# COMMUNICATIONS IN ALGEBRA® Vol. 31, No. 10, pp. 4745–4763, 2003

# The 2-Power Degree Subfields of the Splitting Fields of Polynomials with Frobenius Galois Groups

Blair K. Spearman, Kenneth S. Williams, and Qiduan Yang<sup>1</sup>

<sup>1</sup>Department of Mathematics and Statistics, Okanagan University College, Kelowna, British Columbia, Canada <sup>2</sup>School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada

# **ABSTRACT**

Let f(x) be an irreducible polynomial of odd degree n > 1 whose Galois group is a Frobenius group. We suppose that the Frobenius complement is a cyclic group of even order h. Let  $2^t h$ . For each i = 1, 2, ..., t we show that the splitting field L of f(x) has exactly one subfield  $K_i$  with  $[K_i:\mathbb{Q}]=2^i$ . These subfields form a tower of normal extensions  $\mathbb{Q} \subset K_1 \subset K_2 \subset \cdots \subset K_t$  with  $[K_i:K_{i-1}]=2$   $(i=1,2,\ldots,t)$  and  $K_0 = \mathbb{Q}$ . Our main result in this paper is an explicit formula for an element  $\alpha_i$  in  $K_{i-1}$  such that  $K_i = \mathbb{Q}(\sqrt{\alpha_i})$   $(i=1, 2, \ldots, t)$ . This result is applied to DeMoivre's quintic  $x^5 - 5ax^3 + 5a^2x - b$ , solvable

4745

DOI: 10.1081/AGB-120023130 Copyright © 2003 by Marcel Dekker, Inc. 0092-7872 (Print); 1532-4125 (Online) www.dekker.com



<sup>\*</sup>Correspondence: Kenneth S. Williams, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada; E-mail: williams@math.carleton.ca.

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

quintic trinomials  $x^5 + ax + b$ , as well as to some numerical polynomials of degrees 5, 9, and 13.

Key Words: Frobenius group; Subfields of splitting field; Galois group.

### 1. INTRODUCTION

A finite group G is said to be a Frobenius group if there exists a transitive G-set X such that

every 
$$g \in G \setminus \{1\}$$
 has at most one fixed point (1)

and

there is some 
$$g \in G \setminus \{1\}$$
 that does not have a fixed point. (2)

It can be proved (Rotman, 2002, Proposition 8.161) that a finite group G is a Frobenius group if and only if it contains a proper nontrivial subgroup H such that

$$H \cap gHg^{-1} = \{1\} \quad \text{for all } g \notin H. \tag{3}$$

Such a subgroup H of G is called a Frobenius complement of G. Let

$$N = \{1\} \cup \left(G \setminus \left(\bigcup_{g \in G} gHg^{-1}\right)\right).$$

*N* is called the Frobenius kernel of *G*. Frobenius proved using character theory the following result (Rotman, 2002, Theorem 8.164):

Let G be a Frobenius group with complement H and kernel N. Then N is a normal subgroup of G with  $N \cap H = \{1\}$  and G = NH.

(4)

Furthermore, we have (Robinson, 1982, Ex. 8.5.6)

$$h \mid n-1$$
, where  $h = |H|$  and  $n = |N|$ . (5)

By (4), G is the semi-direct product of N and H, written  $G = N \times H$ . Note that there is a natural G-action on N: for  $\sigma$  in G,  $\phi_{\sigma}(v) = \sigma v \sigma^{-1}$ ,  $v \in N$ . We state the following result without proof.

The semi-direct product  $G = N \times H$  is a Frobenius group with kernel N and complement H if and only if the action of  $H \setminus \{1\}$  on  $N \setminus \{1\}$  is fixed-point free, that is, if  $\sigma \in H$ ,  $v \in N \setminus \{1\}$  and  $\sigma v \sigma^{-1} = v$  imply  $\sigma = 1$ .

(6)

In this paper, we consider irreducible polynomials  $f(x) \in \mathbb{Z}[x]$  with Galois group G = Gal(f) satisfying the following three conditions:

 $G = N \rtimes H$  is a Frobenius group with kernel N and complement H, (7a)

....

H is a cyclic group with even degree h, hence N is abelian, (7b)

deg(f(x)) is odd, greater than 1, and equal to n, the order of N.

(7c)

In (7b) the fact that N is abelian follows from Robinson (1982, Ex. 10.5). We define the positive integer t by

$$2^t \parallel h, \tag{8}$$

and the odd positive integer  $h_1$  by

$$h_1 = h/2^t. (9)$$

We denote the splitting field of f(x) by L so that

$$Gal(L/\mathbb{Q}) = Gal(f) = G = N \rtimes H.$$

For each j=1, 2, ..., t we show that L has exactly one subfield  $K_j$  with  $[K_j:\mathbb{Q}]=2^j$ . These subfields form a tower of normal extensions  $\mathbb{Q} \subset K_1 \subset K_2 \subset \cdots \subset K_t$  with  $[K_i:K_{i-1}]=2$  (i=1, 2, ..., t) where  $K_0=\mathbb{Q}$ . Our objective in this paper is to give an explicit element  $\alpha_i \in K_{i-1}$  such that  $K_i=\mathbb{Q}(\sqrt{\alpha_i})$  (i=1,2,...,t). This determination is given in Sec. 3 after some preliminary results are proved in Sec. 2. In Sec. 4 we apply our results to certain classes of polynomials.

**Remark 1.** Let K be a subfield of  $\mathbb{C}$ . Let  $\theta_1, \theta_2, \dots, \theta_n$  be the roots in  $\mathbb{C}$  of  $f(x) \in K[x]$ . The discriminant of f(x) is defined by

$$D_f = \prod_{\substack{i,j=1\\i < i}}^n (\theta_i - \theta_j)^2.$$

If the roots of f(x) are distinct, we fix some ordering of the roots and view the Galois group G of f(x) as a subgroup of the symmetric group  $S_n$ . Galois theory tells us that the field  $K(\sqrt{D_f})$  is always a subfield of the splitting field of f(x), and that G is a subgroup of the alternating group  $A_n$  if and only if  $\sqrt{D_f} \in K$ . Therefore the field extension  $K(\sqrt{D_f})/K$  is quadratic if and only if G contains odd permutations on  $\{\theta_1, \theta_2, \ldots, \theta_n\}$ . In this paper, we shall see that when G is not contained in  $A_n$ , the quadratic extension  $K_1/K$  is reproducing  $K(\sqrt{D_f})/K$ . It is worth noting that even when G is not a subgroup of  $A_n$ , a quadratic tower over K can still be constructed.

**Definition 1.** Let  $\theta_1, \theta_2, \dots, \theta_n$  be the roots in  $\mathbb{C}$  of  $f(x) \in K[x]$ . The discriminant polynomial of f(x) is defined to be

$$g(x) = \prod_{\substack{i,j=1\\i \neq i}}^{n} (x - (\theta_i - \theta_j)).$$
 (10)

It is clear that  $g(x) \in K[x]$  and  $\deg g(x) = n(n-1)$ .

We now state our main result.

**Theorem.** Let  $f(x) \in \mathbb{Z}[x]$  be an irreducible polynomial. Let the roots of f(x) in  $\mathbb{C}$  be  $\theta_1, \theta_2, \ldots, \theta_n$ . Let  $L = \mathbb{Q}(\theta_1, \theta_2, \ldots, \theta_n)$  be the splitting field of f(x), and  $G = \operatorname{Gal}(f) = \operatorname{Gal}(L/\mathbb{Q})$  be the Galois group of f(x). Assume that f(x) and G satisfy the following four conditions:

- (a)  $G = N \times H$  is a Frobenius group with kernel N and complement H.
- (b) H is a cyclic group with even degree h.
- (c) deg(f(x)) is odd, greater than 1, and equal to n the order of N.
- (d) The discriminant polynomial of f(x) is squarefree.

Define t and  $h_1$  as in (8) and (9) respectively. Then L contains exactly one normal subfield  $K_j$  with  $[K_j:\mathbb{Q}]=2^j$  for each  $j=1, 2, \ldots, t$ . These subfields satisfy

$$\mathbb{Q} \subset K_1 \subset K_2 \subset \cdots \subset K_t \tag{11}$$

with  $K_i/\mathbb{Q}$  a cyclic extension of degree  $2^i$  for i=0, 1, ..., t. Further, for i=0, 1, ..., t-1,

$$g(x) = \prod_{j=1}^{2^{i}(n-1)/h} g_{ij}(x), \tag{12}$$

where each  $g_{ij}(x) \in K_i[x]$  is monic, irreducible, of degree  $nh/2^i$ , and even. Finally, for any  $j \in \{1, 2, ..., 2^i(n-1)/h\}$ , we have

$$K_{i+1} = \mathbb{Q}(\sqrt{g_{ij}(0)}), \quad \text{for } i = 0, 1, 2, \dots, t - 2,$$
 (13)

and

$$K_t = \mathbb{Q}(\sqrt{-g_{t-1j}(0)}). \tag{14}$$

**Remark 2.** The existence of a quadratic tower of the form (11) follows from Galois theory. Let  $L^N$  be the subfield of L fixed by N. Then the Galois group of  $L^N$  over  $\mathbb{Q}$ ,  $\operatorname{Gal}(L^N/\mathbb{Q})$ , is isomorphic to G/N, hence to H, which is cyclic of order  $2^th_1$ .  $\operatorname{Gal}(L^N/\mathbb{Q})$  has a unique sequence of subgroups (each of which is normal since  $\operatorname{Gal}(L^N/\mathbb{Q})$  is abelian)

$$P_t \triangleleft P_{t-1} \triangleleft \cdots \triangleleft P_1 \triangleleft P_0 = \operatorname{Gal}(L^N/\mathbb{Q}),$$

such that  $[P_{i-1}:P_i]=2$ ,  $i \in \{1,2,\ldots,t\}$ . Correspondingly,  $G=\operatorname{Gal}(L^N/\mathbb{Q})$  has a unique sequence of normal subgroups

$$M_t \triangleleft M_{t-1} \triangleleft \cdots M_1 \triangleleft M_0 = G, \tag{15}$$

such that  $[M_{i-1}:M_i]=2$ ,  $i \in \{1,2,\ldots,t\}$ , and  $N \subseteq M_i$ ,  $i \in \{0,1,\ldots,t\}$ , by the Correspondence Theorem (Rotman, 2002, Proposition 2.76). A quadratic tower of the form (11) thus exists in which each  $K_i$  is the fixed field of  $M_i$  for  $i \in \{1,2,\ldots,t\}$ . Moreover, we claim that every subfield of L of degree  $2^j$  over  $\mathbb{Q}$  must be a field in this tower. Such a subfield, written as  $L^M$ , is fixed by a subgroup M of G such that  $[G:M]=2^j$ ,  $j \in \{1,2,\ldots,t\}$ . We notice that  $\frac{|MN|}{|M|}$  is a power of 2, as it is a factor of [G:M]. On the other hand  $\frac{|MN|}{|M|} = \frac{|N|}{|M \cap N|}$  is odd since |N| is odd. Hence  $\frac{|MN|}{|M|} = 1$ . This shows that  $N \subseteq M$ . Therefore M must be the subgroup  $M_j$  in (15) and it follows that the subfield  $L^M$  is the field  $K_j$  in (11). This implies the uniqueness of the tower (11). The following diagram illustrates the Galois correspondence between some subgroups of G and some subfields of L.

### 2. SOME PRELIMINARY RESULTS

We recall and reorganize some basic facts about Frobenius groups in Cangelmi 2000 and Robinson (1982) for our purposes. Let  $f(x) \in \mathbb{Z}[x]$  satisfy all the assumptions of the Theorem. Let  $\{\theta_1, \theta_2, \ldots, \theta_n\}$  be the roots of f(x) in  $\mathbb{C}$ . We may replace  $\mathbb{Q}$  by a number field K. For a fixed  $i \in \{1, 2, \ldots, n\}$ , let  $H_i$  be the stabilizer of  $\theta_i$  in G, that is,  $H_i = \{\sigma \in G: \sigma(\theta_i) = \theta_i\}$ . Then the subfield of the splitting field L fixed by  $H_i$  is  $K(\theta_i)$ . As f(x) is irreducible over K, we have

$$[G: H_i] = [K(\theta_i): K] = \deg(f(x)) = |N| = [G: H].$$

It follows that  $|H_i| = |H|$ , hence  $N \cap H_i = \{1\}$ ,  $i = 1, 2, \ldots, n$ , since  $|H_i| = h$  and |N| = n are coprime by (5). The natural projection  $\sigma \in G \to \sigma N$  restricted to the subgroup  $H_i$  must be one-to-one because the kernel of the map is  $N \cap H_i = \{1\}$ . Therefore  $H_i \cong G/N \cong H$  as groups. As G is transitive on the set  $\{\theta_1, \theta_2, \ldots, \theta_n\}$ , for any  $j \in \{1, 2, \ldots, n\}$  with  $j \neq i$  there exists  $g \in G$  such that  $g(\theta_i) = \theta_j$ . Then the group  $gH_ig^{-1}$  (a conjugate of  $H_i$ ) is the stabilizer  $H_j$  of the root  $\theta_j$ . Thus  $H_i$  has exactly n conjugates including itself, and each of these fixes exactly one root of f(x). The stabilizer of two distinct roots of f(x) is the trivial subgroup  $\{1\}$  of G, since  $H_i \cap H_j = \{1\}$  for  $i \neq j$ . It is clear that (3) is satisfied and G is a Frobenius group with complement  $H_i$  for any  $i \in \{1, 2, \ldots, n\}$ . From the orders of N,  $H_i$  and G, it is not hard to verify that

$$N = \{1\} \cup \left(G \setminus \left(\bigcup_{g \in G} gHg^{-1}\right)\right).$$

Thus N is the Frobenius kernel with respect to the complement  $H_i$  of G. The following is a summary of the above discussion.

**Lemma 1.** Let  $G = N \rtimes H$  be a Frobenius group serving as the Galois group of an irreducible polynomial f(x) over a number field K, such that  $\deg(f(x)) = n = |N|$ . Let  $\{\theta_1, \theta_2, \ldots, \theta_n\}$  be the set of all roots of f(x) in  $\mathbb{C}$ . Then

- (i)  $G = N \times H_i$ , where  $H_i = \{ \sigma \in G : \sigma(\theta_i) = \theta_i \}, i \in \{1, 2, ..., n \}.$
- (ii) The set  $N \setminus \{1\}$  contains all elements in G that do not have a fixed point in  $\{\theta_1, \theta_2, \ldots, \theta_n\}$ .
- (iii) If  $\sigma \in G$  and  $\sigma(\theta_r) = \theta_r$ ,  $\sigma(\theta_s) = \theta_s$  for  $r, s \in \{1, 2, ..., n\}$  with  $r \neq s$ , then  $\sigma = 1$ .

The following result is an easy corollary of Lemma 1.

**Proposition 1.** Keep the assumptions in Lemma 1. Let i be a fixed integer in  $\{1, 2, ..., n\}$ . If H is a cyclic group then there exists  $\alpha \in G$  such that  $G = N \vee \langle \alpha \rangle$  and  $\alpha(\theta_i) = \theta_i$ .

*Proof.* The subgroup  $H_i$  is cyclic since  $H_i \cong H$ . Let  $\alpha$  be a generator of  $H_i$  and the statement follows.

Now we turn to some properties of the Frobenius kernel N.

**Proposition 2.** For any  $i \in \{1, 2, ..., n\}$ , N is a complete set of left coset representatives of  $H_i$  in G.

*Proof.* Assume that  $\nu_1 \in N$ ,  $\nu_2 \in N$  and  $\nu_1 H_i = \nu_2 H_i$  so that  $\nu_1^{-1} \nu_2 \in H_i$ . Hence  $\nu_1^{-1} \nu_2 = 1$  since  $N \cap H_i = \{1\}$ . Thus  $\nu_1 = \nu_2$ . The proposition now follows from the fact  $|N| = [G: H_i]$ .

**Proposition 3.** The Frobenius kernel N acts transitively on the set of roots  $\{\theta_1, \theta_2, ..., \theta_n\}$  of f(x).

*Proof.* For  $r, s \in \{1, 2, ..., n\}$ ,  $r \neq s$ , there exists  $\sigma \in G$ , such that  $\sigma(\theta_r) = \theta_s$ , since G acts transitively on the set  $\{\theta_1, \theta_2, ..., \theta_n\}$ . By Proposition 2,  $\sigma \in \nu H_r$  for some  $\nu \in N$ . Thus  $\sigma = \nu \eta$  for some  $\eta \in H_r$ . Now we have

$$\nu(\theta_r) = \nu \eta(\theta_r) = \sigma(\theta_r) = \theta_s$$

completing the proof.

Next we consider the subgroups of G of the form  $N \rtimes \langle \alpha^{2^m} \rangle$ ,  $m \in \{0, 1, 2, ..., t\}$ .

**Proposition 4.** *For*  $m \in \{0, 1, 2, ..., t\}$ , *we have* 

- (i)  $N \rtimes \langle \alpha^{2^m} \rangle$  is a subgroup of G containing N.
- (ii) The index of  $N \rtimes \langle \alpha^{2^m} \rangle$  in G is  $2^m$ .
- (iii)  $N \rtimes \langle \alpha^{2^m} \rangle$  acts transitively on  $\{\theta_1, \theta_2, \dots, \theta_n\}$ , the set of roots of f(x).
- (iv)  $N \rtimes \langle \alpha^{2^m} \rangle$  is a Frobenius group with Frobenius kernel N and complement  $\langle \alpha^{2^m} \rangle$ .

*Proof.* (i) is obvious. (ii) follows from the calculations

$$[N \rtimes \langle \alpha \rangle : N \rtimes \langle \alpha^{2^m} \rangle] = \frac{|N||\alpha|}{|N||\alpha^{2^m}|} = \frac{h}{h/2^m} = 2^m.$$

To prove (iii) we notice that, by Proposition 3, N acts transitively on the set  $\{\theta_1, \theta_2, \dots, \theta_n\}$ . So does  $N \times \langle \alpha^{2^m} \rangle$ .

Now conditions (1) and (2) in Sec. 1 are satisfied when  $\{\theta_1, \theta_2, \dots, \theta_n\}$ is considered as the  $N \rtimes \langle \alpha^{2^m} \rangle$ -set. This proves (iv).

In Remark 2, we observed that  $G = \operatorname{Gal}(L/\mathbb{Q})$  has a unique sequence of normal subgroups

$$M_t \triangleleft M_{t-1} \triangleleft \cdots M_1 \triangleleft M_0 = G$$
,

such that  $[M_{i-1}: M_i] = 2, i \in \{1, 2, ..., t\}$ , and  $N \subseteq M_i, i \in \{0, 1, 2, ..., t\}$ . Combining this observation and Proposition 4, we obtain

# Proposition 5.

- (i)  $M_m = N \rtimes \langle \alpha^{2^m} \rangle$ ,  $m \in \{0, 1, 2, ..., t\}$ . (ii)  $K_m$  is the subfield of L fixed by  $M_m = N \rtimes \langle \alpha^{2^m} \rangle$ ,  $m \in$  $\{0, 1, 2, \ldots, t\}.$

**Proposition 6.** For  $r, s \in \{1, 2, ..., n\}$  with  $r \neq s$ , there exists  $\tau \in G$  such that  $\tau(\theta_r) = \theta_s$  and  $\tau(\theta_s) = \theta_r$ .

*Proof.* For any  $i \in \{1, 2, ..., n\}$  the subgroup  $H_i = \{\sigma \in G : \sigma(\theta_i) = \theta_i\}$  is cyclic of even order. Denote the unique element of order 2 in  $H_i$  by  $\tau_i$ . If  $\tau \in G$  is of order 2, then  $\tau$  lies in  $H_i$  for some  $i \in \{1, 2, ..., n\}$ , since G = $(\bigcup_{i=1}^n H_i) \cup N$  and |N| is odd. Thus  $\tau = \tau_i$  for some i and  $\{\tau_1, \tau_2, \dots, \tau_n\}$ is the complete set of order 2 elements in G. Each  $\tau_i$   $(i \in \{1, 2, ..., n\})$ fixes exactly one root  $\theta_i$  of f(x), hence  $\tau_i$  is a product of (n-1)/2transpositions. We point out that no two of these order 2 elements can have a transposition in common. Otherwise, say that the transposition  $(\theta_r, \theta_s)$ , for some  $r \neq s$ , occurs in both  $\tau_i$  and  $\tau_i$ , for some  $i \neq j$ . Then

$$\tau_i \tau_j(\theta_r) = \tau_i(\theta_s) = \theta_r,$$
  
$$\tau_i \tau_j(\theta_s) = \tau_i(\theta_r) = \theta_s.$$

It follows from Lemma 1(iii) that  $\tau_i \tau_j = 1$ , hence  $\tau_i = \tau_j$ , a contradiction. Now assume that  $r, s \in \{1, 2, ..., n\}$  and  $r \neq s$ . Then there are (n-2) order 2 elements in G which fix neither  $\theta_r$  nor  $\theta_s$ . Let  $\tau_k$  be such an order 2 element. Then  $k \neq r$  and  $k \neq s$ .  $\tau_k$  contains a transposition  $(\theta_r, \tau_k(\theta_r))$ , where  $\tau_k(\theta_r) \in \{\theta_1, \theta_2, \dots, \theta_n\} \setminus \{\theta_r, \theta_k\}$ , which is a set of (n-2) elements containing  $\theta_s$ . Therefore there exists  $\tau \in G$ , such that  $\tau(\theta_r) = \theta_s$  and  $\tau(\theta_s) = \theta_r$ .

In the rest of this section we assume the following set of conditions.

# **Condition Set.**

- (i) K is a subfield of  $\mathbb{C}$  and  $\theta_1, \theta_2, \ldots, \theta_n$  are the roots in  $\mathbb{C}$  of an irreducible polynomial  $f(x) \in K[x]$ .
- (ii) The discriminant polynomial of f(x)

$$g(x) = \prod_{\substack{i,j=1\\i\neq j}}^{n} (x - (\theta_i - \theta_j))$$

is squarefree.

- (iii)  $L = K(\theta_1, \theta_2, ..., \theta_n)$  is the splitting field of f(x).
- (iv)  $G^* = \text{Gal}(L/K)$  is a Frobenius group with Frobenius kernel N and complement  $H^*$ , such that  $H^*$  is a cyclic group with order  $|H^*| = 2^m h_1$ , where m is a positive integer and  $h_1$  is an odd positive integer.
- (v) The degree of f(x) is odd, greater than 1, and equal to n, the order of N.

Let  $\bar{g}(x)$  be an irreducible factor of g(x) over K. We have the following observations.

**Proposition 7.** The group  $G^* = \text{Gal}(L/K)$  acts transitively on the set of roots of  $\bar{g}(x)$ . Moreover,  $G^*$  acts regularly on the set of roots of  $\bar{g}(x)$ , that is, the stabilizer of any root of  $\bar{g}(x)$  in  $G^*$  is the trivial subgroup  $\{1\}$ .

*Proof.* The first statement is clear. A root of  $\bar{g}(x)$  is of the form  $\theta_r - \theta_s$ , for some  $r \neq s$ , r,  $s \in \{1, 2, ..., n\}$ . If  $\sigma \in G^*$  and  $\sigma(\theta_r - \theta_s) = \theta_r - \theta_s$ , then  $\sigma(\theta_r) = \theta_r$  and  $\sigma(\theta_s) = \theta_s$ , since g(x) is squarefree. Thus  $\sigma = 1$  by Lemma 1(iii).

**Corollary.** The degree of  $\bar{g}(x)$  is equal to  $|G^*|$ .

We note that the discriminant polynomial g(x) is the polynomial R(-1, f)(x) in Cangelmi (2000, p. 852). A more general treatment can be found in Cangelmi (2000, Theorem 3.1).

## **Proposition 8.**

- (i) If  $\theta_r \theta_s$  is a root of  $\bar{g}(x)$ , for some  $r, s \in \{1, 2, ..., n\}$  with  $r \neq s$ , so is  $\theta_s \theta_r$ .
- (ii)  $\bar{g}(x) = h(x^2)$  for some  $h(x) \in K[x]$ .

*Proof.* By Proposition 6, there exists  $\tau \in G^*$ , such that  $\tau(\theta_r) = \theta_s$  and  $\tau(\theta_s) = \theta_r$ . Thus  $\tau(\theta_r - \theta_s) = \theta_s - \theta_r$  is a root of  $\overline{g}(x)$  if  $\theta_r - \theta_s$  is a root of  $\overline{g}(x)$ . Over L, whenever  $x - (\theta_r - \theta_s)$  is a linear factor of  $\overline{g}(x)$ , so is  $x - (\theta_s - \theta_r)$ . Therefore  $\overline{g}(x)$  is a product of quadratic factors of the form  $x^2 - (\theta_r - \theta_s)^2$  for some  $r, s \in \{1, 2, ..., n\}$  with  $r \neq s$ . This proves (ii).

We note that  $d = |G^*|/2$  is the degree of h(x). Next we label the roots  $\xi_1, \ldots, \xi_d, \xi_{d+1}, \ldots, \xi_{2d}$  of  $\bar{g}(x)$  in such a way that  $\xi_k = -\xi_{k+d}, k = 1, 2, \ldots, d$ . We observe that

$$\bar{g}(x) = \prod_{k=1}^{d} (x - \xi_k)(x + \xi_k) = \prod_{k=1}^{d} (x^2 - \xi_k^2),$$

$$\bar{g}(0) = (-1)^d \prod_{k=1}^{d} \xi_k^2,$$

$$h(x) = \prod_{k=1}^{d} (x - \xi_k^2),$$

$$D_h = \prod_{1 \le k < l \le d} (\xi_k^2 - \xi_l^2)^2.$$

Then we have

$$\begin{split} D_{\bar{g}} &= \prod_{1 \leq k < l \leq 2d} (\xi_k - \xi_l)^2 \\ &= \left[ \prod_{1 \leq k < l \leq d} (\xi_k - \xi_l)^2 \right]^2 \left[ \prod_{k=1}^d (2\xi_k)^2 \right] \left[ \prod_{1 \leq k < l \leq d} (\xi_k + \xi_l)^2 \right]^2 \\ &= \left[ \prod_{1 \leq k < l \leq d} (\xi_k^2 - \xi_l^2)^2 \right]^2 (2^{2d}) \prod_{k=1}^d \xi_k^2 \\ &= 2^{2d} D_b^2 (-1)^d \bar{g}(0). \end{split}$$

It follows that

$$\sqrt{D_{\bar{g}}} = \pm 2^d D_h \sqrt{(-1)^d \bar{g}(0)}.$$

Noting that  $D_h \in K$  we have proved the following result.

**Proposition 9.**  $K(\sqrt{D_{\bar{g}}}) = K(\sqrt{(-1)^d \bar{g}(0)})$ , where  $d = \frac{1}{2}|G^*| = \frac{1}{2}\deg(\bar{g}(x))$ .

**Proposition 10.** Assume Condition Set holds. If  $\bar{g}(x)$  is an irreducible factor of g(x) over K, then the field extension  $K(\sqrt{D_{\bar{g}}}) = K(\sqrt{(-1)^d}\bar{g}(0))$  over K has degree 2.

*Proof.* It suffices to show that  $G^*$ , viewed as a permutation group on the roots of  $\bar{g}(x)$ , contains an odd permutation. Fix a root  $\xi$  of  $\bar{g}(x)$ . Then the map  $\sigma \in G^* \mapsto \sigma \xi$  is a one-to-one correspondence from  $G^*$  onto the set of roots of  $\bar{g}(x)$ , by Proposition 7. Thus we just need an element of  $G^*$  acting as an odd permutation when  $G^*$  acts on itself by left multiplication. Let  $\rho$  be an element of  $H^*$  of order  $2^m$  and  $\mu$  be an element of  $H^*$  of order  $h_1$ . Then  $H^*$  is the direct product of the two cyclic subgroups generated by  $\rho$  and  $\mu$  respectively. We also notice that  $G^* = NH^* = H^*N$  since N is a normal subgroup of  $G^*$ . Thus each element in  $G^*$  can be represented uniquely as  $\rho^i \mu^j \nu$  for some  $\nu \in N$ ,  $i \in \{0, 1, \ldots, 2^m - 1\}$  and  $j \in \{0, 1, \ldots, h_1 - 1\}$ . We now claim that left multiplication by  $\rho$ , denoted  $\rho_L \colon \sigma \in G^* \mapsto \rho \sigma \in G^*$ , serves as an odd permutation on the set  $G^*$ . For fixed  $j \in \{0, 1, \ldots, h_1 - 1\}$  and  $\nu \in N$ , the action of  $\rho_L$  is  $\rho^i \mu^j \nu \mapsto \rho^{i+1} \mu^j \nu$  for  $i \in \{0, 1, \ldots, 2^m - 2\}$  and  $\rho^{2^m - 1} \mu^j \nu \mapsto \mu^j \nu$ . Therefore the cycle of length  $2^m$ 

$$\pi_{j,\nu} = (\mu^j \nu, \rho \mu^j \nu, \rho^2 \mu^j \nu, \dots, \rho^{2^m-1} \mu^j \nu)$$

occurs in the representation of  $\rho_L$  as the product of disjoint cycles, and

$$ho_L = \prod_{\substack{j=0 \ 
u \in N}}^{h_1-1} \pi_{j,\,
u}.$$

As each  $\pi_{j,\nu}$  is an odd permutation and  $h_1n$  is an odd integer,  $\rho_L$  is an odd permutation on  $G^*$ .

# 3. PROOF OF THE THEOREM

We verify that for all  $i \in \{0, 1, ..., t-1\}$ ,  $K_i = K$  satisfies all five conditions in the Condition Set.

f(x) is irreducible over  $K_0 = \mathbb{Q}$  by assumption. To show that f(x) is irreducible over  $K_i$ ,  $i \in \{1, 2, ..., t-1\}$ , it suffices to show that the Galois group  $\operatorname{Gal}(L/K_i)$  acts transitively on the set of roots of f(x). But  $\operatorname{Gal}(L/K_i)$  is, by Proposition 5,  $M_i = N \times \langle \alpha^{2^i} \rangle$ , which acts on  $\{\theta_1, ..., \theta_n\}$  transitively by Proposition 4(iii). Hence (i) of the Condition Set holds.

It is clear that

$$g(x) = \prod_{\substack{i,j=1\\i\neq j}}^{n} (x - (\theta_i - \theta_j))$$

is squarefree over  $K_i$ , and  $L = K(\theta_1, \theta_2, \dots, \theta_n)$  is the splitting field of f(x). Thus (ii) and (iii) of the Condition Set hold.

The Galois group  $Gal(L/K_i) = M_i = N \times \langle \alpha^{2^i} \rangle$  is a Frobenius group with kernel N and complement  $\langle \alpha^{2^i} \rangle$ , which is a cyclic group of even order  $2^{t-i}h_1$ , where t-i is a positive integer and  $h_1$  is an odd positive integer. This verifies (iv) of the Condition Set. Finally, the degree of f(x) is n = |N| by assumption. Thus (v) of the Condition Set is valid.

Recall that the degree of g(x) is n(n-1). According to Proposition 7 and its corollary, each irreducible factor of g(x) over  $K_i$  is of degree  $|G^*| = 2^{t-i}h_1n = nh/2^i$ . Therefore g(x) has  $n(n-1)/|G^*| = 2^i(n-1)/h$  irreducible factors over  $K_i$ . Hence over  $K_i$  we have

$$g(x) = \prod_{j=1}^{2^{i}(n-1)/h} g_{ij}(x), \tag{16}$$

where each  $g_{ij}(x) \in K_i[x]$  is monic, irreducible, and of degree  $|G^*| = 2^{t-i}h_1n = nh/2^i$ . By Proposition 10, the field extension  $K_i\left(\sqrt{(-1)^{d_i}g_{ij}(0)}\right)/K_i$  has degree 2, where  $d_i = \deg(g_{ij}(x))/2$ . It is now clear that for  $i \in \{0, 1, \dots, t-1\}$ , the degree of the element  $\sqrt{(-1)^{d_i}g_{ij}(0)}$  over the rational field  $\mathbb{Q}$  is  $2^{i+1}$ . By the uniqueness of the quadratic tower (11) (Remark 2), we have

$$K_{i+1} = \mathbb{Q}(\sqrt{(-1)^{d_i}g_{ij}(0)}), i \in \{0, 1, \dots, t-1\}.$$

When  $i \in \{0, \ldots, t-2\}$ ,  $d_i = \deg(g_{ij}(x))/2 = 2^{t-1-i}h_1n$  is even, and it follows that  $\sqrt{(-1)^{d_i}g_{ij}(0)} = \sqrt{g_{ij}(0)}$ .

When i = t - 1,  $d_{t-1} = \deg(g_{t-1j}(x))/2 = 2^{t-1-(t-1)}h_1n = h_1n$  is odd, hence we have  $\sqrt{(-1)^{d_{t-1}}g_{t-1j}(0)} = \sqrt{-g_{t-1j}(0)}$ .

The proof is now complete since both (13) and (14) are established by (15) and the notes above.  $\Box$ 

### 4. EXAMPLES

Our theorem gives a practical way of determining the normal subfields  $K_i$  of degree  $2^i$  of the splitting field of L of f since the polynomial g(x) can be conveniently computed using resultants (see Soicher, 1981) and factored over a number field using for example a package such as MAPLE. If g(x) has repeated factors it is necessary to change the polynomial f(x) by a Tschirnhausen transformation.

**Example 1.** Let  $f(x) = x^5 - 5ax^3 + 5a^2x - b \in \mathbb{Z}[x]$  be irreducible. Then  $4a^5 - b^2 \neq 0$ , otherwise there exists an integer c such that  $a = c^2$ ,  $b = 2c^5$ , and f(x) has the linear factor x - 2c. The Galois group G of f is the Frobenius group  $F_{20}$ . Here n = 5, h = 4, (n - 1)/h = 1 and t = 2. The polynomial f(x) is known as DeMoivre's quintic. Set

$$g(x) = \frac{\text{Resultant}(f(x+X), f(X))}{x^5}.$$

MAPLE gives g(x) as a polynomial of degree 20 with constant term  $g(0) = 5^5 (4a^5 - b^2)^2 = g_{01}(0)$ . By our theorem the unique quadratic subfield  $K_1$  of L is

$$K_1 = \mathbb{Q}(\sqrt{g(0)}) = \mathbb{Q}(\sqrt{5}).$$

Next we factor g(x) in  $\mathbb{Q}(\sqrt{5})[x]$ . MAPLE gives two monic polynomials  $g_{11}(x)$  and  $g_{12}(x)$  in  $\mathbb{Q}(\sqrt{5})[x]$  of degree 10 such that

$$g(x) = g_{11}(x)g_{12}(x).$$

By our theorem these polynomials are irreducible in  $\mathbb{Q}(\sqrt{5})[x]$ . Evaluating them at x = 0, MAPLE gives

$$g_{11}(0) = \frac{1000a^5 - 250b^2}{-25 + 11\sqrt{5}}, \quad g_{12}(0) = \frac{1000a^5 - 250b^2}{-25 - 11\sqrt{5}},$$

and our theorem yields the unique quartic subfield  $K_2$  of L as

$$K_2 = \mathbb{Q}\left(\sqrt{-\left(\frac{1000a^5 - 250b^2}{-25 + 11\sqrt{5}}\right)}\right).$$

Since

$$-\left(\frac{1000a^5 - 250b^2}{-25 + 11\sqrt{5}}\right) = \left(\frac{5 + 5\sqrt{5}}{2}\right)^2 (4a^5 - b^2)(5 + 2\sqrt{5}),$$

we have

$$K_2 = \mathbb{Q}\left(\sqrt{(4a^5 - b^2)(5 + 2\sqrt{5})}\right)$$

in agreement with Spearman and Williams (1999, Theorem).

Example 2. We choose

$$f(x) = x^5 + ax + b \in \mathbb{Z}[x]$$

to be a solvable, irreducible quintic trinomial with  $ab \neq 0$ . Let r be the unique rational root of the resolvent sextic of  $x^5 + ax + b$  (Spearman and Williams, 1994, p. 988). Set

$$c = \left| \frac{3r - 16a}{4r + 12a} \right|, \quad \varepsilon = \operatorname{sgn}\left(\frac{3r - 16a}{4r + 12a}\right), \quad e = \frac{-5b\varepsilon}{2r + 4a},$$

so that

$$c \ge 0 \in \mathbb{Q}, \quad \varepsilon = \pm 1, \quad e \ne 0 \in \mathbb{Q}.$$

Then (see, for example, Spearman and Williams, 1994, Theorem, p. 987) we have

$$a = \frac{5e^4(3 - 4\varepsilon c)}{c^2 + 1}, \quad b = \frac{-4e^5(11\varepsilon + 2c)}{c^2 + 1}.$$

The Galois group G of f is

$$\begin{cases} D_5, & \text{if } 5(c^2+1) \in \mathbb{Q}^2, \\ F_{20}, & \text{if } 5(c^2+1) \notin \mathbb{Q}^2, \end{cases}$$

where  $D_5$  is the dihedral group of order 10 and  $F_{20}$  is the Frobenius group of order 20 (Spearman and Williams, 1994, p. 990). We note that  $D_5$  is a Frobenius group. We just treat the case when  $G = F_{20}$  as the case  $G = D_5$  is simpler. Here n = 5, h = 4, (n - 1)/h = 1 and t = 2. Set

$$g(x) = \frac{\operatorname{Resultant}(f(x+X), f(X))}{x^5}.$$

MAPLE gives g(x) as a polynomial of degree 20 with constant term

$$g(0) = g_{01}(0) = 2^8 5^5 \frac{\left(4\varepsilon c^3 - 84c^2 - 37\varepsilon c - 122\right)^2}{\left(c^2 + 1\right)^5}.$$

By the theorem we obtain

$$K_1 = \mathbb{Q}\left(\sqrt{g_{01}(0)}\right) = \mathbb{Q}\left(\sqrt{5(c^2+1)}\right),$$

in agreement with Spearman et al. (1995, p. 16).

Next we use MAPLE to factor g(x) over  $K_1$ . MAPLE gives g(x) as the product of two monic polynomials  $g_{11}(x)$  and  $g_{12}(x)$ 

in  $\mathbb{Q}(\sqrt{5(c^2+1)})[x]$  of degree 10 such that

$$g(x) = g_{11}(x)g_{12}(x).$$

MAPLE gives

$$g_{11}(0) = (\text{square}) \times \left(-25(c^2 + 1) + (5 + 10\varepsilon)\sqrt{5(c^2 + 1)}\right)$$
  
=  $(\text{square}) \times 5(c^2 + 1)\left(-5 + (1 + 2\varepsilon)\sqrt{\frac{5}{c^2 + 1}}\right)$ .

By the theorem we have

$$K_2 = \mathbb{Q}\left(\sqrt{-5 + (1+2\varepsilon)\sqrt{\frac{5}{c^2+1}}}\right)$$

in agreement with Spearman et al. (1995, Theorem, p. 17).

We conclude by giving brief details of four numerical examples.

# Example 3.

$$f(x) = x^{5} - 70x^{3} - 140x^{2} + 385x + 28,$$

$$G = F_{20}, n = 5, h = 4, (n - 1)/h = 1, t = 2,$$

$$g_{01}(0) = 2^{17} 5^{5} 7^{4} 43^{2},$$

$$K_{1} = \mathbb{Q}(\sqrt{10}),$$

$$g_{11}(0) = 2^{8} 5^{2} 7^{2}(-650 + 201\sqrt{10}),$$

$$g_{12}(0) = 2^{8} 5^{2} 7^{2}(-650 - 201\sqrt{10}),$$

$$K_{2} = \mathbb{Q}\left(\sqrt{650 + 201\sqrt{10}}\right)$$

$$= \mathbb{Q}\left(\sqrt{\frac{17 + 4\sqrt{10}}{3}}\right)^{2}(10 + \sqrt{10})$$

$$= \mathbb{Q}\left(\sqrt{10 + \sqrt{10}}\right).$$

# Example 4.

$$f(x) = x^{9} - 3x^{8} + 3x^{7} - 15x^{6} + 33x^{5} - 3x^{4} + 24x^{3} + 6x^{2} - 4,$$
see (Cangelmi, 2000, p. 856),
$$G = (\mathbb{Z}_{3} \times \mathbb{Z}_{3}) \times \mathbb{Z}_{4},$$

$$n = 9, h = 4, (n - 1)/h = 2, t = 2,$$

$$g_{01}(0) = 2^{8} 3^{6} 5^{7},$$

$$g_{02}(0) = 2^{4} 3^{6} 5^{11},$$

$$K_{1} = \mathbb{Q}(\sqrt{5}),$$

$$g_{11}(0) = 2^{4} 3^{3} 5^{3} (5 + 2\sqrt{5}),$$

$$g_{12}(0) = 2^{4} 3^{3} 5^{3} (5 - 2\sqrt{5}),$$

$$g_{13}(0) = 2 3^{3} 5^{5} (5 - \sqrt{5}),$$

$$g_{14}(0) = 2 3^{3} 5^{5} (5 + \sqrt{5}),$$

$$K_{2} = \mathbb{Q}\left(\sqrt{-(15 + 6\sqrt{5})}\right)$$

$$= \mathbb{Q}\left(\sqrt{-(15 + 6\sqrt{5})}\right).$$

# Example 5.

$$f(x) = x^9 - 72x^7 + 1464x^5 - 960x^4 - 8928x^3 + 13440x^2$$
$$-2064x - 2560.$$

The MAGMA database gives

$$G = T_{15}$$
 (notation of Butler and McKay, 1983),  $|G| = 72$ .

The group  $T_{15}$  has one normal subgroup  $N = \mathbb{Z}_3 \times \mathbb{Z}_3$  of order 9 as well as nine conjugate subgroups of order 8, each of which is cyclic. These conjugate subgroups intersect only trivially so G is a Frobenius group and is the semidirect product  $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$ .

Since

$$(5662200 + 3307230\beta - 330870\beta^{2} - 193803\beta^{3}) \left(30 - 3\beta + \frac{3\beta^{2}}{5}\right)$$
$$= (9450 + 5820\beta - 531\beta^{2} - 336\beta^{3})^{2},$$

we have

$$K_3 = \mathbb{Q}\left(\sqrt{30 - 3\beta + \frac{3\beta^2}{5}}\right)$$
$$= \mathbb{Q}\left(\sqrt{30 - 3\sqrt{10 + 5\sqrt{2}} + 6\sqrt{10 - 5\sqrt{2}}}\right).$$

# Example 6.

$$f(x) = x^{13} - 26x^{10} - 117x^8 + 143x^7 - 910x^6 + 585x^5$$
$$- 1794x^4 + 4472x^3 - 2951x^2 + 520x - 131.$$

MAPLE gives the discriminant of f(x) as  $2^8 \cdot 13^{21} \cdot 43^2 \cdot 2791^2$  332699<sup>2</sup> 15515891<sup>2</sup> so that the quadratic subfield of L is  $\mathbb{Q}(\sqrt{13})$ . If  $\alpha$  is

any root of f(x) MAPLE factors f(x) over  $\mathbb{Q}(\alpha, \sqrt{13})$ . There are six irreducible quadratics and one linear polynomial in the factorization. Hence

$$[L:\mathbb{Q}] = 2^k \, 13$$

for some  $k \in \mathbb{Z}^+$ . Therefore f(x) is solvable so  $\operatorname{Gal}(f) = F_{13l}$ , where  $l \mid 12$ . It is known that  $[L:\mathbb{Q}] = 13l$ , where  $l \neq 1$  as L has a quadratic subfield and  $l \neq 2$  as f does not factor into linear factors over  $\mathbb{Q}(\alpha, \sqrt{13})$ . Hence l = 4 and  $\operatorname{Gal}(f) = F_{52}$ . We remark that a theorem of Cangelmi (2000, Theorem 3.17, p. 851) provides an alternative way of verifying that  $\operatorname{Gal}(f) = F_{52}$ .

$$n = 13, h = 4, (n-1)/h = 3, t = 2,$$

$$g_{01}(0) = 13^{7} 15515891^{2},$$

$$g_{02}(0) = 2^{8} 13^{7} 332699^{2},$$

$$g_{03}(0) = 13^{7} 43^{2} 2791^{2},$$

$$K_{1} = \mathbb{Q}(\sqrt{13}),$$

$$g_{11}(0) = \frac{13^{3}}{2} (5 \cdot 13^{2} \cdot 1822217 + 3^{3} \cdot 3793 \cdot 4159\sqrt{13}),$$

$$K_{2} = \mathbb{Q}\left(\sqrt{-\frac{1}{2}(5 \cdot 13^{2} \cdot 1822217 + 3^{3} \cdot 3793 \cdot 4159\sqrt{13})\right)$$

$$= \mathbb{Q}\left(\sqrt{-13 - 2\sqrt{13}}\right).$$

#### **ACKNOWLEDGMENTS**

The authors are grateful to the referee for his/her invaluable suggestions based on his/her thorough reading and understanding of our work. The research of the first two authors was supported by grants from the Natural Sciences and Engineering Research Council of Canada.

### REFERENCES

Butler, G., McKay, J. (1983). The transitive groups of degree up to eleven. *Comm. Algebra* 11:863–911.

Cangelmi, L. (2000). Polynomials with Frobenius Galois groups. *Comm. Algebra* 28:845–859.



Rotman, J. (2002). Advanced Modern Algebra. Prentice-Hall.

Soicher, L. (1981). M. Comp. Sci. thesis, Concordia University, Montréal.

Spearman, B. K., Williams, K. S. (1994). Characterization of solvable quintics  $x^5 + ax + b$ . *Amer. Math. Monthly* 101:986–992.

Spearman, B. K., Williams, K. S. (1999). DeMoivre's quintic and a theorem of Galois. *Far East J. Math. Sci. (FJMS)* 1:137–143.

Spearman, B. K., Spearman, L. Y., Williams, K. S. (1995). The subfields of the splitting field of a solvable quintic trinomial. *J. Math. Sci.* 6:15–18.

Received November 2001 Revised December 2002