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Abstract

We derive closed formulae for the numbers of rooted maps with a fixed number
of vertices of the same odd degree except for the root vertex and one other vertex
of degree 1. A similar result, but without the vertex of degree 1, was obtained
by the first author and Rahman. These formulae are combined with results of
the second author to count unrooted regular maps of odd degree. We succeed in
finding, for each even n, a closed formula fn(r) for the number of unrooted maps
(up to orientation-preserving homeomorphisms) with n vertices and odd degree r,
provided r is an odd prime or gcd(r, n−2) = 1 or n = 2. The functions fn become
more cumbersome as n increases, but for n > 2 each has a bounded number of
terms independent of r.
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1 Introduction

1.1 Motivation

In the late 1970’s the second-named author developed a method of counting unrooted
planar maps [Lis81] (see also [Lis85, Lis98]). It relies on the concept of the quotient
map of a (geometrically implemented) map with respect to a rotational automorphism.
The idea is to reduce the problem to the enumeration of rooted maps of the same type
and the arising quotient maps. The method turned out to be effective for diverse classes
of maps (see [Lis04]). In particular it is quite applicable for counting unrooted vertex
degree specified maps, although the resulting reductive formulae are necessarily fairly
cumbersome. But in general we encounter a more serious obstacle in applying this
approach: the enumeration of the arising rooted degree specified maps. If the maps
under consideration are eulerian, that is even-valent, then all the quotient maps are
eulerian or unicursal (the latter term means that only two vertices are of odd degree),
and there are remarkable sum-free formulae discovered by Tutte [Tut62] for counting
rooted eulerian or unicursal maps with a given vertex degree distribution. In particular,
this enabled the second author to count unrooted regular maps of even degree [Lis85].

Sum-free closed formulae are appealing goals for research in enumeration. However,
in the general case for maps with odd-degree vertices such simple formulae are not known
(see [BenC94], where a certain general but inconvenient formula is given). So the corre-
sponding reductive formulae are impractical for maps having many odd-degree vertices.
At present, the only known notable exception is a simple closed formula for the number
of rooted 3-regular maps [Mul66]. Accordingly, there is a simple formula for the number
of unrooted 3-regular maps. This was published (with a minor error) in [LisW87]. A
technique developed by the first author [Gao93] (cf. [GaoR97]) shows that there are other
classes of effectively enumerable rooted maps with many odd-degree vertices, namely,
r-regular maps (see below). However, in order to be applicable for counting unrooted
maps of the same classes, the rooted enumeration should be extended to the maps of
a similar specification but possessing one or two additional odd-valent vertices. This is
one of the main aims of the present paper. It is achieved, with simple closed formulae,
if we permit one extra vertex of degree 1 and another of arbitrary degree. Even this
requires considerable effort and a nontrivial extension of the technique in [GaoR97] to
be able to deal with truncations of power series which somewhat mysteriously cancel
with other nice functions (see (3.28)). Further extensions look very difficult.

The other main aim is to translate these results to the enumeration of unrooted
regular maps of odd degree. We find closed formulae for the numbers of these maps
with a given number n of vertices as a function of the odd degree r, provided r satisfies
certain restrictions. These restrictions could be removed (and the formula completed)
if we could find a similar closed formula for the number of rooted maps with all vertices
of degree r except for two vertices of arbitrary (but equal) degree. Our basic approach
makes it clear how to obtain non-closed (recursive) formulae for the cases that we omit
here, if that is desired. This is a much more routine job than the task we attempt here.
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1.2 Main definitions and notation

A planar map is a 2-cell embedding of a planar connected graph (loops and multiple
edges allowed) in an oriented sphere. We consider only planar maps, therefore for
brevity we will merely call them maps hereafter. A map is rooted if one of its edge-ends
(known also as edge-vertex incidence pairs, darts, semi-edges, or “brins” in French) is
distinguished as the root. The corresponding vertex is called the root-vertex. It is well
known and important that no non-trivial automorphism of a map leaves the root fixed.
The degree of a vertex is the number of edge-ends incident with it. This is often called
valency in the map enumeration literature.

In this paper, counting unrooted maps means counting up to orientation-preserving
homeomorphisms. There is also a method of counting up to all homeomorphisms given
by the third author [Wor81], but this is in general very recursive in nature and not so
convenient for obtaining closed formulae.

If K(m) is a class of maps withm edges, thenK+(m) denotes the number of unrooted
maps in K(m) and K(m) denotes the number of rooted maps. Hence

K+(m) = |K(m)| =
∑
Γ∈K

1,

and it is clear that

K(m) =
∑
Γ∈K

2m

|Aut(Γ)|
,

where |Aut(Γ)| is the order of the automorphism group of the map Γ. We define
A(1a12a23a3 · · · ;m) to be the class of planar maps of the indicated vertex degree spec-
ification, that is, with ai vertices of degree i; the implied number of edges, m =
(a1 + 2a2 + 3a3 + · · · )/2, is also recorded in the notation. These maps have

v =
∑

ai

vertices and (by Euler’s formula)

f = m− v + 2 (1.1)

faces. We call maps of such a specification r-regular if ai = 0 for i 6= r. Moreover,
we need to consider maps in which one or two vertices of degree 1 are distinguished as
singular; a map cannot be rooted at a singular vertex. The presence of singular vertices
is indicated by the corresponding number of asterisks (∗) in the subscript. Singular
vertices play the role of axial elements in a rotational automorphism of a covering of the
rooted map (see below).

2 Reductive enumeration of unrooted regular maps

In this section we relate the number A+(rn) = A+(rn;m) of unrooted r-regular maps
with n vertices andm = nr/2 edges to the numbers A(rn;m) of the corresponding rooted
maps, and rooted maps of certain related types. The technique developed in [Lis81,
Lis85] will be used; these references should be consulted for further details of the general
discussion in this section.
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2.1 Quotient maps and liftings

Consider a map Γ and its rotational automorphism α of order ρ > 1. Then α is
determined by two axial cells (poles) and the rotation angle 2π`/ρ, where `, 1 ≤ ` < ρ,
is prime to ρ. Now there is a unique quotient map ∆ = Γ/α. It is defined topologically
and can be constructed geometrically by cutting the underlying sphere into ρ identical
sectors, taking one of them and glueing it into a new sphere. Conversely, given ρ and
two arbitrary axial cells, neither of which may be an edge, ∆ is lifted into a unique map
Γ′. In order to use this approach for the enumeration of unrooted maps Γ ∈ K(m),
scheme [Lis81, Lis85], one needs first to properly differentiate all possible rotation axes
by types to ensure a certain uniformity of the quotient maps and of their liftings. Namely,
a classification W = {ω} of the axes is proper if the number of ways to lift a quotient
map ∆ back into K(m) (in other words, this is the multiplicity of the appearances of ∆
as a quotient map) depends only on ρ and the type ω of the axis with respect to which ∆
has been obtained. We denote this number by ψω(ρ). Further the corresponding classes
of quotient maps should be described thoroughly and enumerated as the rooted ones:
K+(m) is easily expressed in terms of these numbers multiplied by ψω(ρ) and summed
over all possible ρ and ω.

Typically the classification of axes into types according to the nature of the two axial
cells (face–face, face–vertex, etc.) suffices. This is indeed true for the present application.
Constraints on ρ, together with the numbers of the corresponding quotient maps, are
described for each type in Table 1 (where, and thereafter, for brevity, ( , ) denotes the
greatest common divisor). Recall that m = nr/2, and note that n is always even since
r is odd.

Table 1: Quotient maps for A(rn;m)

Type ω Constraint := Pω(ρ) #(rooted quotient maps) := A[ω](ρ)

face – face ρ |n/2 A
(
rn/ρ; m

ρ

)
face – vertex ρ |(r, n− 1) A

(
( r

ρ
)1r(n−1)/ρ; m

ρ

)
face – edge ρ=2 |(n/2 + 1) A∗

(
11rn/2; m+1

2

)
vertex – vertex ρ |(r, n−2) A

(
( r

ρ
)2r(n−2)/ρ; m

ρ

)
edge – edge ρ=2 |n/2 A∗∗

(
12rn/2; m

2
+ 1
)

In order to explain these data we note that the degrees of the axial cells are di-
minished ρ times in the quotient maps, while the non-axial cells preserve their degrees.
On the other hand, ρ non-axial cells turn into one cell, whereas every axial cell of the
original map turns into one axial cell of the quotient map. If the axial cell of Γ is an
edge (in which case ρ = 2), it turns into an edge ending in a special additional vertex
of degree 1. This vertex of the quotient map is called singular. A singular vertex is
necessarily axial, and the quotient map cannot be rooted at a singular vertex. Finally,
the quotient map contains m/ρ edges if it has no singular vertices, and apart from this,
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every singular vertex contributes an additional term of 1/2 to the number of edges of
the quotient.

The constraints in the second column of Table 1 arise from the condition that all
parameters of the quotient maps are integers. When ω is face–face, we have ρ | (n, nr/2)
and so ρ | n/2 since r is odd. When ω is face–edge, ρ = 2 | (n, nr/2 + 1/2) and so n/2
must be odd. The other cases should be obvious. Note that ω cannot be of the form
vertex–edge because ρ would then be 2 (because of the axial edge) but would also have
to divide the degree of the axial vertex, which is odd. So this sixth type ω does not
occur for these maps.

Table 2 contains the values of number ψω(ρ) of admissible choices of the axial cells
in the quotient maps. The type is defined as in the lifted map. Here f is the number of
faces, a function of other parameters as determined by (4). The number of faces of the
quotient maps (the fourth column) is significant for calculating ψ only if at least one
axial cell is a face.

Table 2: Choice of axial cells in quotient maps for lifting

Type ω #(faces) #(axes choices) := ψω(ρ)

face – face f−2
ρ

+ 2
(

f−2
ρ

+ 2
)(

f−2
ρ

+ 1
)
/2

face – vertex f−1
ρ

+ 1 f−1
ρ

+ 1

face – edge f+1
2

f+1
2

vertex – vertex 1

edge – edge 1

2.2 Reduction

Now we can establish the desired uniform reductive formula for the number of unrooted
regular maps.

Theorem 1

A+(rn) =
1

2m

[
A(rn;m) +

∑
2≤ρ≤m

φ(ρ)
∑

ω

δPω(ρ) ψω(ρ)A[ω](ρ)

]
, (2.1)

where m = rn/2, φ(ρ) = |{i : 1 ≤ i ≤ ρ, gcd(i, ρ) = 1}| is the Euler totient function, the
second sum is taken over the five axis types represented in the first column of Table 1,
Pω(ρ) and A[ω](ρ) are the corresponding constraint and rooted enumerator represented,
respectively, in the second and third columns of the same table, the values of ψω(ρ)
are taken from the last column of Table 2, where the parameter f is determined by
formula (1.1) and δPω(ρ) is the characteristic function: δP = 1 if the condition P holds
and δP = 0 if P is false.
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Proof: Immediately from the foregoing tables and formulae according to the general
enumerative scheme for unrooted planar maps [Lis81, Lis85].

It remains to obtain closed enumerative formulae for the functions A[ω](ρ) appearing
in the right-hand side of (2.1). This will be done in the rest of this paper subject to
some restrictions on n and r. We can state the form of the answer as follows.

Theorem 2 Let n > 2 be fixed and let d denote (r − 1)/2. Then, provided r is not a
multiple of an odd prime divisor of n− 2, A+(rn) is expressible as a polynomial in

(
2d
d

)
and the quantities δi|r

(
2bd/ic
bd/ic

)
(for all i dividing n−1) with coefficients rational functions

of d. (For each odd prime divisor p, the extra quantity δr=p must also be included.) For
n = 2,

A+(r2) =
1

2

(
2d

d

)
+

1

2(2d+ 1)

∑
1≤ρ|2d+1

φ(ρ)

(
2bd/ρc
bd/ρc

)2

.

A list of explicit formulae for A+(rn) for all n ≤ 10 (and the appropriate r) is given
in Section 4.

3 Near-regular maps with a degree 1 vertex

This section deals with rooted maps which have all but the root vertex of degree r, and
one other vertex of degree 1. These are important for evaluating formula (2.1).

We immediately switch to the duals of the maps to be more in line with the arguments
in [GaoR97]. LetM

{r}
k,m denote the number of rooted maps with all internal faces of degree

r, with k faces altogether (including the unbounded face), and m edges. Similarly,

M
{r}[h]
k,m denotes the number of rooted maps with all internal faces of degree r except

for one distinguished face of degree h, with k faces altogether (including the unbounded
face), and m edges. From all these notations, when r is understood it can be omitted;

thus M
[h]
k,m = M

{r}[h]
k,m ; but if r has different values in two parts of the same formula it

will be included.

3.1 Reduction to Mk,m and M
[1]
k,m

We need to express the entries A[ω](r) in Table 1 in terms of Mk,j and M
[1]
k,j. In the

following we use d = 2r + 1 as before. For all but the fourth type (vertex–vertex), we
have (see justification below)

A(rn/ρ;m/ρ)) = Mn/ρ,m/ρ = Mk,kd+k/2 (k = n/ρ) (3.1)

A((r/ρ)1r(n−1)/ρ;m/ρ) = nM1+(n−1)/ρ,m/ρ

= nMk,kd−d+(k+r/ρ−1)/2 (k = 1 + (n− 1)/ρ) (3.2)

A∗(1
1rn/2; (m+ 1)/2) = M

[1]
1+n/2,(m+1)/2

= M
[1]
k,kd−d+k/2 (k = 1 + n/2), (3.3)

A∗∗(1
2rn/2;m/2 + 1) = (rn/4)M

[1]
2+n/2,(m+2)/2

= (rn/4)M
[1]
k,kd−2d+k/2 (k = 2 + n/2). (3.4)
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For the vertex–vertex type, if ρ = r and n > 2

A((r/ρ)2r(n−2)/ρ;m/ρ) = (n/2)M
[1]
2+(n−2)/r,n/2

= (n/2)M
[1]
k,kd−2d+k/2 (k = 2 + (n− 2)/r) (3.5)

and if n = 2
A((r/ρ)2r(n−2)/ρ;m/ρ) = M

{r/ρ}
2,m/ρ, (3.6)

whilst in any other case for the vertex–vertex type we have not derived an appropriate
formula. Thus, we do not obtain a final result if n > 2 and gcd(r, n− 2) has any factors
(which are potential values of ρ) other than 1 and r. The numbers n for which this can
happen are those for which n− 2 is not a power of 2. In these cases, since r is odd, the
required condition can be restated as

r is an odd prime or gcd(r, n− 2) = 1 or n = 2. (3.7)

To justify equations (3.1) – (3.6), we consider the duals of the maps counted by the
M ’s. Then faces of degree r become vertices of degree r. The equation for the first type
is immediate. For the second, the quotient map has nr/ρ rootings, of which r/ρ are on
the singular vertex, making a n-to-1 correspondence between the maps required and the
ones counted by M1+(n−1)/ρ,n/ρ (where the vertex of degree 1 must be the root vertex).
For the third type, we could have used M with a similar adjustment, but by using M [1]

no adjustment is required. For the fourth type, M [1] counts maps with the root at a
vertex of degree 1, so the adjustment factor is the number of possible rootings of the
quotient map, divided by 2 (as there are two vertices of degree 1). As the quotient map
has nr/2ρ = n/2 edges, the factor is n/2. For the fifth case, the argument is similar but
the special vertices disallow two possible rootings in the maps counted by A∗∗.

3.2 The form of Mk,m and M
[1]
k,m

Closed formulae for the numbers Mk,m were computed in [GaoR97], so for evalua-

ting (3.1) – (3.6) the only new results required are for M
[1]
k,m. It is nice to know what

kind of functions will appear in an argument. In particular, the generating function for
rooted plane trees is well known:

M1(x) = M
{r}
1 (x) =

1−
√

1− 4x

2x
. (3.8)

We will work with the set S[X] of polynomials in X and X−1 whose coefficients are
rational functions of d. It follows easily from the equations in [GaoR97] that

Mk(x)X
1/2x−(k−1)d

(
2d

d

)1−k

∈ S[X] (3.9)

where
X = (1− 4x)−1. (3.10)

For M
[1]
k (x) we will prove a similar result.
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Lemma 1 For k ≥ 2,

M
[1]
k (x)X−1/2x−(k−2)d

(
2d

d

)2−k

∈ S[X].

This lemma is proved at the end of this section, along with the specific calculation
of M

[1]
k (x).

The following result is obtained directly from (3.9) and Lemma 1 by considering
the extraction of the appropriate coefficient of x. Note that the coefficient of xi in any
half-integer power of X is a polynomial in

(
2d
d

)
with coefficients being rational functions

of d. Details of this kind of calculation appear in Section 3.7.

Corollary 1 For each fixed k, Mk,kd+k/2, M
[1]
k,kd−d+k/2 and M

[1]
k,kd−2d+k/2 are all polyno-

mials in
(
2d
d

)
with coefficients being rational functions of d, and Mk,kd−d+t is a polynomial

in
(
2d
d

)
and

(
2t
t

)
with coefficients being rational functions of d and t.

Proof of Theorem 2: Immediately from Corollary 1, (3.1) – (3.6) and Theorem 1.

3.3 A recursion for M
[h]
k (x)

Our point of access is a recursive type relation analogous to [GaoR97, Lemma 1].

Notation For i ≥ 0 and a generating function A(x) =
∑

m≥0 cmx
m, let Ri(A(x))

denote the part of A(x) consisting of terms with exponents at least i, that is

Ri(A(x)) =
∑
m≥i

cmx
m.

Lemma 2 For k ≥ 3 we have

M
[h]
k (x) =

x√
1− 4x

(
2

k−1∑
j=2

Mj(x)M
[h]
k+1−j(x) + Ra/2(M

[h]
k−1(x)) + R(a+δ)/2(Mk−1(x))

)

where a = (k − 2)r + h− 1 and δ = 1 if h = 1 and 0 otherwise.

Proof: The common degree r is constant in the following argument. Using the type
of decomposition in [GaoR97], let M be a map of the type counted by M

[h]
k (x), with

m edges. There are two cases if the root edge of M is deleted. (As usual for such
arguments, the new map(s) resulted are rooted in canonical ways.)

In the first case, two maps result. If the one containing the distinguished face has j
faces then the other has k + 1− j faces. The generating function for these is

2xMj(x)M
[h]
k+1−j(x).

In the second case, deleting the root edge merges the adjacent face with the root
face, and there are two subcases. In the first subcase, the adjacent face has degree r,
in which case the number of possibilities for the map produced is M

[h]
k−1,m−1, and in the

8



second, the adjacent face is the distinguished one of degree h, so the new map is counted
by Mk−1,m−1. However, in the first of these cases the degree of the root face of M must
be at least 1, implying (summing the face degrees) that 2m ≥ (k − 2)r + h+ 1, and so
m− 1 ≥ ((k− 2)r+ h− 1)/2. Conversely, for m− 1 in this range, the reverse operation
can be carried out in a unique way. On the other hand, in the second case, we obtain
the same constraint if h ≥ 2, but the stronger constraint m−1 ≥ ((k−2)r+h)/2 in the
case h = 1 since the degree of M must be at least 2 when the root edge encompasses a
face of degree 1. (For k = 2, if it had been permitted, the second case would have the
same restriction as the first one.) Thus

M
[h]
k (x) =

k∑
j=1

2xMj(x)M
[h]
k+1−j(x) + x

∑
m≥((k−2)r+h−1)/2

(M
[h]
k−1,mx

m +Mk−1,mx
m),

and the lemma follows upon solving for M
[h]
k and using (3.8) to simplify the leading

factor.

In further work we consider only the case h = 1. Since the number of edges in maps
counted by Mk−1(x) is at least

(
(k − 2)(2d + 1) + 1

)
/2 = (a + 1)/2, the following is

immediate.

Corollary 2

M
[1]
k (x) =

x√
1− 4x

(
2

k−1∑
j=2

Mj(x)M
[1]
k+1−j(x) + Ra/2(M

[1]
k−1(x)) +Mk−1(x)

)
.

Now for some computations for small values of k. As a foundation in addition to (3.8)
we use the following formula of Tutte [Tut62] (see also equation (1) in [GaoR97]) for
just two faces, the interior one of degree r (even or odd):

M
{r}
2,m =

m− br/2c
2m

(
2m− 2br/2c
m− br/2c

)(
2br/2c
br/2c

)
. (3.11)

We also make use, in one of our alternative derivations of M
[1]
3 , of Tutte’s formula in

the case that the non-root face degree is even:

M
{2d}
k,m =

(m− 1)!(m− (k − 1)d)

(k − 1)!(m− k + 2)!

(
2m− 2(k − 1)d

m− (k − 1)d

)(
2d− 1

d

)k−1

. (3.12)

For later use, note that (3.11) implies for the generating function (see [GaoR97, Equa-
tion 13])

M2(x) =

(
2d

d

) ∑
m≥d+1

m− d

2m

(
2m− 2d

m− d

)
xm (3.13)

and hence

M ′
2(x) =

(
2d

d

)
xd

(1− 4x)3/2
. (3.14)
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From [GaoR97] we also have

M3(x) =

(
2d

d

)2

x2d+2(1− 4x)−3/2. (3.15)

We henceforth assume that r is an odd integer, and write d = (r−1)/2 so that r = 2d+1.
The value of a/2 in Lemma 2 is then, in the case h = 1, given by

a/2 = d(k − 2) + k/2− 1. (3.16)

Formulae such as (3.14) and (3.15) we will call closed since they are simple explicit
formulae for the generating functions. In the present section, more specifically, a closed
expression means that it is a sum of terms involving the power of x and (1− 4x) where
the number of terms depends only on the number of vertices, not on d. In general, our
aim would be to find such closed expressions for M

[h]
k , though we only succeed in the

case h = 1. For the next two calculations, we explore a direct combinatorial argument
rather than the recursion in Lemma 2. (However, note that we will later develop a

general recursion that also covers the case of M
[1]
3 .)

3.4 M
[1]
2

Start with a rooted plane tree with m− 1 edges and insert a loop into any of its 2m− 2
corners, or insert the loop into the root corner and transfer the rooting onto the loop.
This shows that

M
[1]
2,m = (2m− 1)M1,m−1

as M1,m is the number of rooted planar trees with m edges. Thus, using (3.8), we have

M
[1]
2 (x) =

1

2
√

1− 4x
− 1

2
, (3.17)

regardless of r.

3.5 M
[1]
3

A map Γ of this sort can be obtained by inserting a loop into another map, Γ′. For the
loop to be inserted into the unbounded face, there are 2m− 2− r corners available, and
we also permit the possibility of shifting the rooting onto the loop if the root corner is
used. In this case Γ′ is counted by M2,m−1 = M

{r}
2,m−1. For the loop to be inserted in the

interior face, there are r − 1 corners as Γ′ is counted by M
{r−1}
2,m−1. Hence

M
{r}[1]
3,m = (2m− r − 1)M

{r}
2,m−1 + (r − 1)M

{r−1}
2,m−1.

Recalling that r = 2d+ 1 we may apply (3.11) and (3.12) to obtain

M
[1]
3,m =

(
2d

d

)(
2m− 2d− 2

m− d− 1

)(
(m− 1− d)2

m− 1
+
d(m− d− 1)

m− 1

)
= (m− d− 1)

(
2d

d

)(
2m− 2d− 2

m− d− 1

)
. (3.18)
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Note that, comparing with (3.11), we have

M
[1]
3 (x) = 2x2M ′

2(x), (3.19)

a relation which it would be nice to derive via a direct bijection between the maps
counted by M

[1]
3 (x) and those counted by M ′

2(x) (with one less edge and with a dis-
tinguished corner). Unfortunately, simply saying that the loop is inserted into the
distinguished corner does not apply, since the loop cannot be inserted into a corner in
the interior face without destroying the degree condition, and also the M3,n maps with
a root on the loop must be produced somehow.

3.6 M
[1]
4

The general method in the next Section is quite complicated so we introduce it by dealing
with the case of M

[1]
4 separately using a very related approach. From Corollary 2 and

using (3.16),

M
[1]
4 (x) =

x√
1− 4x

(
3∑

j=2

2Mj(x)M
[1]
5−j(x) + R2d+1(M

[1]
3 (x)) +M3(x)

)
. (3.20)

Of the terms in the summation,

2M2(x)M
[1]
3 (x) = 2x2((M2(x))

2)′ (3.21)

by (3.19). Also by (3.15) and (3.17)

2M3(x)M
[1]
2 (x) = 2

(
2d

d

)2

x2d+2(1− 4x)−3/2

(
1

2
√

1− 4x
− 1

2

)
.

For the next term, note that, using (3.19),

R2d+1(M
[1]
3 (x)) = R2d+1(2x

2M ′
2(x))

= 2x2R2d−1(M
′
2(x))

= 2x2(R2d(M2(x)))
′ (3.22)

= 2x2(R2d+1(M2(x)) + x2dM2,2d)
′. (3.23)

Adding (3.21) and (3.23) using (3.11) gives

2x2((M2(x))
2 + R2d+1(M2(x)))

′ + 4dx2d+1

(
2d

d

)2
1

4
.

It is shown in [GaoR97] just after (18) that

(M2(x))
2 + R2d+1(M2(x)) =

(
2d

d

)2

x2d+1(1− 4x)−1, (3.24)

11



and so putting this all together we have from (3.15) and (3.20)

x√
1− 4x

(
2x2

((
2d

d

)2

x2d+1(1− 4x)−1

)′

+ 4dx2d+1

(
2d

d

)2
1

4

+2

(
2d

d

)2

x2d+2(1− 4x)−3/2

(
1

2
√

1− 4x
− 1

2

)
+

(
2d

d

)2

x2d+2(1− 4x)−3/2

)
which is

x√
1− 4x

(
2d

d

)2(
2x2

(
(2d+ 1)x2d(1− 4x)−1 + 4x2d+1(1− 4x)−2

)
+ 4dx2d+1 1

4

+2x2d+2(1− 4x)−3/2

(
1

2
√

1− 4x
− 1

2

)
+ x2d+2(1− 4x)−3/2

)
i.e.

x2d+2

√
1− 4x

(
2d

d

)2 (
2x
(
(2d+ 1)(1− 4x)−1 + 4x(1− 4x)−2

)
+ d

+2x(1− 4x)−3/2

(
1

2
√

1− 4x
− 1

2

)
+ x(1− 4x)−3/2

)
i.e.

x2d+2

√
1− 4x

(
2d

d

)2 (
2x
(
(2d+ 1)(1− 4x)−1 + 4x(1− 4x)−2

)
+ d

+x(1− 4x)−2
)

i.e.

M
[1]
4 (x) =

x2d+2

√
1− 4x

(
2d

d

)2 (
d+ 2x(2d+ 1)(1− 4x)−1 + x(8x+ 1)(1− 4x)−2

)
. (3.25)

3.7 Higher M
[1]
k

In the formula for M
[1]
5 from Lemma 2 we have closed expressions plus

2M2(x)M
[1]
4 (x) + 2M3(x)M

[1]
3 (x) + R3d+3/2(M

[1]
4 (x)). (3.26)

The middle term is closed. Now in general

2M2f(x) + Rd(f(x)) (3.27)

is closed when f(x) = (1 − 4x)−α for α a half-integer. To be precise, we will calculate
Hj(x) for integers j ≥ 1 such that

F((1− 4x)−j−1/2) = −
(
−j − 3/2

d− 1

)
(−4x)dHj(x) (3.28)

12



where F is the linear operator defined as

F(f(x)) = 2M2(x)f(x) + Rdf(x). (3.29)

First, differentiating (3.24) we have

2M2(x)M
′
2(x) + R2d(M

′
2(x)) =

(
2d

d

)2

(x2d+1(1− 4x)−1)′

=

(
2d

d

)2 (
(2d+ 1)x2d(1− 4x)−1 + 4x2d+1(1− 4x)−2

)
.

So using (3.14) and dividing by
(
2d
d

)
xd, and then using

(−5/2
d−1

)
(−4)d = −2d(2d+1)

3

(
2d
d

)
, this

determines H1 in (3.28):

H1(x) =
3(2d+ 1− 8dx)

2d(2d+ 1)(1− 4x)2
. (3.30)

Next, note that

Rdx(1−4x)−j−3/2 = xRd−1(1−4x)−j−3/2 = xRd(1−4x)−j−3/2 +x

(
−j − 3/2

d− 1

)
(−4x)d−1

and hence

F(x(1− 4x)−j−3/2) = x2M2(x)(1− 4x)−j−3/2 + Rdx(1− 4x)−j−3/2

= xF((1− 4x)−j−3/2) + x

(
−j − 3/2

d− 1

)
(−4x)d−1.

So, using linearity of F, for all integers j,(
−j − 3/2

d− 1

)
(−4x)dHj(x) = −F((1− 4x)−j−1/2)

= −F((1− 4x)(1− 4x)−j−3/2)

= −F((1− 4x)−j−3/2) + 4F(x(1− 4x)−j−3/2))

= −(1− 4x)F((1− 4x)−j−3/2) + 4x

(
−j − 3/2

d− 1

)
(−4x)d−1

=

[
(1− 4x)

(
−j − 5/2

d− 1

)
Hj+1(x)−

(
−j − 3/2

d− 1

)]
(−4x)d.

Writing

B(x, y) =

(
x− 1/2

d+ y

)
(3.31)

we may rewrite the equation above as

Hj(x) = X−1B(−j − 2,−1)

B(−j − 1,−1)
Hj+1(x)− 1

13



with X as in (3.10). Now it is easy to check that for all integers p and q

B(p− 1, q)

B(p, q)
=

2p− 1− 2d− 2q

2p− 1
(3.32)

and thus

Hj+1(x) = X
2j + 3

2j + 2d+ 1
(Hj(x) + 1).

Starting with (3.30), which may be rewritten as

H1 =
X(X + 2d)

2d(2d+ 1)
,

we may use this recurrence to compute Hj recursively for all fixed integers j, both
positive and negative. Moreover, we may write

Hj(x) = H̃j(X) (3.33)

where H̃j is a polynomial in X and 1/X whose coefficients are rational functions of d
with a bounded number of terms for fixed j. The resulting recurrence for H̃j can be
solved using standard techniques to give

H̃j =
(3/2)d−1

(j + 3/2)d−1

XjH̃0 +
1

(j + 3/2)d−1

j−1∑
i=0

(i+ 3/2)d−1X
j−i, (3.34)

where H̃0 = X/(2d), and (a)b = a(a + 1) · · · (a + b − 1) is the rising factorial. We
may check that (3.34) is also valid for negative integers j, in which case the summation
symbol is interpreted as −

∑−1
i=j.

We also need to truncate at some other places. For b ≥ 0, define

Fb(f(x)) = 2M2(x)f(x) + Rbf(x) (3.35)

(so in particular, F = Fd). To simplify things a little, let us define

M̃
[1]
k (x) =

{
M

[1]
k (x) for k > 2

M
[1]
2 (x) + 1

2
= 1

2
√

1−4x
for k = 2.

(3.36)

Then the lone term Mk−1(x) in Corollary 2 is amalgamated into the term in the sum-
mation for j = k − 1, and we have for k ≥ 3

M
[1]
k (x) =

x√
1− 4x

(
2

k−1∑
j=2

Mj(x)M̃
[1]
k+1−j(x) + Ra/2(M̃

[1]
k−1(x))

)

=
x√

1− 4x

(
2

k−1∑
j=3

Mj(x)M̃
[1]
k+1−j(x) + Fd(k−2)+k/2−1(M̃

[1]
k−1(x))

)
(3.37)

by (3.16).

14



From (3.34) we have for fixed j that

Hj(x) ∈ S[X],

where S is defined as in Section 3.2. It is easy to check that

B(0, 0) = (−4)−d

(
2d

d

)
, (3.38)

and thus from (3.32), and a similar formula for B(p, q−1)/B(p, q), for any fixed integers
p and q

(−4)dB(p, q)/

(
2d

d

)
is a rational function of d (3.39)

and hence by (3.28)

F((1− 4x)−j−1/2) ∈
(

2d

d

)
xdS[X] (3.40)

for each fixed j.

Proof of Lemma 1 We claim that (3.37) implies by induction that for k ≥ 2

Lk(X) := M̃
[1]
k (x)X−1/2x−(k−2)d ∈

(
2d

d

)k−2

S[X], (3.41)

which immediately implies the lemma.

This is true for k = 2 by (3.17). Assume Lk−1(X) ∈
(
2d
d

)k−3S[X]. Then

Fd(k−2)+k/2−1(M̃
[1]
k−1(x)) = x(k−3)dFd+k/2−1(Lk−1(X)X1/2).

This can be evaluated by noticing that Fd+k/2−1 is linear and also

Fd+k/2−1(X
j+1/2) = Fd(X

j+1/2)−
d+bk/2−3/2c∑

i=d

xi[xi]Xj+1/2

where square brackets denote the extraction of a coefficient. Thus by (3.28)

Fd(k−2)+k/2−1(M̃
[1]
k−1(x)) = x(k−3)d

∑
j

−Q(j, k)[Xj]Lk−1(X) (3.42)

where

Q(j, k) =

(
−j − 3/2

d− 1

)
(−4x)dHj(x) +

d+bk/2−3/2c∑
i=d

xi[xi]Xj+1/2

= (−4x)dB(−j − 1,−1)H̃j(X) +

bk/2−3/2c∑
i=0

(−4x)d+iB(−j, i) (3.43)

∈ xd

(
2d

d

)
S[X]

by (3.39) and inverting (3.10) to x = (1 − 1/X)/4. We now obtain (3.41) recursively
from (3.37), (3.9) and (3.42).

Computational note The coefficients of Lk(X) can be obtained from the equations re-
ferred to in the last line of the above proof together with (3.38), (3.32), (3.34) and (3.33).

This gives the value of M
[1]
k for k ≥ 3 by the definition of Lk in (3.41).
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4 Results

First, for completeness, we give the formulae for Mk(x) computed using the equations
in [GaoR97], which clearly demonstrate the general form of these functions. Note that
the coefficients of M2(x) are given in (3.11) and we do not have a closed formula for the
generating function.

M3(x) =
1

16

(
2d

d

)2
(X − 1)2 x2 d

√
X

M4(x) =
1

64

(
2d

d

)3
(X − 1)2 (2 d+X − 1)x3 d

√
X

M5(x) =
1

3072

(
2d

d

)4
(X − 1)3 (64 d2 − 16 d+ 48X d− 18X + 3 + 15X2)x4 d

X3/2
.

Here are results for M
[1]
k (x) obtained as described at the end of Section 3. The

functions Lk(X) defined in (3.41) are easily discerned from these. Recall that M̃ and
M are the same except when k = 2.

M̃
[1]
2 (x) =

1

2

√
X

M
[1]
3 (x) =

1

8

(
2d

d

)
(X − 1)2 xd

√
X

M
[1]
4 (x) =

1

64

(
2d

d

)2
(X − 1)2 (4 d+ 3X − 3)x2 d

√
X

M
[1]
5 (x) =

1

256

(
2d

d

)3
(X − 1)3 (5X2 − 6X + 12X d− 4 d+ 12 d2 + 1) x3 d

X3/2
.

Writing Uk,d for Mk,kd+k/2 as in (3.1), Vk,d for M
[1]
k,kd−d+k/2 as in (3.3), and Wk,d for

M
[1]
k,kd−2d+k/2 as in (3.4) and (3.5), we have from (3.11) and the equations above

U2,d =

(
2d

d

)2

U4,d =
2

3
d (2 d+ 1)

(
2d

d

)4

U6,d =
1

20
d2 (2 d+ 1) (36 d− 1)

(
2d

d

)6

U8,d =
1

315
d2 (2 d+ 1) (2048 d3 − 387 d2 + 20 d− 1)

(
2d

d

)8

U10,d =
1

9072
d2 (2 d+1) (250000 d5− 100944 d4 +14167 d3− 1131 d2 +73 d− 3)

(
2d

d

)10

.

V2,d =
2 d+ 1

d+ 1

(
2d

d

)
16



V4,d =
3

2
d (2 d+ 1)

(
2d

d

)3

V6,d =
5

24
d2 (25 d− 1) (2 d+ 1)

(
2d

d

)5

V8,d =
7

720
d2 (2 d+ 1) (2401 d3 − 544 d2 + 35 d− 2)

(
2d

d

)7

.

W2,d = 1

W4,d = d

(
2d

d

)2

W6,d =
1

6
d2 (16 d− 1)

(
2d

d

)4

W8,d =
1

60
d2 (648 d3 − 182 d2 + 15 d− 1)

(
2d

d

)6

.

The numbers of unrooted maps are now counted using (2.1), Tables 1 and 2, equa-

tions (3.1)–(3.6), and the appropriate coefficients of Mk(x) and M
[1]
k (x) as given above.

There are also some extra ones to use in the case n = 2 (see below), as well as

Mk,kd−d+t

which arises in (3.2) for t = (k+(2d+1)/ρ−1)/2. It only occurs when ρ | n−1 as shown
in Table 1 (face–vertex case) and can be computed in each case using the formula for
Mk(x). The result when k = 2 is t

2d+t

(
2t
t

)(
2d
d

)
, where t = ((2d+1)/ρ+1)/2 = dd/ρe since

t is an integer. Expressed in terms of s = bd/ρc = t − 1, this becomes 4s+2
2d+s+1

(
2s
s

)(
2d
d

)
.

Note that s = (2d+1−ρ)/(2ρ), which makes the first factor 4(2d+1)/(4dρ+2d+ρ+1),
and this gives simple expressions for particular ρ. For k = 4 we compute M4,3d+dd/ρe+1

by expanding the formula given above in powers of X and replacing the coefficient of
X i−1/2 by (−4)s+2B(i, 2), where B is defined in (3.31). This simplifies to

M4,3d+s+2 =
2ds− d− s

4s− 2

(
2s

s

)(
2d

d

)3

.

In the case ρ = 3 the above expression for s shows that the first factor is (2d2 − 6d +
1)/(4d − 10). We do not compute this for arbitrary k. It is easy to compute what is
required in Maple up to large values of k.

For n = 2 there is a special term arising as in (3.6) coming from the vertex–vertex

type, when ψ = 1 and Pω(ρ) is ρ | r. This is φ(ρ)M
{r/ρ}
2,r/ρ . The binomial is evaluated

as
(

r/ρ−1
(r/ρ−1)/2

)
using (3.11) (as for U2 above but with r replaced by r/ρ), which is then

clearly equal to
(
2bd/ρc
bd/ρc

)
.

For the following equations, recall that δa|b is 1 if a | b and 0 otherwise, and that d =
(r− 1)/2. Also recall that when condition (3.7) is violated (as for some r when n = 8),
we do not have a closed formula, and in such cases some instances of the function A
remain unevaluated (for certain values of r).
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A+(r2) =
1

2

(
2d

d

)
+

1

2(2d+ 1)

∑
1≤ρ|2d+1

φ(ρ)

(
2bd/ρc
bd/ρc

)2

A+(r4) =
1

6
d

(
2d

d

)4

+
1

2
d

(
2d

d

)2

+ δ3|r
2

3

(
2bd/3c
bd/3c

)(
2d

d

)
A+(r6) =

36d− 1

120
d2

(
2d

d

)6

+
3

4
d2

(
2d

d

)3

+
1

3
d

(
2d

d

)2

+ δ5|r
4

5

(
2bd/5c
bd/5c

)(
2d

d

)
A+(r8) =

1

2520
(2048d3 − 387d2 + 20d− 1)d2

(
2d

d

)8

+
1

24
(32d− 5)d2

(
2d

d

)4

+
1

4
d

(
2d

d

)2

+ δ7|r
6

7

(
2bd/7c
bd/7c

)(
2d

d

)
+

4

3
δr=3

+
1

4r
δ(r>3&3|r)A

(
(r/3)2r2; 4r/3

)
A+(r10) =

1

90720
(250000d5 − 100944d4 + 14167d3 − 1131d2 + 73d− 3)d2

(
2d

d

)10

+
1

48
(125d2 − 30d+ 1)d2

(
2d

d

)5

+
2

5
d

(
2d

d

)2

+δ9|r
2

3

(
2bd/9c
bd/9c

)(
2d

d

)
+ δ3|r

(10d− 1)2

81

(
2bd/3c
bd/3c

)(
2d

d

)3

.

Notably, in the formulae above all rational functions of d mentioned in Theorem 2
actually turn out to be polynomials. Computing for specific small values of r gives the
following table for the number A+(rn) of unrooted r-regular maps with n vertices. The
entries “no formula” occur when r is a proper multiple of an odd prime divisor of n− 2,
in which case we do not have a closed formula. Note that the missing values can be
filled in, if required, by using Lemma 2 in a recursive computation for any given h. This
allows one to compute the low coefficients of M

[h]
k (x) for small k and h, and thereby

compute the numbers required for the remaining vertex-vertex cases in Theorem 1 (for
any particular r and n).

Table 3: Numbers of unrooted regular n-vertex maps, 2 ≤ n ≤ 20,
from closed formulae

18



r A+(r2)
3 2
5 7
7 39
9 308

11 3013
13 33300
15 394340
17 4878109
19 62232321
21 812825244
23 10818489817
25 146250545528

r A+(r4)
3 6
5 468
7 80600
9 16016560

11 3360790440
13 728936019504
15 161858688461184
17 36580777518027600
19 8382066029146609800
21 1941971956789550319920
23 454006489072843947528288
25 106944132919124515725427808

r A+(r6)
3 26
5 111096
7 513654400
9 2243178389200

11 9550256850912960
13 40141310067406592352
15 167483578096089845880576
17 695587719666862982630642400
19 2880023438585172541459822939200
21 11898836836468227904716518897934240
23 49083119653988050344170924762641714368
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r A+(r8)
3 191
5 39670362
7 4742588317460
9 no formula

11 39758207592119720043060
13 3253001744463113558023410456
15 no formula
17 19574639342029496912485843276022233800
19 1467233390721250173975296095881808070004900
21 no formula

r A+(r10)
3 1904
5 17313263640
7 53786496621600480
9 115106032016630589567220

11 204887911426306253833736206368
13 326950476035695538194385010882728640
15 485422668906114651402145718767396615062912
17 684795515898773965920425882490399130420733638080

r A+(r12)
3 22078
5 8581243954044
7 696401295433093120200
9 33156938554594811848607336600

11 1210336263925368500658402392858157888
13 37705498104552095463975261380309215629944592

r A+(r14)
3 282388
5 4650485509103976
7 9891028759926839453714800
9 no formula

11 7861944824653116454899492247205395134779280
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r A+(r16)
3 3848001
5 2692853733312152946
7 150420303869075439022288355100
9 3559090844072971395999935289096828404900

11 54764349135521221379877401583610341415948624220820

r A+(r18)
3 54953996
5 1641063780244320916056
7 2410984386008752279281147366400400
9 1273151076590084794217037825376103624331873200

r A+(r20)
3 814302292
5 1041574815624514527248040
7 40288343145550164807147826368004224240
9 no formula

For the reader’s convenience, in Table 4 we represent the same numerical data for
r = 3, 5 and 7 grouped by vertex degrees.

Table 4: Numbers of unrooted r-regular maps, r = 3, 5, 7

n A+(3n) A+(5n) A+(7n)
2 2 7 39
4 6 468 80600
6 26 111096 513654400
8 191 39670362 4742588317460

10 1904 17313263640 53786496621600480
12 22078 8581243954044 696401295433093120200
14 282388 4650485509103976 9891028759926839453714800
16 3848001 2692853733312152946 150420303869075439022288355100
18 54953996 1641063780244320916056 2410984386008752279281147366400400
20 814302292 1041574815624514527248040 40288343145550164807147826368004224240
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