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ABSTRACT

Let f(x) be an irreducible polynomial of odd degree n > 1 whose
Galois group is a Frobenius group. We suppose that the Frobenius
complement is a cyclic group of even order h. Let 2' h. For each
i=1,2,..., t we show that the splitting field L of f(x) has exactly
one subfield K; with [K;: @] =2'. These subfields form a tower of nor-
malextensionsQ C Ky C K, C---C K, with[K;: K;_{]=2(i=1,2,...,1)
and Ky = Q. Our main result in this paper is an explicit formula for
an element o; in K;_; such that K; = Q(\/o;) (i=1, 2,..., f). This
result is applied to DeMoivre’s quintic x° — 5ax> + 5a*x — b, solvable
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quintic trinomials x>+ ax + b, as well as to some numerical poly-
nomials of degrees 5, 9, and 13.

Key Words: Frobenius group; Subfields of splitting field;
Galois group.

1. INTRODUCTION

A finite group G is said to be a Frobenius group if there exists a tran-
sitive G-set X such that

every g € G \{1} has at most one fixed point (1)
and

there is some g € G\ {1} that does not have a fixed point. (2)

It can be proved (Rotman, 2002, Proposition 8.161) that a finite group G
is a Frobenius group if and only if it contains a proper nontrivial sub-
group H such that

HnNgHg ' = {1} for all g¢H. (3)

Such a subgroup H of G is called a Frobenius complement of G. Let

N={1}u (G\ (gLEJGgHg1>>.

N is called the Frobenius kernel of G. Frobenius proved using character
theory the following result (Rotman, 2002, Theorem 8.164):

Let G be a Frobenius group with complement H and kernel N.
Then N is a normal subgroup of G with N NH = {1} and G = NH.

(4)
Furthermore, we have (Robinson, 1982, Ex. 8.5.6)
hln—1, where/i=|H|and n=|N]|. (5)

By (4), G is the semi-direct product of N and H, written G= Nx H. Note
that there is a natural G-action on N: for ¢ in G, ¢,(v)=cve ', vEN.
We state the following result without proof.
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The semi-direct product G = N x H is a Frobenius group with
kernel N and complement H if and only if the action of H \{l1}
on N \{1} is fixed-point free, that is, if c € H, ve N\{l} and

ove ! = v imply ¢ = 1.

(6)
In this paper, we consider irreducible polynomials f(x) € Z[x] with Galois
group G = Gal(f) satisfying the following three conditions:
G = NxH is a Frobenius group with kernel N and complement H,
(7a)

H is a cyclic group with even degree /4, hence N is abelian, (7b)

deg(f'(x)) is odd, greater than 1, and equal to n, the order of N.
(7¢)

In (7b) the fact that N is abelian follows from Robinson (1982, Ex. 10.5).
We define the positive integer ¢ by

2" || A, (8)
and the odd positive integer /; by

hy =h/2". 9)
We denote the splitting field of f(x) by L so that

Gal(L/Q) = Gal(f) = G = NxH.

For each Jj= 1, 2,..., t we show that L has exactly one subfield K; with
[K;:Q]=2. These subfields form a tower of normal extensions
QCK i CK,C---CK; with [K;:K;_1]=2 (i=1, 2,..., t) where Ko=0Q.
Our objective in this paper is to give an explicit element o; € K; | such
that K; = Q(\/%;) (i=1,2,...,¢). This determination is given in Sec. 3
after some preliminary results are proved in Sec. 2. In Sec. 4 we apply
our results to certain classes of polynomials.

Remark 1. Let K be a subfield of C. Let 04, 0,,..., 0, be the roots in C
of f(x) € K[x]. The discriminant of f(x) is defined by

Dy = [J(0: - 0,)*.
i,j=1
i/<j
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If the roots of f(x) are distinct, we fix some ordering of the roots and view
the Galois group G of f(x) as a subgroup of the symmetric group S,,.
Galois theory tells us that the field K(,/Dy) is always a subfield of the
splitting field of f(x), and that G is a subgroup of the alternating group
A, if and only if /D, € K. Therefore the field extension K(/Dy)/K is
quadratic if and only if G contains odd permutations on {6, 0,...,
6,}. In this paper, we shall see that when G is not contained in 4,,, the
quadratic extension K;/K is reproducing K(./Dy)/K. It is worth noting
that even when G is not a subgroup of 4,,, a quadratic tower over K can
still be constructed.

Definition 1. Let 0y, 05, ..., 0, be the roots in C of f(x) € K[x]. The discri-
minant polynomial of f(x) is defined to be

n

g(x) = H(x —(0; = 0))). (10)
111/;1
It is clear that g(x) € K[x] and degg(x)=n(n—1).

We now state our main result.

Theorem. Let f(x) € Z[x] be an irreducible polynomial. Let the roots of
f(x)in Cbe by, 0, ...,0, Let L=Q(0y, 0,, ..., 0,) be the splitting field
of f(x), and G=Gal(f)=Gal(L/Q) be the Galois group of f(x). Assume
that f(x) and G satisfy the following four conditions:

(a) G=NxH is a Frobenius group with kernel N and complement H.
(b) H is a cyclic group with even degree h.

(c) deg(f(x)) is odd, greater than 1, and equal to n the order of N.
(d) The discriminant polynomial of f(x) is squarefree.

Define t and hy as in (8) and (9) respectively. Then L contains exactly one
normal subfield K; with [K;: Q]=2' for each j=1, 2, ..., t. These subfields
satisfy

QCcKiCcK,C---CK, (11)

with K;/Q a cyclic extension of degree 2' for i=0, 1,..., t. Further, for
i=01,...,¢t—1,

2i(n—1)/h

g(x) = U 8ir(x), (12)
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where each g;(x) € Kix] is monic, irreducible, of degree nh/ 2’ and even.
Finally, for any je{1, 2, ..., 2'(n—1)/h}, we have

Kiy1 = Q(4/gij(0)), fori=0,1,2,...,t-2, (13)
and
K, = Q(y/—g-1,(0)). (14)

Remark 2. The existence of a quadratic tower of the form (11) follows
from Galois theory. Let L" be the subfield of L fixed by N. Then the
Galois group of LY over @, Gal(L" /@), is isomorphic to G/N, hence
to H, which is cyclic of order 2'h;. Gal(L" /@) has a unique sequence
of subgroups (each of which is normal since Gal(L"/®) is abelian)

P <P_1<-- <P Py= Gal(LN/(D),

such that [P;_,: P]=2,i€ {1,2,...,t}. Correspondingly, G= Gal(L" /@)
has a unique sequence of normal subgroups

M[<]M,_1<l'--M1<1M0:G, (15)

such that [M,_;: M;]=2,i€{1,2,...,t},and NC M, i€{0,1,...,t}, by
the Correspondence Theorem (Rotman, 2002, Proposition 2.76). A quad-
ratic tower of the form (11) thus exists in which each K; is the fixed field of
M; for ie{l, 2,..., t}. Moreover, we claim that every subfield of L of
degree 2 over @ must be a field in this tower. Such a subfield, written
as LM, is fixed by a subgroup M of G such that [G:M]=2, je{l,

2,..., t}. We notice that “\‘ﬁll‘ is a power of 2, as it is a factor of
[G: M]. On the other hand ‘m‘ = U\yf:lNl is odd since |N| is odd. Hence

‘?ﬁ‘/ | — 1. This shows that N C M. Therefore M must be the subgroup
M; in (15) and it follows that the subfield L™ is the field K;in (11). This
1rnphes the uniqueness of the tower (11). The following dldgram illus-
trates the Galois correspondence between some subgroups of G and

some subfields of L.

< N < Mo < My, 9 Mo 9 My=G
)

! ! ! !

1
!
L > LN > K D> K D K D K=
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2. SOME PRELIMINARY RESULTS

We recall and reorganize some basic facts about Frobenius groups in
Cangelmi 2000 and Robinson (1982) for our purposes. Let f(x) € Z[x]
satisfy all the assumptions of the Theorem. Let {0y, 0,,..., 0,} be the
roots of f(x) in C. We may replace Q by a number field K. For a
fixed ie{l, 2,..., n}, let H; be the stabilizer of 0, in G, that is,
H;={0€ G:a(0;)=0,}. Then the subfield of the splitting field L fixed
by H;is K(0;). As f(x) is irreducible over K, we have

(G : Hi] = [K(6)) : K] = deg(f(x)) = [N] = [G: H].

It follows that |H;| = |H|, hence NN H;={1},i=1,2,...,n,since |H;|=h
and |N|=n are coprime by (5). The natural projection ¢ € G— oN
restricted to the subgroup H; must be one-to-one because the kernel of
the map is NN H; = {1}. Therefore H;= G/N = H as groups. As G is tran-
sitive on the set {0y, 0,..., 0,}, for any j€ {1, 2,..., n} with j#i there
exists g € G such that g(0;)=0;. Then the group g¢Hg~ ' (a conjugate of
H,) is the stabilizer H; of the root ;. Thus H; has exactly n conjugates
including itself, and each of these fixes exactly one root of f(x). The sta-
bilizer of two distinct roots of f(x) is the trivial subgroup {1} of G, since
H;NH;={1} for i#]. It is clear that (3) is satisfied and G is a Frobenius
group with complement H; for any i€ {1, 2,..., n}. From the orders of
N, H; and G, it is not hard to verify that

N={1}U (G\ (gGUGgHg-I».

Thus N is the Frobenius kernel with respect to the complement H; of G.
The following is a summary of the above discussion.

Lemma 1. Let G=NxH be a Frobenius group serving as the Galois
group of an irreducible polynomial f(x) over a number field K, such that
deg(f(x))=n=|N|. Let {0y, 05, ..., 0,} be the set of all roots of f(x) in
C. Then

(i) G=NxH,;, where H={c€G:a(0)=0;}, ic{l, 2,..., n}.
(il) The set N\ {1} contains all elements in G that do not have a fixed
point in {0y, 05, ..., 0,}.
(i) IfoeGanda(0,)=0, a(0,)=0,forr,s€{l,2,..., n} withr#s,
then o =1.

The following result is an easy corollary of Lemma 1.
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Proposition 1. Keep the assumptions in Lemma 1. Let i be a fixed integer
in {1, 2,..., n}. If H is a cyclic group then there exists o € G such that
G=Nx{(a) and o(6;) =0,

Proof. The subgroup H, is cyclic since H;2 H. Let a be a generator of H;
and the statement follows. O

Now we turn to some properties of the Frobenius kernel N.

Proposition 2. For any i€ {1, 2,..., n}, N is a complete set of left coset
representatives of H; in G.

Proof. Assume that v, €N, v»€ N and v H;=v,H, so that v'v, € H,.
Hence vy 'v,=1 since NN H;={1}. Thus v, =v,. The proposition now
follows from the fact |N|=[G: H}]. O

Proposition 3.  The Frobenius kernel N acts transitively on the set of roots

{01, 02, ..., 04} of f(x).

Proof. For r, s€{l,2,...,n}, r#s, there exists g€ G, such that
a(0,) =0y, since G acts transitively on the set {0, 0, ..., 0,}. By Proposi-
tion 2, 0 € vH, for some v € N. Thus ¢ = vy for some 5 € H,. Now we have

v(0,) = vn(0;) = a(6;) = 0,

completing the proof. O

Next we consider the subgroups of G of the form Nx (x*"),
me{0,1,2,..., t}.

Proposition 4. For me{0, 1, 2,..., t}, we have

(1) Nx (oczm> is a subgroup of G containing N.
(i) The index of Nx («*")in G is 2.
(i) Nx(o®") acts transitively on {0, 0, ..., 0,}, the set of roots of

S ().
(iv) Nx <(X2m> is a Frobenius group with Frobenius kernel N and
complement (o*") .

Proof. (i) is obvious. (ii) follows from the calculations

_ Nl _ A

— — — 271‘1.
INTjo>"| /2"

[N>(or) = N>
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To prove (iil) we notice that, by Proposition 3, N acts transitively on the
set {0y, 0,,..., 0,}. So does Nx (o*").

Now conditions (1) and (2) in Sec. 1 are satisfied when {0, 0,, ..., 0,}

O

.

is considered as the N x (¢*")-set. This proves (iv).

In Remark 2, we observed that G = Gal(L/@Q) has a unique sequence
of normal subgroups

M, <M, 1<--- Mi<1aMy= G,
such that [M;_: M]=2,ie{l,2,...,t},and NC M;,i€{0,1,2,...,t}.
Combining this observation and Proposition 4, we obtain

Proposition 5.

() M,=Nx(>), me{0,1,2,..., 1t}
(i) K,, is the subfield of L fixed by M, =Nx(*"), me
{0, 1, 2,..., t}.

Proposition 6. For r, s€{l, 2,..., n} with r#s, there exists 1 € G such
that ©(0,) =0 and ©(0;) =0,

Proof. For anyi€{l,2,..., n} the subgroup H;={c€ G:0(0;)=10,} is
cyclic of even order. Denote the unique element of order 2 in H; by t,.

If T € G is of order 2, then 7 lies in H; for some i€ {1, 2,..., n}, since G =
(U, H) UN and |N| is odd. Thus t=r1; for some i and {71, 12,..., 7,}
is the complete set of order 2 elements in G. Each t; (i€{l, 2,..., n})

fixes exactly one root 60, of f(x), hence 7, is a product of (n—1)/2
transpositions. We point out that no two of these order 2 elements can have
a transposition in common. Otherwise, say that the transposition (0,, 0y),
for some r # s, occurs in both 7; and ;, for some i # j. Then

‘L'i‘Ej(Or) = ’E,’(GS) = 0,7
‘E,“L’j(@s) = ‘L',‘(Hr) = 05.

It follows from Lemma 1(iii) that 7,7;=1, hence t;=71;, a contradiction.
Now assume that r, s€ {1, 2,...,n} and r #s. Then there are (n — 2) order
2 elements in G which fix neither 0, nor 0,. Let 7, be such an order 2 element.
Then k#r and k#s. 1, contains a transposition (0,, t(0,)), where
7:(0,) €401, 0,,...,0,}\{0,, 0;}, which is a set of (n — 2) elements contain-
ing 0. Therefore there exists 7 € G, such that 7(0,) =0, and ©(6,)=0,. [

In the rest of this section we assume the following set of conditions.
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Condition Set.

(i) K is a subfield of € and 6y, 6,,..., 8, are the roots in C of an
irreducible polynomial f(x) € K[x].
(i) The discriminant polynomial of f(x)

n

g(x) =[] (x—(0:—0)))
ij=1
i#j

is squarefree.

(iii) L=K(0y, 0,, ..., 8,) is the splitting field of f(x).

(iv) G*=Gal(L/K) is a Frobenius group with Frobenius kernel N
and complement H*, such that H* is a cyclic group with order
|H*|=2"h,, where m is a positive integer and /4, is an odd
positive integer.

(v) The degree of f(x) is odd, greater than 1, and equal to n, the
order of N.

Let g(x) be an irreducible factor of g(x) over K. We have the following
observations.

Proposition 7. The group G*=Gal(L/K) acts transitively on the set of
roots of g(x). Moreover, G* acts regularly on the set of roots of g(x), that
is, the stabilizer of any root of §(x) in G* is the trivial subgroup {1}.

Proof. The first statement is clear. A root of g(x) is of the form 6, — 6,,
for some r#s, r, s€{1,2,..., n}. If 6 € G* and o(0, — 0,) =0, — 0,, then
a(0,) =0, and o(6,) =0,, since g(x) is squarefree. Thus ¢ =1 by Lemma
1(ii1). ]

Corollary. The degree of g(x) is equal to |G*|.

We note that the discriminant polynomial g(x) is the polynomial
R(—1, f)(x) in Cangelmi (2000, p. 852). A more general treatment can
be found in Cangelmi (2000, Theorem 3.1).

Proposition 8.

(1) If0,— 0, is a root of §(x), for somer, s€{l,2,..., n} withr#s,
so is 0,—0,.

(i) g(x)=h(x?) for some h(x) € K[x].
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Proof- By Proposition 6, there exists t € G*, such that 7(0,) =0, and
1(60,) =0,. Thus (0, — 0,) =0,— 0, is a root of g(x) if 6, — 0, is a root of
g(x). Over L, whenever x—(6,—0,) is a linear factor of g(x), so is
x —(0,— 0,). Therefore g(x) is a product of quadratic factors of the form
x> —(0,—0,)* for some r, s € {1, 2,..., n} with r#s. This proves (ii).

[

We note that d=|G*|/2 is the degree of /(x). Next we label the

roots &y, ..., & Earts-.., Eaq of g(x) in such a way that & =—¢, 4,
k=1,2,...,d We observe that

d d

g) =[x =&+ &) =167 - &),

k=1 k=1
d
HOEIC I | [52
K=

d
H ék
Dy, = H (fk - 5%)2-

1<k<I<d

Then we have

D= ] &-a)?

1<k<I<2d
d 2
=l II &-4 ] [Hzék H II @+a)y
1<k<lI<d k=1 1<k<I<d

[ I - 2] (2*) Hék

I<k<i<d
= 2Dj(~1)"g(0).
It follows that
Dg = +2'D;\/ (~1)"5(0).
Noting that Dj € K we have proved the following result.

Proposition 9. K(,/D;) = K(1/(~1)"g(0)), whered = 1|G*| =1deg(g(x)).
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Proposition 10. Assume Condition Set holds. If g(x) is an irreducible fac-
tor of g(x) over K, then the field extension K(\/Dg) = K(4/ (—l)dg(O))
over K has degree 2.

Proof. It suffices to show that G*, viewed as a permutation group on the
roots of g(x), contains an odd permutation. Fix a root ¢ of g(x). Then the
map o € G* — g is a one-to-one correspondence from G* onto the set of
roots of g(x), by Proposition 7. Thus we just need an element of G* acting
as an odd permutation when G* acts on itself by left multiplication. Let p
be an element of H* of order 2" and u be an element of H* of order A;.
Then H* is the direct product of the two cyclic subgroups generated by p
and u respectively. We also notice that G* = NH* = H*N since N is a nor-
mal subgroup of G*. Thus each element in G* can be represented uniquely
as p'u/v for some veN, i€{0,1,...,2" 1} and j€{0, 1,..., hy —1}.
We now claim that left multiplication by p, denoted p;: o€ G*+—
pa € G*, serves as an odd permutation on the set G*. For fixed j&
{0, 1,..., hy—1} and veN, the action of p, is p'u/vs p"'p/v for
i€{0,1,...,2" =2} and p*" ~ 'w/v — u/v. Therefore the cycle of length 2

. = (W, pw'v, p*wv, ... p* " plv)

occurs in the representation of p; as the product of disjoint cycles, and
hlfl

Pr= H v
J=0

veEN

As each 7, is an odd permutation and /n is an odd integer, p; is an odd
permutation on G*. ]

3. PROOF OF THE THEOREM

We verify that for all i€ {0, 1,..., t— 1}, K;= K satisfies all five con-
ditions in the Condition Set.

f(x) is irreducible over Ky=@Q by assumption. To show that f(x) is
irreducible over K, i€ {1, 2,..., t — 1}, it suffices to show that the Galois
group Gal(L/K;) acts transitively on the set of roots of f(x). But Gal(L/K})
is, by Proposition 5, M;= N x <oc2'>, which acts on {04, ..., 0,} transitively
by Proposition 4(iii). Hence (i) of the Condition Set holds.

It is clear that

¢ = [[ (0~ 0)
1.[4;/1
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is squarefree over K;, and L= K(0y, 0,, . .., 0,) is the splitting field of f(x).
Thus (ii) and (iii) of the Condition Set hold.

The Galois group Gal(L/K;)= M;=Nx (¢*) is a Frobenius group
with kernel N and complement (o), which is a cyclic group of even
order 2''h;, where ¢ — i is a positive integer and /; is an odd positive inte-
ger. This verifies (iv) of the Condition Set. Finally, the degree of f(x) is
n=|N| by assumption. Thus (v) of the Condition Set is valid.

Recall that the degree of g(x) is n(n — 1). According to Proposition 7
and its corollary, each irreducible factor of g(x) over K; is of degree
|G*| =2"""hyn =nh/2". Therefore g(x) has n(n —1)/|G*| =2'(n — 1)/h irre-
ducible factors over K;. Hence over K; we have

2(n—1)/h

s = [ e, (16)
j=1

where each g;(x)€K{x] is monic, irreducible, and of degree
|G*|=2""mn=nh/2'. By Proposition 10, the field extension

Ki( (—l)d"g,-j(O)>/Ki has degree 2, where d;=deg(g;(x))/2. It is now
clear that for i€{0,1,...,r—1}, the degree of the element

(—l)dfgg,(O) over the rational field @ is 2°"'. By the uniqueness of the
quadratic tower (11) (Remark 2), we have

Ki+1:Q( (_l)digij(o))a i€{0717...,[—1}.

When i€ {0,..., t—2}, d,-:deg(g,-j-(x))/2:2’*1*"h1n is even, and it

follows that y/(—1)%g;(0) = /2;(0).

When i=t¢—1, d,_;=deg(g, 1(x)/2=2"""Dhn=mn is odd,

hence we have (—l)d"‘gtqj(o) = \/m

The proof is now complete since both (13) and (14) are established by
(15) and the notes above. ]

4. EXAMPLES

Our theorem gives a practical way of determining the normal sub-
fields K; of degree 2’ of the splitting field of L of f since the polynomial
g(x) can be conveniently computed using resultants (see Soicher, 1981)
and factored over a number field using for example a package such as
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2-Power Degree Subfields 4757

MAPLE. If g(x) has repeated factors it is necessary to change the poly-
nomial f(x) by a Tschirnhausen transformation.

Example 1. Let f(x)=x" — 5ax® 4+ 5a*x — b € Z[x] be irreducible. Then
4a° — b* £0, otherwise there exists an integer ¢ such that a=c* b=2¢’,
and f(x) has the linear factor x —2¢. The Galois group G of fis the
Frobenius group F»y. Here n=5, h=4, (n—1)/h=1 and t=2. The poly-
nomial f(x) is known as DeMoivre’s quintic. Set

_ Resultant(f(x + X), /(X))
= = .

g(x)

MAPLE gives g(x) as a polynomial of degree 20 with constant term
2(0) = 5°(4a” — b*)> = g, (0). By our theorem the unique quadratic sub-
field K; of L is

Ki = Q(/3(0)) = Q(V5).

Next we factor g(x) in Q(v/5)[x]. MAPLE gives two monic polynomials
g11(x) and g5(x) in Q(v/5)[x] of degree 10 such that

g(x) = g1 (x)g2(x).

By our theorem these polynomials are irreducible in Q(+/5)[x]. Evaluat-
ing them at x =0, MAPLE gives

100045 — 250 (o) _ 1000 — 2505
54115 Y T T s TG

and our theorem yields the unique quartic subfield K, of L as

1000a> — 25052
K, = -1 ].
’ Q(\/ ( ~25+11V3 ))
Since

1000a5 — 25002\ (5+5V3\ 5 ., /s
_ _ 4 — B)(5+2/3),
(-25+11ﬁ> ) W= )

g1(0) =

we have

K = Q<\/(4a5 — )54 2f5))

in agreement with Spearman and Williams (1999, Theorem).
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Example 2. We choose
f(x)=x"+ax+b e Z[x]|

to be a solvable, irreducible quintic trinomial with ab+#0. Let r be the
unique rational root of the resolvent sextic of x°+ax+b (Spearman
and Williams, 1994, p. 988). Set

3r — 16a ~on 3r — 16a B —5be
R i 7 A T P
so that

4r + 12a
c(>0)€Q, s==+l, e(£0)eQ.

Then (see, for example, Spearman and Williams, 1994, Theorem, p. 987)
we have

~ 5¢4(3 — 4ec) b — —4e3(11e + 2c)
o241 T 2 +1 ’
The Galois group G of f'is

Ds, if 5(c2+1) € @,
Fy, if 5(c2+1) ¢Q?,

where Ds is the dihedral group of order 10 and F, is the Frobenius group
of order 20 (Spearman and Williams, 1994, p. 990). We note that Dsis a
Frobenius group. We just treat the case when G'= F>, as the case G= Ds
is simpler. Here n=35, h=4, (n—1)/h=1 and r=2. Set

o(x) = Resultant(f(x + X), (X)) .

=
MAPLE gives g(x) as a polynomial of degree 20 with constant term

(46c3 — 84¢2 — 37ec — 122)°

2(0) = goi(0) = 2°5° @1y

By the theorem we obtain
K, = Q( 801(0)) = Q( 5(c2 + 1)>7
in agreement with Spearman et al. (1995, p. 16).

Next we use MAPLE to factor g(x) over K;. MAPLE gives g(x)
as the product of two monic polynomials gi;(x) and g.(x)
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in Q(1/5(c? + 1))[x] of degree 10 such that
8(x) = g (x)g12(x).

MAPLE gives

211(0) = (square) x (—25((:2 + 1)+ (5+106)4/5(c* + 1))

~ ) 50 )50+ 20y 7).

By the theorem we have

KZQ(\/5+(1+2S) %)

in agreement with Spearman et al. (1995, Theorem, p. 17).
We conclude by giving brief details of four numerical examples.

Example 3.

f(x) = x° — 70x> — 140x” + 385x + 28,
G=Fy,n=5 h=4, (n—1)/h=1, t =2,
201(0) = 2175574432,
K1 = Q(V10),
11(0) = 28 5% 72(=650 + 201/10),
g12(0) = 28 52 72(=650 — 201V/10),

K, = Q( 650+2o1m)

2
Q \l (@) (10 +V/10)

:Q( 10+\/ﬁ>.
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Example 4.

F(x) = x? = 3x% 4327 — 15x8 +33x° — 3x* 4 2427 + 647 — 4,
see (Cangelmi, 2000, p. 856),
G = (Z3xZ3)* 2y,
n=9 h=4, n—-1)/h=2t=2,

go1(0) = 283657,
g02(0) = 24365

Ki = Q(V5),
211(0) =243353(5 + 2V/5),
g12(0) =233 5%(5 — 2V/5),
(0) = 23 5%(5 - V5)
(0) =

g13(0
g14(0) = 23%55(5 4+ /3),

K, = Q( —(15+ 6\/§)>

2
Q J —(1 +4ﬁ> (30 + 6v/5)

= Q( —(30+6\/§)>.

Example 5.

f(x) = x" — 72x7 + 1464x> — 960x* — 8928x> + 134407
— 2064x — 2560.

The MAGMA database gives
G = T)s (notation of Butler and McKay, 1983), |G| =T72.

The group 75 has one normal subgroup N =73 x Z; of order 9 as well
as nine conjugate subgroups of order 8, each of which is cyclic. These
conjugate subgroups intersect only trivially so G is a Frobenius group
and is the semidirect product (Z; x Z3) x Zg.

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.
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n=9 h=8 (n—1)/h=1, t=3,
go1(0) = 287 31256722392 5032,
K =Q(v2),
g11(0) =233053(2.29. 137 - 1193 + 6650041+/2),

Kz—(])<\/2~5-29-137~1193+5~6650041\/§)

= Q(\/IO 5\/§>,
221(0) = —2932(5662200 + 33072308 — 3308704 — 1938034%),

where f=1/10 — 5\/_2_,

K;=Q (\/ 5662200 + 33072308 — 33087042 — 193803ﬂ3>.

Since
2 3 34
(5662200 + 33072308 — 3308705 — 1938034°) | 30 — 34 + 5
= (9450 + 58208 — 531p° — 336/33)2,
we have

2
1@@( 303ﬂ+3§>

:Q(\/30—3\/10+5\/§+6\/10—5\/§>.

Example 6.

f(x) =xB —26x1° — 117x® + 143x7 — 910x° 4 585x°
— 1794x* + 4472x% — 2951x% + 520x — 131.

MAPLE gives the discriminant of f(x) as 2%13?'4322791>
3326997 155158917 so that the quadratic subfield of L is Q(v/13). If « is
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any root of f(x) MAPLE factors f(x) over Q(a,+/13). There are six
irreducible quadratics and one linear polynomial in the factorization.
Hence

[L:@Q]=2"13
for some k € Z*. Therefore f(x) is solvable so Gal( ) = F}3;, where /| 12.
It is known that [L:@Q]=13/, where /# 1 as L has a quadratic subfield
and /#2 as f does not factor into linear factors over @Q(«,v/13). Hence
/=4 and Gal(f)=Fs,. We remark that a theorem of Cangelmi (2000,
Theorem 3.17, p. 851) provides an alternative way of verifying that
Gal( /)= Fs.

n=13 h=4 (n—-1)/h=3,1t=2,

go1(0) = 137155158912,

202(0) = 28137 332699,

203(0) = 13743%27912,

K = Q(V13),

1 3
g1(0) = %(5 - 1321822217 4 3% - 3793 - 4159V/13),

1
K> = Q<\/—5(5 -132-1822217 + 3% - 3793 -4159@)

= Q( —13 - 2\/5).
ACKNOWLEDGMENTS

The authors are grateful to the referee for his/her invaluable sugges-
tions based on his/her thorough reading and understanding of our work.
The research of the first two authors was supported by grants from the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Butler, G., McKay, J. (1983). The transitive groups of degree up to ele-
ven. Comm. Algebra 11:863-911.

Cangelmi, L. (2000). Polynomials with Frobenius Galois groups. Comm.
Algebra 28:845-859.

270 Madison Avenue, New York, New York 10016



2-Power Degree Subfields 4763

Robinson, D. J. S. (1982). A Course in the Theory of Groups. Graduate
Text in Mathematics 80. New York: Springer-Verlag.

Rotman, J. (2002). Advanced Modern Algebra. Prentice-Hall.

Soicher, L. (1981). M. Comp. Sci. thesis, Concordia University, Montréal.

Spearman, B. K., Williams, K. S. (1994). Characterization of solvable
quintics x° +ax + b. Amer. Math. Monthly 101:986-992.

Spearman, B. K., Williams, K. S. (1999). DeMoivre’s quintic and a
theorem of Galois. Far East J. Math. Sci. (FJIMS) 1:137-143.

Spearman, B. K., Spearman, L. Y., Williams, K. S. (1995). The subfields
of the splitting field of a solvable quintic trinomial. J. Math. Sci.
6:15-18.

Received November 2001
Revised December 2002

h=]
53
Z
Z
Q
2
L
=
]
=
2
=
<
3]
=
=
.
o
~
~
L
a]
o)
Q9
2
.2’1
=
&
o
o
S
Q
©
=
5
=}
=
2
3
O

MARCEL DEKKER, INC.

270 Madison Avenue, New York, New York 10016 ﬂ






