1

θ2

(18)

Substituting (13), (15), (18), and (17) into (12) gives, upon simplification,

E[A] =
λ(θ1 + θ2) + Kθ1θ2

(1 − ρ)λθ1θ2

(19)

in the exponential case, and using (14) in place of (13) gives

E[A] =
θ2e

λ/θ1 + (K − 1)θ2 + λ

λ(1 − ρ)θ2

(20)

in the deterministic case.

3 Optimization of the Control Parameter

Suppose that the cost per unit time is

• C0 ≤ 0 for server vacation

• C1 ≥ 0 for delay (warm standby)
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• C2 ≥ 0 for normal service (C2 ≥ C1 generally)

• C4 ≥ 0 per customer waiting in the system

In addition, C3 ≥ 0 denotes the cost due to switching the server from vacation to normal

service.

For an operational period, the expected cost due to vacation is given by

C0(K/λ + 1/θ2)

The expected cost due to delay is

C1E[D]/p0

The expected cost while the server is busy is

C2

(

λ + θ2K

(µ − λ)θ2

)

+
C2

µ − λ

(

1

p0

− 1

)

From the previous section, the expected length of an operational period is

E[A] =
K

λ
+

1

θ2

+
E[D]

p0

+
λ + θ2K

(µ − λ)θ2

+
1

µ − λ

(

1

p0

− 1

)

In the case of exponential delay, we then find that the cost for an operational period is given

by

C = C0

(

K

λ
+

1

θ2

)

+
C1

θ1

+ C2
ρλ(θ1 + θ2) + Kθ1θ2

(1 − ρ)λθ1θ2

+ C3

so that the average cost per unit time is

C

E[A]
=

C0(1 − ρ)θ1(Kθ2 + λ) + C1(1 − ρ)λθ2 + C2 (ρλ(θ1 + θ2) + Kρθ1θ2) + C3(1 − ρ)λθ1θ2

λ(θ1 + θ2) + Kθ1θ2

The average total cost per unit time is then

G =
C

E[A]
+ C4L

Setting dG/dK = 0, we obtain

C4θ1θ2K
2

2
+C4λ(θ1+θ2)K+C0(1−ρ)λθ2−C1(1−ρ)λθ2−C3(1−ρ)λθ1θ2+C4λ

(

λ −
θ1 + θ2

2

)

= 0

The nonnegative solution of this is given by

K∗ = (θ1θ2)
−1







−λ(θ1 + θ2) +

√

λ2(θ1 + θ2)2 − 2
θ1θ2T

C4






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where

T = C0(1 − ρ)θ2 − C1(1 − ρ)θ2 − C3(1 − ρ)θ1θ2 + C4λ

(

λ −
θ1 + θ2

2

)

K∗ is nonnegative if T ≤ 0, and the second derivative d2G/dK2 is nonnegative in this case.

Therefore, if Kmin is the nearest integer to K∗, then Kmin will minimize cost (assuming all

other quantities are held constant).

A similar analysis applies In the case of deterministic delay; again, optimization with

respect to K gives rise to a quadratic equation in K for which the nonnegative solution is

given by

K∗ = 1 − e
λ
θ1 −

λ

θ2

+

√

C4 (λ2 µ2 + λ µ2 θ2) + 2T + C4 e
2 λ
θ1 µ2 θ2

2 + 2C3 λ µ2 θ2
2

√

C4 µ θ2

where

T = λ2 θ2
2 − e

λ
θ1 λ2 θ2

2 − λ µ θ2
2 − C0 λ µ θ2

2 + e
λ
θ1 λ µ θ2

2 + C0 e
λ
θ1 λ µ θ2

2 − C3 λ2 µ θ2
2

+C0 µ2 θ2
2 − C0 e

λ
θ1 µ2 θ2

2 − C4 e
λ

theta1 µ2 θ2
2

Remark: A similar treatment will yield optimality conditions on θ1 and θ2. We note

that the cost function is monotonic in θ1, so that the optimal delay period for this system is

either infinite (no vacation) or 0 (no delay). We conjecture that this behaviour is a result of

the memoryless property of the arrival process. On the basis of a simulation study, we have

observed that, for non-Poisson arrivals, a nontrivial delay period will be optimal.

Appendix

A.1 Derivation of Stationary Queue Length Distribution

To solve the family of equations (1), we introduce the following generating functions

G0(s) =
∞
∑

j=1

p0js
j (|s| ≤ 1)

and

G2(s) =
∞
∑

j=0

p2js
j (|s| ≤ 1)
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From the first three equations of (1), it is clear that

p20 = p21 = · · · = p2,K−1 (21)

p20 =
θ1

λ
p1 (22)

and

p2j =

(

λ

λ + θ2

)j−k+1

p20 (j = K,K + 1, K + 2, . . .) (23)

from which it follows that we can write

G2(s) =
p20

λ + θ2 − sλ

(

λ +
θ2(1 − sk)

1 − s

)

(24)

Multiplying the 5th, 6th and 7th equations of (1) by sj and summing over j ∈ {1, 2, 3, . . .}

gives

(λ + µ)
∞
∑

j=1

p0j = s(λp1 + µp02) +
∞
∑

j=2

sj(λp0,j−1 + µp0,j+1) +
∞
∑

j=K

sjθ2p2j

or

(λ + µ)G0(s) = (λs + µ/s)G0(s) + sλp1 − µp01 + θ2

∞
∑

j=K

sjp2j

This, together with (23) and the 4th and 1st equations of (1), gives

(λ + µ − λs − µ/s)G0(s) = sλp10 − (λ + θ1)p1 +
θ2p20s

Kλ

λ + θ2 − sλ

= (s − 1)λp1 − λp20 +
θ2p20s

Kλ

λ + θ2 − sλ

= (s − 1)λp1 −
λp20

λ + θ2 − sλ

(

λ + θ2 − sλ − θ2s
K
)

= (s − 1)

(

λp1 +
λp20

λ + θ2 − sλ

(

λ + θ2
1 − sK

1 − s

))

Dividing through by (s − 1) and using (24), we can write

G0(s)(µ/s − λ) = λ (p1 + G2(s))

so that

G0(s) =
λs (p1 + G2(s))

µ − sλ
(25)

In terms of the traffic intensity, this can be written as

G0(s) =
ρs (p1 + G2(s))

1 − sρ
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Expanding in geometric series gives

G0(s) =
∞
∑

j=1

(ρs)jp1 + G2(s)
∞
∑

j=1

(sρ)j

and expanding G2(s) further gives

G0(s) =
∞
∑

j=1

(ρs)jp1 +
∞
∑

j=1

∞
∑

i=0

si+jρjp2i

from which we can see that

p0j = p1ρ
j +

j−1
∑

i=0

ρj−ip2i (j = 1, 2, 3, . . .) (26)

It remains for us only to determine p1. Letting s → 1 in (24) and (25), we obtain

θ2G2(1) = (λ + Kθ2)p20

and

(µ − λ)G0(1) = λG2(1) + λp1

By using the 1st and 8th equations of (1), it follows that

p1 =
λθ2(1 − ρ)

λθ1 + λθ2 + Kθ1θ2

(27)

Thus, the equilibrium distribution of {(N(t), S(t)), t ≥ 0} is given by (21), (22), (23),

(26) and (27).

A.2 Queue Length Distribution in the Deterministic Case

Defining G0(s) and G2(s) as for the exponential case, we can again obtain (25) and (24)

where we now define

p1 =
∫ 1/θ1

0
p1(x)dx

These relations determine G0(s) and G2(s) in terms of p20 and p1. Thus, (21), (23) and (26)

again hold, but with

p20 =
(1 − ρ)θ2

λ − θ2 + eλ/θ1θ2 + Kθ2

and

p1 =
(eλ/θ1 − 1)(1 − ρ)θ2

λ − θ2 − eλ/θ1θ2 − Kθ2
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A.3 Derivation of Mean Queue Length

Let N and Q denote the numbers of customers in the system and in the queue, respec-

tively, assuming the system is in equilibrium. Also, let GN(s) and GQ(s) be the probability

generating functions of N and Q, respectively.

Clearly,

GN(s) = G0(s) + G2(s) + p1 (|s| ≤ 1) (28)

It is also easy to see that

GQ(s) = G2(s) + p1 − p01 + G0(s)/s

Using (25) and the 4th equation of (1), we have

GQ(s) = G2(s) + p1 +
λs

s(µ − λs)
(G2(s) + p1) −

λ + θ1

µ
p1

which, upon rearrangement, yields

GQ(s) =
µ + λ − λs

µ − λs
G2(s) + p1

(

ρ

1 − ρs
+

µ − λ − θ1

µ

)

(29)

The means L = E[N ] and Lq = E[Q] are obtained by evaluating the derivatives G′

N(1)

and G′

Q(1). To do this, we note that (24) can be differentiated easily to give

G′

2(1) = p20

(

K(K − 1)

2
+

λ2 + Kλθ2

θ2
2

)

(30)

Using (25), we can readily obtain

G′

0(1) =
λµ

(µ − λ)2
(G2(1) + p10) +

λ

µ − λ
G′

2(1) (31)

Since

L = G′

0(1) + G′

2(1),

we can use (30) and (31) to obtain

L =
λµ

(µ − λ)2

(

p1 +
(λ + Kθ2)p20

θ2

)

+
µp20

µ − λ

(

K(K − 1)

2
+

λ2 + Kλθ2

θ2
2

)

From this, we can obtain the special cases of exponential and deterministic delay displayed

in equations (6), (7), (8) and (9).
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A.4 Waiting Time Analysis

Let Wq denote the virtual waiting time of customers arriving in the system, assuming the

system is in equilibrium, and let Wq(x) denote the corresponding distribution function. Then

Wq(x) = P (Wq ≤ x, S = 2, N < K) + P (Wq ≤ x, S = 2, N ≥ K) + P (Wq ≤ x, S = 0) + p1

(32)

Denote the first 3 terms on the right hand side by W21(x), W22(x) and W01(x), respec-

tively. We will evaluate E[Wq] using

E[Wq] = −W ∗′(0) = − (W ∗′

21(0) + W ∗′

22(0) + W ∗′

10(0))

where

W ∗′(0) = lim
s→0

W ∗′(s)

and W ∗(s) denotes the Laplace-Stieltjes (L-S) transform of W (x).

If a customer arrives at the system during the server’s vacation and sees N = j (< K)

customers in the system, then the waiting time in the queue will be the sum of K − (j + 1)

interarrivals, a residual vacation and j service times. Because of independence and the

memoryless property of the exponential distribution, we have

W ∗′

21(s) =
∫

∞

0
e−sxdW21(x)

=
K−1
∑

j=0

p2j

(

λ

λ + s

)K−(j+1) (
θ2

θ2 + s

)(

µ

µ + s

)j

= p20

(

θ2

θ2 + s

)

K−1
∑

j=0

(

λ

λ + s

)K−(j+1) (
µ

µ + s

)j

= p20

(

θ2

θ2 + s

)

(λ + s)(µ + s)

s(λ − µ)





(

λ

λ + s

)K

−

(

µ

µ + s

)K


 (33)

If a customer arrives in the system during vacation and sees N = j (≥ K) customers

in the system, then the waiting time in the queue is the sum of a residual vacation and j

service times. Thus,

W ∗′

22(s) =
∫

∞

0
e−sxdW22(x)
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=
∞
∑

j=K

p2j

(

θ2

θ2 + s

)(

µ

µ + s

)j

= p20

(

θ2

θ2 + s

)

∞
∑

j=K

(

λ

λ + θ2

)(j−K+1) (
µ

µ + s

)j

= p20

(

θ2

θ2 + s

)(

µ

µ + s

)K
1

λ+θ2

λ
− µ

µ+s

(34)

Similarly, if a customer arrives in the system during a busy period and encounters N =

j(≥ 1) customers in the system, then the waiting time in the queue is the sum of a residual

service time and j − 1 service times. It then follows that

W ∗

01(s) =
∫

∞

0
e−sxdW01(x) =

∞
∑

j=1

p0j

(

µ

µ + s

)j

Using (26) we see that

W ∗

01(s) =
∞
∑

j=1

{p1ρ
j +

j−1
∑

i=0

p2iρ
j−i}

(

µ

µ + s

)j

Using (22) and (23) and several algebraic manipulations gives

W ∗

01(s) = p20
λ

µ + s − λ











p1

p20

+
1 −

(

µ
µ+s

)K

1 −
(

µ
µ+s

) +

(

µ

µ + s

)K
λ(µ + s)

(λ + θ2)(µ + s) − λµ











(35)

Combining (33), (34) and (35), we obtain

W ∗(s) = p20











θ2

θ2 + s







(

λ
λ+s

)K
−
(

µ
µ+s

)K

λ
λ+s

− µ
µ+s

+

(

µ
µ+s

)K

λ+θ2

λ
− µ

µ+s







+
λ

µ + s − λ







p1

p20

+
1 −

(

µ
µ+s

)K

1 − µ
µ+s

+

(

µ
µ+s

)K

λ+θ2

λ
− µ

µ+s





+
p1

p20











(36)

Hence, we have (10).

The probability that a customer arriving in the system has to wait for service is given by

1 − p1 (37)

Hence, given Wq > 0, the conditional distribution function Wq(x) is given by

P (Wq ≤ x|Wq > 0) =
(W21(x) + W22(x) + W01(x)

1 − p1

(38)

Then, in view of (32) and (10), we obtain (11).
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A.4 Analysis of the Operational Period

We consider the problem of obtaining the equation (17) for E[BR], the expected length of a

busy period beginning with R customers in the system. First, note that

P (R = r) =





∞
∑

j=K

p2j





−1

p2r (r = K,K + 1, K + 2, . . .)

In view of (23), we have

P (R = r) =
θ2

λ

(

λ

λ + θ2

)r−K+1

(39)

Because of (16), we can condition on R, and write

E[BR] =
∞
∑

r=K

E[BR|R = r]P (R = r)

=
∞
∑

r=K

E[Br]P (R = r)

=
∞
∑

r=K

r

µ − λ

θ2

λ

(

λ

λ + θ2

)r−K+1

from which (17) follows immediately.

We turn next to the derivation of the equation (18) for E[VK ], the expected length of

vacation.

Let X, Z and S be random variables which are independent and exponentially distributed

with mean 1/λ, 1/θ2 and 1/µ, respectively.

We use a recurrence method as follows:

E[VK ] = E[VK |Z < X]P (Z < X) + E[VK |X ≤ Z]P (X ≤ Z)

= E[Z + V ′

K |Z < X]P (Z < X) + E[X + V ′

K−1|X ≤ Z]P (X ≤ Z)

= E[Z|Z < X]P (Z < X) + E[X|X ≤ Z]P (X ≤ Z)

+E[V ′

K ]P (Z < X) + E[V ′

K−1]P (X ≤ Z)

=
1

λ + θ2

+
θ2

λ + θ2

E[VK ] +
λ

λ + θ2

E[VK−1] (40)

where V ′

K and V ′

K−1 have the same distributions as VK and VK−1, respectively, but they are

independent of X and Z. We can then write

E[VK ] =
1

λ
+ E[VK−1] (41)
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To obtain E[V1], we note that

E[V1] = E[V1|Z < X]P (Z < X) + E[V1|X ≤ Z]P (X ≤ Z)

= E[Z + V ′

1 |Z < X]P (Z < X) + E[Z|X ≤ Z]P (X ≤ Z)

= E[Z] + E[V1]
θ2

λ + θ2

=
1

λ
+

1

θ2

(42)

Combining (41) and (42), we obtain (18).
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