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1 Proof of the Lagrange Inversion Formula

Theorem 1 Lagrange Inversion Formula: Suppose u = u(x) is a power series
in x satisfying x = u/φ(u) where φ(u) is a power series in u with a nonzero
constant term. Then for any power series F (u) of u, we have

[xn]F (u(x)) =
1
n

[un−1] (F ′(u)φn(u)) . (1)

Proof. Let φ(u) =
∑

k≥0 φkuk. We first note that u(x) = φ0x + O(x2) and
hence

∑
k≥n φkuk does not contribute to either side of (1).

Hence we may assume that φ(u) is a polynomial of u, which is analytic every-
where. Similarly we may also assume F (u) is a polynomial in u. Since φ(0) 6= 0,
u/φ(u) is analytic at the origin with a nonzero first derivative at 0, by the im-
plicit function theorem, u(x) is also analytic in a small region enclosing the
origin. Let C be a small circle enclosing the origin in the x-plane and C ′ be the
image of C under the transformation x = u/φ(u). Using the Cauchy formula,
we obtain

[xn]F (u(x)) =
1

2πi

∫
C

F (u(x))
xn+1

dx

=
1

2πi

∫
C′

F (u)φn+1(u)
un+1

(
φ−1(u)− uφ−2(u)

)
du

=
1

2πi

∫
C′

F (u)φn(u)
un+1

du− 1
2πi

∫
C′

F (u)φn−1(u)
un

du

Applying the Cauchy formula again w.r.t. the variable u, we obtain

[xn]F (u(x)) = [un]F (u)φn(u)− [un−1]F (u)φn−1(u)

For any power series f(u), we have

[un]f(u) =
1
n

[un−1]f ′(u),

and hence

[xn]F (u(x)) =
1
n

[un−1]
(
(F ′(u)φn(u) + nF (u)φn−1(u)

)
− [un−1]F (u)φn−1(u)

=
1
n

[un−1] ((F ′(u)φn(u))

This completes the proof.

2 Hayman’s Method

Example 1 Stirling’s formula
1
n!
∼ 1√

2πn

( e

n

)n

.
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Using Cauchy’s formula with the contour |z| = r, we have

1
n!

=
1
2π

∫ π

−π

ereiθ

rneinθ
dθ.

Since ∣∣∣ereiθ
∣∣∣ ≤ er, |θ| ≤ π,

we have
1
n!
≤ er

rn
, for any r > 0.

To find a least upper bound, we choose r such that

d

dr
(ln(er/rn)) = 0, i.e., r = n.

Hence
1
n!
≤
( e

n

)n

.

To obtain a more precise estimate for 1/n!, we need to estimate the above integral
more carefully. To do that we note that | exp(neiθ)| = exp(n cos θ) becomes
exponentially small when θ is away from 0. Hence we only need to estimate the
integral in a small interval |θ| ≤ δ. Expanding eiθ, we obtain

en(eiθ−iθ) = en(1−θ2/2+O(θ3)) ∼ en(1−θ2/2),

provided that nδ3 → 0, or δ = o(n−1/3).

Hence

1
n!

∼ 1
2π

(e/n)n

∫ δ

−δ

e−nθ2/2dθ

∼ 1
2π
√

n
(e/n)n

∫ √
nδ

−
√

nδ

e−t2/2dt (θ = t/
√

n)

∼ 1√
2πn

(e/n)n,

provided that nδ2 →∞. We may choose δ = n−5/12.

Hayman (1954) generalized the above estimate to a class of Hayman-admissible
functions.

Suppose f(z) is analytic in |z| < R, and let

a(r) = r
f ′(r)
f(r)

, b(r) = ra′(r).

It is called Hayman-admissible if there is a positive number R0 and a function
0 < δ(r) < π defined in R0 < r < R such that
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(a) f(r) > 0 for R0 < r < R;
(b) f(reiθ) ∼ f(r)eia(r)θ−b(r)θ2/2 as r → R, uniformly for |θ| ≤ δ(r);
(c) f(reiθ) = o(f(r)/

√
b(r)) as r → R, uniformly for δ(r) ≤ |θ| ≤ π.

(d) b(r)→∞ as r → R.

Theorem 2 (Hayman) Suppose f(z) is Hayman-admissible, rn satisfies a(rn) =
n. Then

[zn]f(z) ∼ f(rn)√
2πb(rn)

r−n
n , as n →∞.

Hayman provided the following large families of admissible functions.

(A) Suppose P (z) is a polynomial with real coefficients, and [zn]eP (z) > 0 for
all sufficiently large n. Then eP (z) is Hayman admissible in |z| <∞.
(B) Suppose P (z) is a polynomial with real coefficients, and f(z) is Hayman-
admissible in |z| < R. Then P (f(z)) is also Hayman-admissible in |z| < R.
(C) If f(z) and g(z) are both Hayman-admissible in |z| < R, then f(z)g(z) and
ef(z) are also Hayman-admissible in |z| < R.

Example 2 By (A), ez is Hayman-admissible with R =∞, and we have a(r) =
r, b(r) = r. Hence rn = n.

Example 3 The EGF for permutations with cycle length at most 2 is f(z) =
ez+z2/2. By (A), f(z) is Hayman-admissible with R = ∞, and we have a(r) =
r(1 + r), b(r) = r(1 + 2r). Hence

rn =
√

n + 1/4− 1/2 =
√

n

(
1 +

1
4n

)1/2

− 1/2

=
√

n

(
1− 1

2
√

n
+

1
8n

+ O
(
n−3/2

))
.

To obtain the asymptotic expression for [zn]f(z), we need to estimate rn, exp(rn),
and r−n

n = exp(n ln(1/rn)).

f(rn) ∼ en/2+
√

n/2−1/4,

b(rn) ∼ 2n,

r−n
n = n−n/2

(
1−

(
1

2
√

n
− 1

8n
+ O(n−3/2)

))−n

= n−n/2 exp

(
n ln

(
1−

(
1

2
√

n
− 1

8n
+ O(n−3/2

)−1
))

∼ n−n/2e
√

n/2.
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Hence

fn/n! ∼ en/2+
√

n−1/4

2
√

nπ
n−n/2,

and
fn ∼

1√
2
nn/2e−n/2+

√
n−1/4.

We can also solve r(1+ r) = n using Lagrange inversion formula. Since r →∞
as n →∞, it is clear that n ∼ r2, or 1/r ∼ n−1/2. We can rewrite r(1+ r) = n
as

1
r
(1 + 1/r)−1/2 = n−1/2.

Setting u = 1/r and t = n−1/2, we obtain

u

(1 + u)1/2
= t,

and hence

u =
∑
k≥1

tk
1
k

[uk−1](1 + u)k/2 =
∑
k≥1

1
k

(
k/2

k − 1

)
tk,

or
1
r

= n−1/2 +
1
2
n−1 +

1
8
n−3/2 + O

(
n−2

)
.

This gives

rn = n1/2
(
1 + (1/2)n−1/2 + (1/8)n−1 + O(n−3/2)

)−1

= n1/2
(
1− (1/2)n−1/2 + (1/8)n−1 + O(n−3/2)

)
,

ln
1
rn

= ln n−1/2+ln
(
1 + (1/2)n−1/2 + (1/8)n−1 + O(n−3/2)

)
= −(1/2) ln n+(1/2)n−1/2+O

(
n−3/2

)


