Date: Nov. 7 , 2004 Nov. 08, 2007 Page: 1
Lecturer: Daniel Panario Jason Z. Gao Scribe:

1 Proof of the Lagrange Inversion Formula

Theorem 1 Lagrange Inversion Formula: Suppose u = u(z) is a power series
in x satisfying x = u/¢d(u) where ¢(u) is a power series in u with a nonzero
constant term. Then for any power series F(u) of u, we have

") F(u(x)) = ~ ("] (F' ()" (u)). (1)

n

Proof. Let ¢(u) = > 55, pru®. We first note that u(z) = ¢oz + O(2?) and
hence > -, éru” does not contribute to either side of (1).

Hence we may assume that ¢(u) is a polynomial of w, which is analytic every-
where. Similarly we may also assume F'(u) is a polynomial in w. Since ¢(0) # 0,
u/¢(u) is analytic at the origin with a nonzero first derivative at 0, by the im-
plicit function theorem, u(x) is also analytic in a small region enclosing the
origin. Let C be a small circle enclosing the origin in the z-plane and C’ be the
image of C' under the transformation x = u/¢(u). Using the Cauchy formula,
we obtain

1 [ F(u(z))
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[z"F(u(z)) = dx
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Applying the Cauchy formula again w.r.t. the variable u, we obtain
[2"]F (u(2)) = [u"]F (u)¢" (u) — [u" '] F(w)¢" " (u)

For any power series f(u), we have

() = ] (),
and hence
PV F (@) = (F )6 () + nF ()6 (w) — [ F()6" w)
1

= ()6 w)
This completes the proof.

2 Hayman’s Method

Example 1 Stirling’s formula

1 1 (e)n
n! \2mn \n/
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Using Cauchy’s formula with the contour |z| = r, we have

6

1 1 [T e
n! 2w J_,_ rvein?
Since .
e’ <er, Jo <.
we have
1 e’
— < —, for any r > 0.
n! — rm

To find a least upper bound, we choose r such that

i (In(e"/r™)) =0, id.e., r=n.

dr
Hence
1 e\"
L)
n! n
To obtain a more precise estimate for 1/n!, we need to estimate the above integral
more carefully. To do that we note that |exp(ne’?)| = exp(ncos®) becomes

exponentially small when 6 is away from 0. Hence we only need to estimate the
integral in a small interval |0| < §. Ezpanding ¥, we obtain

en(eitw) _ en(1792/2+0(93)) -~ en(1792/2)’

provided that né> — 0, or § = o(n=1/3).
Hence
1 1 J
— o~ —(e/n)”/ e~m0%/249
: -
Vné )
/ 12t (0= t/vn)
)

—=(e/n)",

2mn
provided that né?> — oo. We may choose § = n=5/12,

Hayman (1954) generalized the above estimate to a class of Hayman-admissible
functions.

Suppose f(z) is analytic in |z| < R, and let
f'(r)
f(r)

It is called Hayman-admissible if there is a positive number Ry and a function
0 < §(r) < 7 defined in Ry < r < R such that

a(r)=r , b(r)=rd(r).
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a) f(r) >0 for Ry <71 < R;

b) f(re?y ~ ( )eta(mo=blr 10°/2 as r — R, uniformly for 6] < d(r);
F(re®)y = o(f(r)/\/b(r)) as r — R, uniformly for 6(r) < || < .
b(r) = oo as r — R.

Theorem 2 (Hayman) Suppose f(z) is Hayman-admissible, r, satisfies a(r,) =
n. Then
f(r’ﬂ) —n

2" f(z) ~ ——=—r,", asn — oo.
1) ~ 5
Hayman provided the following large families of admissible functions.

(A) Suppose P(z) is a polynomial with real coefficients, and [2"]ef(*) > 0 for
all sufficiently large n. Then e”(*) is Hayman admissible in |z| < co.

(B) Suppose P(z) is a polynomial with real coefficients, and f(z) is Hayman-
admissible in |z| < R. Then P(f(z)) is also Hayman-admissible in |z| < R.

(C) If f(z) and g(z) are both Hayman-admissible in |z| < R, then f(z)g(z) and
ef (%) are also Hayman-admissible in |z| < R.

Example 2 By (A), e* is Hayman-admissible with R = oo, and we have a(r) =
r, b(r) = r. Hence r, =n.

Example 3 The EGF for permutations with cycle length at most 2 is f(z) =
e*T2° /2 By (A), f(2) is Hayman-admissible with R = oo, and we have a(r) =
r(14r), b(r) =r(1+2r). Hence

1\ /2
T o= \/n+1/4—1/2:\/ﬁ<1+4n) —1/2

- \/ﬁ<1 2f+—+0( 3/2)>.

To obtain the asymptotic expression for [2™]f(z), we need to estimate ,,, exp(ry ),
and r™ = exp(nin(1/r,)).

Flra) ~ eI
b(rn) ~ 2n,

1 1 "
-n _ —n/2 N - —3/2
S Ol O )

1 1 !
_ o -n/2 (L L -3/2
n exp (nln (1 (2\/5 & +O0(n ) ))

~ T2V,
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Hence PR
fn/nl ~ 6771_"/2,

2¢/nm

and 1
n/2 —n/2+y/n—-1/4
~ —n e .
fn \/5

We can also solve r(141) = n using Lagrange inversion formula. Since r — oo
asn — oo, it is clear that n ~ 12, or 1/r ~n~Y2. We can rewrite r(1+1) =n
as

%(1 1) =2,

Setting u =1/r and t = n~Y2, we obtain

u

— — ¢
(1 +u)t/2 ’
and hence ) L/ k)2
_ kL k—1 k2 _ L k
u=Y L) —Zk<k_1>t,
E>1 E>1
or ) )
—-1/2 -1 -3/2 -2
L= /—&—511 +§n /+O(n ).
This gives

ra =0t (14 (1/2)n72 4 (1/8)n ™" + O(n /%) " (1= /22 4+ (1/8)n~" + O(n=/2)) |

- = mn /24 (1 F(1/2n" Y2+ 1/8)n"t + O(n—3/2)) = —(1/2)Inn+(1/2)n" Y240 (n—3/2)

T'n



