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ON SOLVABLE QUINTICS X5 + a x  + b AND X5 + a x 2  + b 

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS 

ABSTRACT. Let a and b be nonzero rational numbers. We 
show that there are an infinite number of essentially different, 
irreducible, solvable, quintic trinomials X5 + a x  + b. On 
the other hand, we show that there are only five essentially 
different, irreducible, solvable, quintic trinomials x5+ax2+b,  
namely, x5 + 5 x 2  + 3, X6 + 5 x 2  - 15, X5 + 25x2  + 300, 
X 5  + 100X2 + 1000, and X 5  + 250X2 + 625. 

1. Introduction. Let Q denote the field of rational numbers, set 
Q* = Q\{O), and let f (X) be a monic irreducible quintic polynomial 
in Q[X]. If the equation f (x) = 0 is solvable by radicals, the quintic 
polynomial f (X) is said to be solvable. If f (X) is solvable, its Galois 
group is solvable and is thus contained in the Frobenius group Fzo of 
order 20, and hence is isomorphic to Fzo, 0 5  (the dihedral group of 
order 10) or C5 (the cyclic group of order 5). It is also known that the 
discriminant of a solvable quintic is always positive [I, p. 3901. 

Now let fi(X) = X5 + a x i  + b E Q*[X], i = 1,2, be irreducible and 
solvable. As disc (fi(x)) > 0, fi(X) has exactly one real root [4, p. 
1131. Thus, fi(X) has nonreal roots and so its Galois group cannot 
be cyclic and thus must be Fzo or 4. For i = 1,2, we define F(i)  to 
be the set of irreducible solvable trinomials X5 + a x i  + b with Galois 
group isomorphic to Fzo and D(i) to be the set of irreducible solvable 
trinomials X5 + a x i  + b with Galois group isomorphic to D5. 

We define an equivalence relation on each of F(i) and D(i) as follows: 
X5 + a x i  + b E F(i), or D(i), and X5 + alXi + bl E F(i), or D(i), 
are said to be equivalent (written X5 + a x i  + b - X5 + alXi + bl) 
if there exists t E Q* such that a1 = at5-', bl = bt5, in which case 
X5 + alXi + bl = t5((X/t)5 + a(x/t)' + b). We denote the set of 
equivalence classes of F(i) by 3 ( i )  and those of D(i) by D(i). In 
Section 2 we prove 

Received by the editors on April 29, 1994. 
1991 AMS Mathematics Subject Classr cation. Primary 12D05. 
Key words and phrases. Solvable, irre 2 u c i b l e , ~ i n t i c  trinomials, Galoia group. 
Research of the second author supported by atural Sciences and Engineering 

Research Council of Canada grant A-7233. 

Copyright 01996  Rocky Mountain Mathematics Consortium 



B.K. SPEARMAN AND K.S. WILLIAMS 

Theorem 1. 

(i) cardT(1) = +w, 

(ii) card D(1) = +w. 

In Section 3, in remarkable contrast to Theorem 1, we prove 

Theorem 2. 

(i) card F(2) = 2, 

(ii) card D(2) = 3. 

The proof of Theorem 1 depends heavily on the following result which 
was proved in [3]. 

Proposition. Let a,b E Q. be such that the quintic trinomial 
X 5  + aX + b is irreducible. Then X5  + aX + b is solvable i f  and only 
i f  thee  eztst mtional numbers E(= f 1), c ( 2  0) and e(# 0) such that 

Moreover, the Galois p u p  of X5 + OX + b is isom01'phic to Fzo i f  
5(c2 + 1) is not a squae in Q and to D5 i f  5(c2 + 1) is a square in Q. 

The proof of Theorem 2 makes use of the theory of rational points 
on elliptic curves. We actually prove the following theorem from which 
Theorem 2 follows immediately. 

Theorem 3. Let a, b E Q' be such that the quintic polynomial 
X 5  + a x 2  + b is both irreducible and solvable. Then thee  exists a 
nonzero mtional number f such that 

Moreover, the Galois p u p  of X5 + a x 2  + b is 
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Let w denote a complex fifth mot of unity. Then the jive solutions of 
x 5 + a x 2 + b = 0  are 

where u l ,  u2, u3 and u4 are given as follows: 

( i )  ( a f 3 ,  bf 5 ,  = ( 5 , 3 )  

( i i )  ( a f 3 , b f 5 )  = (5 , -15)  
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(iii) (a f 3, b f 5, = (25,300) 

(iv) (a f 3, bf 5, = (100,1000) 

2. Solvable quintics X5 + a x  + b. 

Proof of Theorem l(i). We let L be the set of positive integers 1 such 
that 250001 + 21603 is prime. As GCD (25000,21603) = 1, the set L is 
an infinite set by Dirichlet's theorem. For 1 E L, we let 

pi = 250001 + 21603 (prime), 
ci = 125001 + 10807, 
El = -1, 

and el is the smallest positive integer e such that e4/(c; + 1) is an 
integer. Clearly the prime pl satisfies pl = 3 (mod 4), pl = 3 (mod5), 



SOLVABLE QUINTICS 757 

and llal  + 2cl = pl. Further, cl E 1432 (mod 3125) so that 4 + 1 = 
1432~ + 1 = 625 (mod 3125), that is, 54)14 + 1, and hence 5((el. As 
ef /(c; + 1) is an integer not divisible by 5, the rational numbers 

are in fact integers satisfying 5101, 5((bl, so that X5 + alX + bl is 5 
Einstein,  and thus irreducible. By the Proposition in Section 1, X5 + 
alX + bl is solvable. Moreover, 5'11 5(c; + l ) ,  so 5(c: + 1) is not a square, 
and thus X5 + alX + bl has Galois group F2,3. Finally, we show that if 
I(E L) and 11 (E L) are distinct, then X5 + arX + bl + X5 + al,X + bl, . 
This proves that card (F(1)) = +m as L is an infinite set. Suppose on 
the contrary that I # 11 but x5 + alX + bl N X5 + all X + bll. Then 
there exist nonzero coprime integers r and s such that 

From the second of these equations, we obtain 

that is, 
eflpl, (c; + 1)s' = efPl ($, + qr5. 

As I # I1 we have pl # pl,. Further, as pl = 3 (mod 4), we see that 
pl t 4 + 1, so pl t el, and ~1 t c:, + 1, ~ 0 . ~ 1  {el,. Hence, 

up, (ef,pl, (c; + 1)s') = 5vp, (s) = 0 (mod 5) 

and 
vpl (efm($, + l)r5) = 1 + 5vp, (r) = 1 (mod 5), 

a contradiction. This completes the proof that card T(1) = +m. 

Proof of Theorem l(ii). We let 

(2.1) P = set of primes p 17 (mod 20). 
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By Dirichlet's theorem P is an infinite set. Let p E P. Clearly, p # 5. 
As p r 1 (mod 4), there exist unique integers a and b such that 

As p = 2 (mod 5), we have a2 = b2 = 1 (mod 5) so that 5 { a and 
5 { b. If 3a + 4b f 0 (mod 5), we set E = 1. If 3a + 4b = 0 (mod 5), 
then 3a - 4b -8b f 0 (mod 5), and we set E = -1. Hence, 
3a + ~ 4 b  f 0 (mod 5). Define integers u and v by 

Then, appealing to (2.2) and (2.3), we see that 

(2.4) u 2 + v 2  =25p, 5{u15{v. 

Further, from (2.3), we deduce 

3u2 + 8uv - 3v2 = 75a2 + 200~ab - 75b2 = 0 (mod 5), 

so that by (2.4) 

(2.5) 3u2 - 8uv - 3v2 = -16uv f 0 (mod 5). 

Also, by (2.3), we see that 

u - 2v = -5a + l O ~ b  = 0 (mod 5), 

so that, as 5 { v, we deduce 

511(u - 2v)2 - 5v2, 

that is, 

(2.6) 511u2 - 42121 - v2, 

and hence 

(2.7) u2 + 42121 - v2 I 8uv f 0 (mod 5). 
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We also note that 

Hence, we can define rationals t+, r, and e, by 

Clearly, 

Now set 

so that 

We claim that the polynomial f,(x) = X5 + apX + b, is irreducible in 
Q[X]. Suppose on the contrary that j,(X) is reducible in Q[X]. Then 
either (a) j,(X) has an integral root r or (b) jp(X) is the product of 
an irreducible quadratic and an irreducible cubic. Suppose (a) holds. 
Then 
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and clearly 51r. Now, appealing to (2.5), (2.6) and (2.7), 

contradicting (2.8). Hence, (a) cannot occur. If (b) holds, let E denote 
the splitting field of fp(X) over Q. As fp(X) has an irreducible cubic 
factor we must have 31[E : Q]. However, by the theorem in [3] we see 
that E I Q  can be constructed using only square roots and fifth roots, 
so that [E : Q] = 2k5m for some nonnegative integers k and m, a 
contradiction. Hence (b) cannot occur. Thus, fp(X) is irreducible in 
Q[X] and, by the Proposition in Section 1, fp(X) is solvable with Galois 
group D5 since 5(< + 1) is a square in Q. 

Finally we show that if p(€ P )  and pl(€ P )  are distinct, then 
X5 + apX + bp + X5 + aplX + bpl . This then proves that card D(1) = 
+oo. Suppose, however, that X5 + apX + bp N X5 +apl X + bpl . Then 
there exist nonzero coprime integers r and s such that 

Let u1 and vl be the values of u and v corresponding to pl. From the 
first equation in (2.9), we see that 

Asp a 2 (mod 5), we have, by the law of quadratic reciprocity, (51p) = 
@/5) = (215) = -1. Hence, as p t v, we see that p { (u f 2 ~ ) ~  - 5v2, 
that is, 

p { u 2 f  4212)-v2. 

As u: + v; = 25pl and p # 5 or pl, we see that at last one of u1 and vl 
is not divisible by p. If p t u1, then p { 5u: - (vl F 2u1)~,  as (5/p) = -1, 
so 

p { u; f 4u1v1 - v;. 

If p t vl, then p { (ul f 2 ~ 1 ) ~  - 5v7, as (5/p) = -1, so again we have 
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Then from (2.10) we see that p I s and thus pf r. Hence, 

vP(p:(t4: + 4ulvl - v:)(u: - 4ulvl - v:)S4) = 4vP(8) 2 4 

and 

a contradiction. This completes the proof that card D(1) = +w. 

3. Solvable quintic8 X5 + a x 2  + b. Let a, b E Q* be such that the 
quintic polynomial x5 + a x 2  + b is both irreducible and solvable. Its 
discriminant is 

(3.1) d = 108a6b + 3125b4 > 0. 

We first show that there exists f E Q* such that 

(3.2) (a f 3, b f5) = (5,3), (5, -15), (25,300), (100,1000) or (250,625). 

As X5 + a x 2  + b is a solvable quintic, its resolvent sextic 

(3.3) 'x' - 50abx4 - 2a4x3 + 625a2b2x2 + (-58a5b - 3125b4)x + a' 

has exactly one rational root R [I, Theorem 11. Hence, 

which shows that R # 0 as a # 0. Moreover, from (3.1) and (3.4), we 
deduce 

so that R > 0, and d is a perfect square if and only if R is a perfect 
square. We set 

(3.6) U = 50bR2 - 6a3R - 125ab2 

and 
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Using MAPLE one can verify that 

(3.8) aRU2 - 4R2uV + (-5a3 + 40bR)v2 = 0 

and 

(3.9) ~ R ~ u '  - 50a2 R U ~ V ~  + ~ ~ U R ~ U V ~  + (125a4 - 1 6 ~ ~ ) ~ '  = 0 .  

We show next that V # 0. Suppose V = 0.  From (3.8) we see that 
U = 0.  then 

As a # 0 ,  b # 0, R # 0 ,  we see that 3125ab3 - 18a6 # 0 ,  and so 

Using this value of R in (3.6) with U = 0 ,  we obtain 

so that 
a5 - 3 5 0 f 1 2 5 m  -- 

125b3 - 108 9 

which contradicts that a5/125b3 is rational. This proves that V # 0 ,  
and so we can define a rational number A by 

From (3.8) and (3.9), we deduce that 

and 
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We now treat the possibility that A = 0. In this case (3.11) and 
(3.12) become 

Eliminating R we deduce a5 = 4000b3, so that for some rational number 
f we have a f = 250, b f = 625, which is the last possibility in (3.2). 

Hence we can now suppose that A # 0, and define the nonzero 
rational number x by 

Replacing a by -xR/A in (3.12), we obtain 

Expanding the square in (3.14) and rearranging, we deduce 

Solving the quadratic equation (3.15) for R, we have 

Since R, A and x are all rational numbers, the quantity 

f d x 3  + (89/100)x2 + (8125)~ + (1125) 

in (3.16) must be a rational number, say y, that is 

and so 
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From (3.16) and (3.17), we see that 

We note from (3.13) and (3.18) that 

and from (3.11), (3.18) and (3.19) that 

We now turn to the problem of determining all pairs (x, y) E Q' x Q 
satisfying (3.17)'. We define rational numbers Z and Y by 

(3.21) Z = 100x(# 0), Y = 1000y. 

Replacing x by Z/100 and y by Y/1000 in (3.17)', we see that 

(3.22) y2 = Z3 + 89Z2 + 32002 + 40000. 
Now define a rational number X by 

(3.23) X = Z + 25. 
Replacing Z by X - 25 in (3.22), we obtain 

(3.24) y2 = x3 + 14x2 + 625X. 
The cubic equation 

(3.25) x3 + 14x2 + 625X = 0 

has three distinct roots, namely, 0 and -7 f 2 4 a ,  so that the curve 

(3.26) C = {(X, Y) E R~ I y2 = x3 + 14x2 + 625x1 
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is a nonsingular elliptic curve. As (3.25) has exactly one real root, 
C consists of one real component. We denote the group of rational 
points of C by r. By Mordell's theorem [2, p. 221 we know that r is a 
finitely generated abelian group. Let r denote the rank of r. We use 
the method explained in [2, pp. 89-98] to show that r = 0. 

h o m  [2, p. 911 we see that 

where a = 1 + number of bl f 625 (mod Qe2), where bl runs through 
the positive and negative divisors of 625, such that the equation 

is solvable in integers M(# 0), e, N satisfying the conditions 

GCD (M, e) = GCD (N, e) = GCD (bl, e) 
(3.29) 

= GCD (M, 625/b1) = GCD (M, N )  = 1 

and p = 1+ number of bl f -2304 (mod Qe2), where bl runs through 
the positive and negative divisors of -2304, such that the equation 

is solvable in integers M(# 0), e, N satisfying 

(3.31) 
GCD (M, e) = GCD (N, e) = GCD (bl, e) 

= GCD (M, -2304/bl) = GCD (M, N)  = 1. 

First we show that a = 2. The divisors bl of 625 are 

As f 25, f 125, f 625 differ from f 1, f 5, f 1 respectively by squares, we 
need only consider 

bl = f l , f 5 ,  

and bl f 625 (mod Qe2) eliminates bl = 1. When bl = -1 the 
equation (28) N2 = -M4 + 14M2e2 - 625e4 has no integral solutions 
with M # 0 as, for M # 0, 
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When bl = 5 the equation (3.28) N2 = 5 M 4  + 14M2e2 + 125e4 has the 
solution ( M , e ,  N) = (1,1,12) which satisfies (3.29). When bl = -5 
the equation (3.28) N2 = - 5 M 4  + 14M2e2 - 125e4 has no integral 
solutions with M # 0 as, for M # 0, 

This completes the proof that a = 1 + 1 = 2. 

Next we show that p = 2. There are 2(8 + 1) (2 + 1) = 54 positive and 
negative divisors of 2304 = 28 x 32. Each of these 54 divisors differs by 
a square from exactly one of 

and bl f -2304 (mod Qo2) eliminates bl = -1. The equation (3.30) 
becomes 

Equation (A) has the solution ( M ,  e, N) = (1,0,1) which satisfies the 
conditions (3.31). 
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Any solution of (B) in integers M , e ,  N has N even and thus M 
odd as GCD (M, N)  = 1. But modulo 4 (B) gives 0 = 2 (mod 4), 
a contradiction. Thus (B) has no solution in integers satisfying (3.31). 

In exactly the same way, we can show that the equations (D), (E), 
(G) do not have solutions in integers satisfying (3.31). 

An integral solution of (C) must have M and N both odd as 
GCD (M, N) = 1. Then (C) modulo 4 gives the contradiction 1 = 
3 (mod 4). Thus (C) has no solutions in integers satisfying (3.31). 

Thus, 

2 if (F) has no solution in integers satisfying (3.31), 
P = {  3 if (F) has a solution in integers satisfying (3.31). 

But 0 must be a power of 2 [2, p. 911, so we have /3 = 2 and (F) does 
not have a solution in integers satisfying (3.31). 

From (3.27), we deduce 

that is, r = 0. 

We have now shown that r is a finite abelian group. Thus, every 
rational point (X, Y) on C has finite order. By the Nagell-Lutz theorem 
(see, for example, [2, p. 561) X and Y must both be integers and either 
(i) Y = 0 or (ii) Y # 0, YZ I D, where D is the discriminant of the 
cubic polynomial X3  + 14X2 + 625X, that is, D = -28 32 . 58. Thus, 
the possible values of Y # 0 are the (positive and negative) divisors 
of 24 - 3 . 54 = 30,000. There are 2(4 + 1)(1 + 1)(4 + 1) = 100 such 
values of Y. A simple computer search shows that the only values 
of Y for which there is a value of X with X 3  + 14XZ + 625X = Y2 
are Y = f 60, f 200, f 1500. Appealing to (3.19), (3.20) and (3.23), we 
obtain the following table. 



768 B.K. SPEARMAN AND K.S. WILLIAMS 

' inadmissible as z # 0 
" inadmissible as b # 0 

We have now arrived at the remaining four quintic trinomials listed 
in (3.2). It remains to show that each quintic trinomial in (3.2) is 
irreducible and solvable, and to find the solutions. 

Clearly, X5 + a x 2  + b is irreducible if and only if X5 + a f 3X2 + b f 
is irreducible. Further, X5 +5X2 + 3 is irreducible as (X + 2)5 + 5(X + 
2)2 + 3 is bEisenstein, X5 + 5X2 - 15 is irreducible as X5 + 5X2 - 15 
is 5-Eisenstein, X6 + 25X2 + 300 is irreducible as X5 + 25X2 + 300 is 
irreducible (mod 7), X5 + 100X2 + 1000 is irreducible as X5 + 100X2 + 
1000 is irreducible (mod l l ) ,  and X5 + 250X2 + 625 is irreducible as 
X5 + 250X2 + 625 is irreducible (mod 11). 

Finally, we determine the solutions of x5 +ax2 + b = 0 in radical form 
showing that X5 + a x 2  + b is solvable. Recall that R > 0 is the unique 
rational root of the resolvent sextic (3.3)) and set 

Fkom (3.12) we see that 

so that 
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Hence we can define real numbers q , v2, v3, v4 by 

Clearly, 

so v1, v2, v3, v4 are all nonzero as H # 0 .  Further, 

2 = - / ( ! C + L ) ~ - ( & - ~ )  lOOH H 

= -m, (by (3.33)) 

= - 3 a ,  

that is, by (3.36), 

Further, we have by (3.35) and (3.36), 
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and 

Hence, 

A2a a3 
= ~ ~ H A + H ( - - + - + -  40H 1000H2 5A) 2 (by (3.35), (3.36), (3.39)) 

that is, by (3.11), 

Next we define nonzero real numbers ul , u2, us, u4 by 

Hence, 

(by (3.41)) 
= (-H)'/~(-H~/'O + (by (3.36)) 

(3.43) u1u; + u2u: + u3u: + u4u$ 
- - (v1v4)(~3 - 214 - vi + 212) (by (3.36) and (3.41)) 
= -a15 (by (3.38)); 
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(3.44) u:u,2 + 4 u ;  - u;u2 - u;u4 - u;u1 - u:u3 - u1u2u3u4 
= -u;u2 - Z L ~ U ~  - u;ul - u:u3 - (by (3.42)) 
= -v1v4{(v3 - v2)(v4 - 211) - 3v1v4} (by (3.36) and (3.41)) 

= 0 (by (3.37)); 

and 

3 (3.45) 5 ( ~ ? ~ 3 ~ 4  + 4 ~ 1 ~ 3  + u3u2u4 + ~ i ~ 1 ~ 2  - U ~ U ~ U :  

- u2u:u; - u3u;u~ - u4u:u;) - (u: + u; + u; + u:) 
= 10(v1v4)~(v1 + v2 + v3 + v4) 

- (v~vI)(v:v~ - v;v1 - viv4 + vq2v2) (by (3.36) and (3.41)) 
= b (by (3.40)). 

Appealing to the identity [3, equations (5) and (6)], we obtain by (3.42), 
(3.43), (3.44) and (3.45), 

where w denotes a complex fifth root of unity. Hence, the roots of 

are 

We now examine each of the five possibilities listed in (3.2). Note that 
the roots of x5 + a f3x2 + bf = 0 are obtained from those of (3.46) by 
dividing by f. 
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In each case R is the unique rational root of (3.4). H is given by 
(3.32). A is given by (3.10). The values of vl,  v2, us, v4 follow from 
(3.35), and the values of ul, u2,  us, u4 are given in Theorem 3 from 
(3.41). Thus, x5 +ax2 + b is solvable in each of the five cases with roots 
as given in the statement of Theorem 3. 

This completes the proof of Theorem 3 and thus of Theorem 2. 
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z 5 + a z Z + b = 0  
z 5 + 5 z Z + 3 = 0  
z 5 + 5 z Z - 1 5 = 0  
z5 +25zz+300 = 0 
z ~ +  100~~+1m=o 
z5 + 2502' + 625 = 0 
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