Historical Remark on
Ramanujan’s Tau Function

Kenneth S. Williams

Abstract. It is shown that Ramanujan could have proved a special case of his conjecture that
his tau function is multiplicative without any recourse to modularity results.

1. INTRODUCTION. In his path-breaking paper on arithmetic functions published
in 1916, Ramanujan [6, eq. (92)] introduced the function 7 (r) that in his honor is now
called the Ramanujan tau function. This function is defined for all positive integers
n by

o] o0

g[[a-gm*=> tmq". qeC. |gl <1 (1

m=1 n=1

Ramanujan calculated the first 30 values of 7(n) [6, Table V] and observed that
7(n) appeared to be multiplicative [6, eq. (103)], that is,

T(nmny) = t(n))t(n2), ni,np €N, ged(ng, ny) =1 (2)

This was proved by Mordell [5] shortly afterward using modular techniques, which
were unknown to Ramanujan. A modern proof of (2) is given, for example, in [4, p.
298]. The author is not aware of any proof of (2) that does not appeal to the theory of
modular forms.

It is known from the theory of modular forms for all primes p and all positive
integers n that the following property of t(n) holds, namely,

t(pn) = t(p)r(n) — p''t(n/p), 3)
where 7(n/p) = 0 if p does not divide n [4, p. 298]. Moreover, a simple induction
argument using (3) gives the multiplicativity property (2) of t(n); see, for example,
[4, Cor. 5.6, p. 298].

The purpose of this historical note is to show that Ramanujan had all the tools
necessary to prove the special case of (3) when p = 2, namely,

t(2n) =1(2Q)t(n) — 2"t (n/2), neN, 4)
from which the multiplicativity property
T2*N) = (25t (N), fork e NU{0}, N € N, and N odd, 5)

follows.
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2. PROOF OF (4) IN THE SPIRIT OF RAMANUJAN. Ramanujan defined a gen-
eral theta function [3, Definition 1.2.1, p. 6] and studied its properties. An important
special case of his function is the theta function ¢(g) given by

= 2
v(q) = Z q", forgeCandlg| < 1. (6)

n=—00

Ramanujan knew many properties of ¢(q), including the two simple identities

1
9*(q>) = E«oz(q) +¢*(—q)) and ¢*(—q¢%) = p(q@)p(—q); (7)

see [3, pp. 15, 72]. Ramanujan also used extensively three Eisenstein series, which he
denoted by P(g), Q(g), and R(q) [6, eq. (25)], the latter two of which are

o0 n3 n
0@ :=1+240> 2 gecC Jgl<1. (®)
n:ll_qn
and
R(q) =1 504i nq" eC, |gl <1 9)
=1- , , <1
q 2y q

Ramanujan’s pioneering work established the relationship between Eisenstein series
and theta functions. He was well aware of results of the type

0(g) = (1 + l4x + xHz* (10)
and

R(g) = (1 — 33x — 33x% 4+ x*)2°, (11)

[3, Theorems 5.4.11 and 5.4.12], where [3, p. 120]

40_
x=xlg)=1-2 § LIER 2(@) = ¢*(@), (12)
v*(q)
so that
0(q) = 16¢*(q) — 16¢*(@)¢* (—q) + ¢*(—q) (13)
and

R(q) = —64¢"(q) + 960" (9)¢* (—q) — 309" (9)¢*(—q) — ¢"*(—q). (14)

In [6, eq. (44)], Ramanujan proved, using only an elementary argument, the funda-
mental relation

1728¢ [ (1 — ™ = 0*(@) — R*(q). (15)
m=1

January 2015] HISTORICAL REMARK ON RAMANUJAN’S TAU FUNCTION 31



The following relation follows from (1) and (13)—(15):
16 Y t(mg" = ¢* (@9 (—q) — 0" (9™ (=) (16)
n=l1
Replacing ¢ by —¢g in (16) and adding the resulting equation to (16) gives

32 1™ = = (@9 (—9) + 9" (@) (—q)

n=1

+ ' (@9 (—q) — ¢* (@)™ (—q). (17)

Replacing ¢ by ¢ in (16) and making use of (7) gives

256 ) t(m)g™ = 9" (@p*(—9) — 20" (@)0" (=q) + " (@' (—=q).  (18)

n=1

Replacing ¢ by g2 in (18) and appealing to (7) gives

65536 Y t(mg" = ™ (9)¢" (—q) — 49" (9)¢* (=) + 69" (@)¢"* (=)

n=1
—40%(9)¢' (=) + ¢* ()9’ (—q). (19)
Then (17)—(19) give
D T@m)g" +24) t)g™ +2048 Y " t(n)g" =0 (20)
n=1 n=1 n=1
so that
t(2n) + 24t (n) +2048t(n/2) =0, n €N, (21)
from which (4) follows as 7(2) = —24 and 2'! = 2048. [ |

It would be very interesting to know if Ramanujan had a proof along these lines for
the special case (5) of his conjecture.

3. PROOF OF (3) FOR p =3. The question naturally arises, “Can (3) be proved
for primes p # 2 in a similar manner to the elementary proof given in Section 2 for
p = 27" However, this seems to be quite difficult. We carry out the proof for the prime
p = 3 and at the end of the proof summarize the difficulties involved in giving such a
proof for an arbitrary prime p > 3.

As 7(3) = 252 and 3'' = 177147, we must prove analogously to (20) that

o]

D tBmg™ =252 " t(n)g™ + 177147 " t(n)g”™ = 0. (22)

n=1 n=1 n=1
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We determine the sum of each of the three infinite series in (22) individually in terms
of the function ¢. First, from (16), we have

16 "t = ¢* (9" (=¢") — ¢*(¢")9™ (—¢") (23)
n=1
and

16> t(m)g” = ¢* (g9 (=¢") — ¢* (@)™ (=¢"). (24)

n=1

Now we turnto Y .-, 7(3n)g>". We let @ = exp(27i/3) and note that

|4 o 4 = 3 ifn =0 (mod 3), 25)
|0 ifn %0 (mod 3).

By (25), we have

48) t(Bmg" =16 (1 + " + o™)g"

n=1 n=1
=16) t(mg" +16 Y _t(n)(wg)" +16Y_t(n)(@’q)",
n=1 n=1 n=1

so that by (16),

48 " t(Bmg”" = " (@)¢"(—9) — ¢*(9)¢™(—q)
n=l1

+ ¢} (0q)¢'"(—wq) — ¢*(wq)p™ (—wgq)
+ @} (0’9" (—0’q) — ¢* (™ (—w’q). (26)

Next, we consider ¢(wq). From (6), we deduce that

=Y ¢ = Y ¢ +o Y g
T n ; ():(r:l(c))g 3) n 7—én O:(r:lzz 3)
as n?> = 1 (mod 3) for n 2 0 (mod 3). Hence,
o(wq) = ¢(q°) + w(p(q) — ¢(g”)). 27)
Similarly, we have
p(—0q) = p(—q°) + o (p(—q) — 9(—¢")), (28)
p(@*q) = p(q°) + &*(p(q) — (q”)), (29)
and
P(—0*q) = p(—q°) + 0*(p(—q) — p(—q°)). (30)
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Using (27)—(30) in (26), we deduce

48 "t (3n)g™

p
=" (@)9"(—9) — 9" (@) ¢™(—q)

+ (9(q”) + @(9(q) — 9@ (9(=¢") + w(p(—q) — p(—=¢"))'°

— (9(@") + (@) — (@M (@(=q") + 0(p(—=9) — p(=¢"))*

+(@(q") + @@ — 9@ (9(—4¢") + @* (9(—=q) — p(=¢"))"°

— (@) + @ (@0(@) — (@M @(=q") + & (9(=q) — p(=¢"))*.  (31)

Multiplying (22) by 48, and appealing to (31), (23), and (24), we must prove the fol-
lowing identity relating ¢(¢), ¢(—4). ¢(¢°), ¢(—¢°). ¢(¢”), and ¢(—¢”), namely,

P (@)9"(—=9) — 9 ()9 (—9)
+ (9(q") + @(9(q@) — 9@ (9(=¢") + w(p(—q) — p(—=g"))'°
— (0(q") + 0(e(q) — 9@ (9(=¢") + @ (p(—q) — p(—¢°))*
+ (9(q") + & (9(q@) — p(@N)*(9(=¢") + & (p(—q) — 9(—g"))'°
— (9(@") + @’ (9(q) — 9@ (9(—¢") + &’ (9(—q) — p(—=¢")))*
—756(¢0"(¢7)9"°(=¢") — 9*(¢7)9p™ (=¢™))
+531441(0* (4”9 (—¢°) — ¢*(¢")9™(—q")) = 0. (32)

The most elementary way of proving the identity (32) known to the author is to use
the (p, k)-parametrizations of ¢(¢), ¢(q°), (¢°), (—q), ¢(—q>), and p(—¢g°) due to
Alaca, Alaca, and Williams [2]. (We emphasize that here p is a function of ¢ and is
not being used to denote a prime.) We note that all of these parametrizations have been
proved without the use of modular forms. As in [2, p. 178], we set

p=p(g) = 9"2(2;2_—(;’;2)@ k=kq) = ig) (33)
so that
o(@) = (1 +2p) 8" (34)
and
0(g) = (1+2p) 872, (35)

A. Alaca [1, Theorem 2.2, p. 156] has shown that

1 223
90(6]9) — g(1 +2p)3/4k1/2 + T(1 +2p)1/12(1 _ p)l/3(2+p)1/3k1/2. (36)

The “change of sign” principle [2, Theorem 11, p. 180] asserts that

p(—q) = 1—” and  k(—q) = (1 + p)%. (37)
+p
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Changing ¢ to —q in (34)—(36) and appealing to (37), we obtain

p(—q) = (1 — p)**(1 + p)" k', (38)
o(—=q) = (1 — p)"*(1 + p)*/*k'72, (39)

and

1
o(—q°) = ;- p)rA+ p) k2

22/3
+50- A +2p)' P2+ p)' P+ p) kR (40)

Using MAPLE to substitute (34)—(36) and (38)—(40) into (32) and to simplify the
resulting expression, we find that it is equal to 0, thereby establishing the identity (32)
and proving (3) in the case p = 3. ]

In attempting to extend this elementary argument to an arbitrary prime p > 3,
three obstacles become apparent. First, we do not know at the outset the value of
7(p) to use in the analogue of (22). Secondly, we need to determine ¢(wgq), where
w = exp(2mwi/p), analogously to (27). Finally, a parametrization of ¢(q), ¢(g?),
(p(qf’z), ©(—q), p(—¢q?), and (p(—q"2) would be helpful in order to verify the identity
analogous to (32) for a prime p > 3.

Ramanujan’s tau function is nearly a century old. It is hoped that this historical note
will encourage the reader to learn more of its interesting properties and its place in the
theory of modular forms.
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