Date: Nov. ? , 2004	Nov. 08, 2007	Page: 1
Lecturer: Daniel Panario	Jason Z. Gao	Scribe:

1 Proof of the Lagrange Inversion Formula

Theorem 1 Lagrange Inversion Formula: Suppose u = u(x) is a power series in x satisfying $x = u/\phi(u)$ where $\phi(u)$ is a power series in u with a nonzero constant term. Then for any power series F(u) of u, we have

$$[x^{n}]F(u(x)) = \frac{1}{n} [u^{n-1}] \left(F'(u)\phi^{n}(u) \right).$$
(1)

Proof. Let $\phi(u) = \sum_{k\geq 0} \phi_k u^k$. We first note that $u(x) = \phi_0 x + O(x^2)$ and hence $\sum_{k\geq n} \phi_k u^k$ does not contribute to either side of (1).

Hence we may assume that $\phi(u)$ is a polynomial of u, which is analytic everywhere. Similarly we may also assume F(u) is a polynomial in u. Since $\phi(0) \neq 0$, $u/\phi(u)$ is analytic at the origin with a nonzero first derivative at 0, by the implicit function theorem, u(x) is also analytic in a small region enclosing the origin. Let C be a small circle enclosing the origin in the x-plane and C' be the image of C under the transformation $x = u/\phi(u)$. Using the Cauchy formula, we obtain

$$\begin{aligned} [x^n]F(u(x)) &= \frac{1}{2\pi i} \int_C \frac{F(u(x))}{x^{n+1}} dx \\ &= \frac{1}{2\pi i} \int_{C'} \frac{F(u)\phi^{n+1}(u)}{u^{n+1}} \left(\phi^{-1}(u) - u\phi^{-2}(u)\right) du \\ &= \frac{1}{2\pi i} \int_{C'} \frac{F(u)\phi^n(u)}{u^{n+1}} du - \frac{1}{2\pi i} \int_{C'} \frac{F(u)\phi^{n-1}(u)}{u^n} du \end{aligned}$$

Applying the Cauchy formula again w.r.t. the variable u, we obtain

$$[x^{n}]F(u(x)) = [u^{n}]F(u)\phi^{n}(u) - [u^{n-1}]F(u)\phi^{n-1}(u)$$

For any power series f(u), we have

$$[u^{n}]f(u) = \frac{1}{n}[u^{n-1}]f'(u),$$

and hence

$$\begin{aligned} [x^n]F(u(x)) &= \frac{1}{n} [u^{n-1}] \left((F'(u)\phi^n(u) + nF(u)\phi^{n-1}(u)) - [u^{n-1}]F(u)\phi^{n-1}(u) \right) \\ &= \frac{1}{n} [u^{n-1}] \left((F'(u)\phi^n(u)) \right) \end{aligned}$$

This completes the proof.

2 Hayman's Method

Example 1 Stirling's formula

$$\frac{1}{n!} \sim \frac{1}{\sqrt{2\pi n}} \left(\frac{e}{n}\right)^n.$$

Date: Nov. ? , 2004	Nov. 08, 2007	Page: 2
Lecturer: Daniel Panario	Jason Z. Gao	Scribe:

Using Cauchy's formula with the contour |z| = r, we have

$$\frac{1}{n!} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{re^{i\theta}}}{r^n e^{in\theta}} d\theta.$$

Since

$$e^{re^{i\theta}} \le e^r, \quad |\theta| \le \pi,$$

we have

$$\frac{1}{n!} \le \frac{e^r}{r^n}, \text{ for any } r > 0$$

To find a least upper bound, we choose r such that

$$\frac{d}{dr}\left(\ln(e^r/r^n)\right) = 0, \quad i.e., \ r = n.$$

Hence

$$\frac{1}{n!} \le \left(\frac{e}{n}\right)^n.$$

To obtain a more precise estimate for 1/n!, we need to estimate the above integral more carefully. To do that we note that $|\exp(ne^{i\theta})| = \exp(n\cos\theta)$ becomes exponentially small when θ is away from 0. Hence we only need to estimate the integral in a small interval $|\theta| \leq \delta$. Expanding $e^{i\theta}$, we obtain

$$e^{n(e^{i\theta} - i\theta)} = e^{n(1 - \theta^2/2 + O(\theta^3))} \sim e^{n(1 - \theta^2/2)}$$

provided that $n\delta^3 \to 0$, or $\delta = o(n^{-1/3})$.

Hence

$$\begin{aligned} \frac{1}{n!} &\sim \quad \frac{1}{2\pi} (e/n)^n \int_{-\delta}^{\delta} e^{-n\theta^2/2} d\theta \\ &\sim \quad \frac{1}{2\pi\sqrt{n}} (e/n)^n \int_{-\sqrt{n\delta}}^{\sqrt{n\delta}} e^{-t^2/2} dt \qquad (\theta = t/\sqrt{n}) \\ &\sim \quad \frac{1}{\sqrt{2\pi n}} (e/n)^n, \end{aligned}$$

provided that $n\delta^2 \to \infty$. We may choose $\delta = n^{-5/12}$.

Hayman (1954) generalized the above estimate to a class of Hayman-admissible functions.

Suppose f(z) is analytic in |z| < R, and let

$$a(r) = r \frac{f'(r)}{f(r)}, \ b(r) = ra'(r)$$

It is called Hayman-admissible if there is a positive number R_0 and a function $0 < \delta(r) < \pi$ defined in $R_0 < r < R$ such that

Date: Nov. ? , 2004	Nov. 08, 2007	Page: 3
Lecturer: Daniel Panario	Jason Z. Gao	Scribe:

(a) f(r) > 0 for $R_0 < r < R$; (b) $f(re^{i\theta}) \sim f(r)e^{ia(r)\theta - b(r)\theta^2/2}$ as $r \to R$, uniformly for $|\theta| \le \delta(r)$; (c) $f(re^{i\theta}) = o(f(r)/\sqrt{b(r)})$ as $r \to R$, uniformly for $\delta(r) \le |\theta| \le \pi$. (d) $b(r) \to \infty$ as $r \to R$.

Theorem 2 (Hayman) Suppose f(z) is Hayman-admissible, r_n satisfies $a(r_n) = n$. Then

$$[z^n]f(z) \sim \frac{f(r_n)}{\sqrt{2\pi b(r_n)}} r_n^{-n}, \text{ as } n \to \infty.$$

Hayman provided the following large families of admissible functions.

(A) Suppose P(z) is a polynomial with real coefficients, and $[z^n]e^{P(z)} > 0$ for all sufficiently large n. Then $e^{P(z)}$ is Hayman admissible in $|z| < \infty$. (B) Suppose P(z) is a polynomial with real coefficients, and f(z) is Hayman-admissible in |z| < R. Then P(f(z)) is also Hayman-admissible in |z| < R. (C) If f(z) and g(z) are both Hayman-admissible in |z| < R, then f(z)g(z) and $e^{f(z)}$ are also Hayman-admissible in |z| < R.

Example 2 By (A), e^z is Hayman-admissible with $R = \infty$, and we have a(r) = r, b(r) = r. Hence $r_n = n$.

Example 3 The EGF for permutations with cycle length at most 2 is $f(z) = e^{z+z^2/2}$. By (A), f(z) is Hayman-admissible with $R = \infty$, and we have a(r) = r(1+r), b(r) = r(1+2r). Hence

$$r_n = \sqrt{n+1/4} - 1/2 = \sqrt{n} \left(1 + \frac{1}{4n}\right)^{1/2} - 1/2$$
$$= \sqrt{n} \left(1 - \frac{1}{2\sqrt{n}} + \frac{1}{8n} + O\left(n^{-3/2}\right)\right).$$

To obtain the asymptotic expression for $[z^n]f(z)$, we need to estimate r_n , $\exp(r_n)$, and $r_n^{-n} = \exp(n \ln(1/r_n))$.

$$\begin{aligned} f(r_n) &\sim e^{n/2 + \sqrt{n}/2 - 1/4}, \\ b(r_n) &\sim 2n, \\ r_n^{-n} &= n^{-n/2} \left(1 - \left(\frac{1}{2\sqrt{n}} - \frac{1}{8n} + O(n^{-3/2}) \right) \right)^{-n} \\ &= n^{-n/2} \exp\left(n \ln\left(1 - \left(\frac{1}{2\sqrt{n}} - \frac{1}{8n} + O(n^{-3/2})^{-1} \right) \right) \right) \\ &\sim n^{-n/2} e^{\sqrt{n}/2}. \end{aligned}$$

Date: Nov. ? , 2004	Nov. 08, 2007	Page: 4
Lecturer: Daniel Panario	Jason Z. Gao	Scribe:

Hence

$$f_n/n! \sim \frac{e^{n/2 + \sqrt{n} - 1/4}}{2\sqrt{n\pi}} n^{-n/2},$$

and

$$f_n \sim \frac{1}{\sqrt{2}} n^{n/2} e^{-n/2 + \sqrt{n} - 1/4}.$$

We can also solve r(1+r) = n using Lagrange inversion formula. Since $r \to \infty$ as $n \to \infty$, it is clear that $n \sim r^2$, or $1/r \sim n^{-1/2}$. We can rewrite r(1+r) = n as

$$\frac{1}{r}(1+1/r)^{-1/2} = n^{-1/2}.$$

Setting u = 1/r and $t = n^{-1/2}$, we obtain

$$\frac{u}{(1+u)^{1/2}} = t,$$

 $and\ hence$

$$u = \sum_{k \ge 1} t^k \frac{1}{k} [u^{k-1}] (1+u)^{k/2} = \sum_{k \ge 1} \frac{1}{k} \binom{k/2}{k-1} t^k,$$

or

$$\frac{1}{r} = n^{-1/2} + \frac{1}{2}n^{-1} + \frac{1}{8}n^{-3/2} + O\left(n^{-2}\right).$$

 $This \ gives$

$$r_n = n^{1/2} \left(1 + (1/2)n^{-1/2} + (1/8)n^{-1} + O(n^{-3/2}) \right)^{-1} = n^{1/2} \left(1 - (1/2)n^{-1/2} + (1/8)n^{-1} + O(n^{-3/2}) \right),$$

$$\ln \frac{1}{r_n} = \ln n^{-1/2} + \ln \left(1 + (1/2)n^{-1/2} + (1/8)n^{-1} + O(n^{-3/2}) \right) = -(1/2)\ln n + (1/2)n^{-1/2} + O\left(n^{-3/2}\right)$$