THE PRIME IDEAL FACTORIZATION OF 2 IN PURE QUARTIC FIELDS WITH INDEX 2

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Abstract. The prime ideal decomposition of 2 in a pure quartic field with field index 2 is determined explicitly.

1. Introduction

Let \(K \) be an algebraic number field and \(\mathcal{O}_K \) its ring of integers. When determining generators of the ideals in the prime ideal factorization of a (rational) prime \(p \) in \(\mathcal{O}_K \), the most difficult case occurs when \(p \) divides the field index \(i(K) \) of \(K \). In this paper we examine the case when \(K \) is a pure quartic field. Here \(i(K) = 1 \) or 2, and we determine explicit generators of the prime ideals in the decomposition of 2 when \(i(K) = 2 \).

Let \(K \) be a pure quartic field. Then there exists a fourth power free integer \(m \) such that \(K = \mathbb{Q}(m^{1/4}) \). It follows from the work of Funakura [1, p. 36] that the field index \(i(K) \) of \(K \) is given by

\[
i(K) = \begin{cases}
2, & \text{if } m \equiv 1 \pmod{16}, \\
1, & \text{if } m \not\equiv 1 \pmod{16}.
\end{cases}
\]

From now on we assume that \(i(K) = 2 \) so that \(m \equiv 1 \pmod{16} \), say \(m = 16k + 1 \). In this case the prime ideal factorization of \(<2> \) in \(\mathcal{O}_K \) is

\[<2> = P_1^2P_2P_3,\]

where \(P_1, P_2, P_3 \) are distinct prime ideals, see [1, p. 36]. In this paper we determine explicit generators of \(P_1, P_2 \) and \(P_3 \).

Theorem. Let \(m \) be a fourth power free integer such that \(K = \mathbb{Q}(m^{1/4}) \) is a pure quartic field with \(i(K) = 2 \). Then \(<2> = P_1^2P_2P_3 \), where the
distinct prime ideals P_1, P_2, P_3 of O_K are given by

\[P_1 = \langle 2, \frac{3}{2} + m^{1/4} + \frac{1}{2}m^{1/2} \rangle, \]

\[P_2 = \begin{cases}
\langle 2, \frac{5}{4} + \frac{1}{4}m^{1/4} + \frac{1}{4}m^{1/2} + \frac{1}{4}m^{3/4} \rangle, & \text{if } m \equiv 1 \pmod{32}, \\
\langle 2, \frac{3}{4} + \frac{5}{4}m^{1/4} + \frac{3}{4}m^{1/2} + \frac{1}{4}m^{3/4} \rangle, & \text{if } m \equiv 17 \pmod{32},
\end{cases} \]

\[P_3 = \begin{cases}
\langle 2, \frac{5}{4} - \frac{1}{4}m^{1/4} + \frac{1}{4}m^{1/2} - \frac{1}{4}m^{3/4} \rangle, & \text{if } m \equiv 1 \pmod{32}, \\
\langle 2, \frac{3}{4} - \frac{5}{4}m^{1/4} + \frac{3}{4}m^{1/2} - \frac{1}{4}m^{3/4} \rangle, & \text{if } m \equiv 17 \pmod{32}.
\end{cases} \]

2. Proof of Theorem

Let $L = \mathbb{Q}(m^{1/2})$ so that $\mathbb{Q} \subset L \subset K$ and $[L : \mathbb{Q}] = 2$. Set

\[Q_1 = \langle 2, \frac{1 + m^{1/2}}{2} \rangle, \quad Q_2 = \langle 2, \frac{1 - m^{1/2}}{2} \rangle. \]

Q_1 and Q_2 are distinct prime ideals of O_L such that $\langle 2 \rangle = Q_1Q_2$. Let m_2 be the largest integer such that $m_2 \mid m$. Set $m_1 = m/m_2^2$ so that m_1 is a squarefree integer having the same sign as m. Clearly $m^{1/2} = m_2m_1^{1/2}$.

Then

\[Q_1 = \begin{cases}
\langle 2, \frac{1 + m_1^{1/2}}{2} \rangle, & \text{if } m_2 \equiv 1 \pmod{4}, \\
\langle 2, \frac{1 - m_1^{1/2}}{2} \rangle, & \text{if } m_2 \equiv 3 \pmod{4}.
\end{cases} \]

Next, by [2, Table D, cases D1, D2, p. 92], we see that

\[Q_1 = P_1^2 \]

for some prime ideal P_1 of O_K. We claim that

\[P_1 = \langle 2, \frac{3}{2} + m^{1/4} + \frac{1}{2}m^{1/2} \rangle. \]

First we show that P_1 is a prime ideal of O_K. The minimal polynomial of

\[\theta = \frac{3}{2} + m^{1/4} + \frac{1}{2}m^{1/2} \]

over \mathbb{Q} is

\[g(x) = x^4 - 6x^3 + (13 - 8k)x^2 + (-14 - 8k)x + (6 + 16k + 16k^2). \]

Hence $N(\theta) = \pm(6 + 16k + 16k^2) \equiv 2 \pmod{4}$. Let $< \theta > = S_1S_2 \cdots S_r$ be the prime ideal factorization of $< \theta >$ in O_K. Hence $N(< \theta >) =$
\(N(S_1)N(S_2)\cdots N(S_r)\). As \(2 \mid N(<\theta>)\) there exists a unique \(S = S_i\) such that \(2 \mid N(S)\), that is \(N(S) = 2\). Thus \(<\theta>\) has exactly one prime ideal to exponent 1 in its prime factorization lying above 2. As \(P_1 = <2, \theta>\) we deduce that \(P_1 = S\) so that \(P_1\) is a prime ideal of \(O_K\). Next we show that \(P_1 \mid Q_1\). We set \(\phi = \frac{3}{2} - m^{1/4} + \frac{1}{2}m^{1/2}\). An easy calculation shows that
\[
\frac{1 + m^{1/2}}{2} = \theta \phi - (2k + 1)2.
\]
Hence, as \(2 \in P_1\) and \(\theta \in P_1\), we deduce that \(\frac{1 + m^{1/2}}{2} \in P_1\). Thus we have \(Q_1 = <2, \frac{1 + m^{1/2}}{2}> \subseteq P_1\), and so \(P_1 \mid Q_1\). As \(Q_1\) is the square of a prime ideal in \(O_K\), we deduce that \(Q_1 = P_1^2\) as asserted.

Let
\[
k = \begin{cases}
2g, & \text{if } m \equiv 1 \pmod{32}, \\
2g + 1, & \text{if } m \equiv 17 \pmod{32}.
\end{cases}
\]

For \(\epsilon = \pm 1\), the minimal polynomial of
\[
\alpha(\epsilon) = \begin{cases}
\frac{5}{4} + \frac{\epsilon}{4}m^{1/4} + \frac{1}{4}m^{1/2} + \frac{\epsilon}{4}m^{3/4}, & \text{if } m \equiv 1 \pmod{32}, \\
\frac{3}{4} + \frac{5\epsilon}{4}m^{1/4} + \frac{3}{4}m^{1/2} + \frac{\epsilon}{4}m^{3/4}, & \text{if } m \equiv 17 \pmod{32},
\end{cases}
\]
is
\[
x^4 - 5x^3 + (9 - 12g)x^2 + (-7 + 24g - 64g^2)x + (2 - 12g + 64g^2 - 128g^3),
\]
if \(m \equiv 1 \pmod{32}\), and
\[
x^4 - 3x^3 + (-37 - 76g)x^2 + (-75 - 240g - 192g^2)x + (-38 - 172g - 256g^2 - 128g^3),
\]
if \(m \equiv 17 \pmod{32}\). Clearly \(N(\alpha(\epsilon)) \equiv 2 \pmod{4}\) in both cases, and similarly to the argument above, we deduce that \(I_+ = <2, \alpha(1)>\) and \(I_- = <2, \alpha(-1)>\) are conjugate prime ideals of \(O_K\) lying above 2. If \(m \equiv 1 \pmod{32}\) we have
\[
\frac{1 - m^{1/2}}{2} = 2(1 - g - gm^{1/2}) - \alpha(1)\alpha(-1) \in I_+ \cap I_-
\]
and if \(m \equiv 17 \pmod{32}\)
\[
\frac{1 - m^{1/2}}{2} = 2(-g - (1 + g)m^{1/2}) - \alpha(1)\alpha(-1) \in I_+ \cap I_-.
\]
Hence \(\frac{1 - m^{1/2}}{2} \in I_+ \cap I_-\). Thus \(I_+\) and \(I_-\) are conjugate prime ideals of \(O_K\) lying above the prime ideal \(Q_2\) of \(O_L\). As \(<2> = P_1^2 P_2 P_3 = Q_1 Q_2\) and \(Q_1 = P_1^2\), we see that \(Q_2 = P_2 P_3\) and that we can take \(P_2 = I_+ = <2, \alpha(1)>\)
and
\(P_3 = I_- = <2, \alpha(-1)>\).
This completes the proof.

References

Blair K. Spearman
Department of Mathematics and Statistics
University of British Columbia Okanagan
Kelowna, B.C. Canada V1V 1V7
email address: blair.spearman@ubc.ca

Kenneth S. Williams
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
email address: kwilliam@connect.carleton.ca

(Received May 20, 2005)