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Some Refinements of an Algorithm of Brillhart 

KENNETH S. WILLIAMS 

ABSTRACT. Refinements of an algorithm of Brillhart for finding the repre- 
sentation of a prime p r 1 (mod 4) as the sum of two integral squares are 
discussed. 

1. Introduction 

In this talk, we briefly survey some refinements that have been made to a 
beautifully simple algorithm of Brillhart [I] for finding the representation of a 
prime p 1 (mod 4) as the sum of two integral squares. 

We begin by giving Brillhart's algorithm, which is in fact a shortened form of 
an algorithm given by Hermite in 1848. Hermite, in a onepage note [4], gave the 
following efficient method for finding the representation of a given prime p 1 
(mod 4) as a sum of two integral squares. Hennite's method appeared simul- 
taneously with a paper of Serret [6] on the same subject. However, Hermite's 
method is superior to Serret's as it gives a criterion for ending the algorithm at 
the right place. 

Hermite's algorithm 

(i) Find the solution x of x 2  E -1 (mod p) ,  where 0 < x < p/2. 
(ii) Expand x/p into a simple continued fraction to  the point where the d e  

nominators Bi of its convergents Ai/B, satisfy the inequality Bk < fi < 
Bk+l. Then p = u2 + v2 with 
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In 1972, Brillhart [I.] pointed out that the calculation of the convergents Ak 
and Bk can be dispensed with, since the values needed for the representation 
(u, v) of p are already available in the continued fraction expansion itself. 

Brillhart's algorithm 

(i) Find the solution z of z2 = -1 (mod p) where 0 < z < p/2. 
(ii) Apply the Euclidean algorithm to z and p (in that order) and determine 

the first remainder rk(k 2 0) satisfying rk < JiT. Then p = u2 + v2 with 

We note that the first step of the Euclidean algorithm is not actually per- 
formed. It is present just to ensure that ro = z. We also note that we can take 
z in step (i) to be c(P-')/~ (mod p), where c is a quadratic non-residue (mod p). 
Methods of determining a quadratic non-residue c (mod p) are well-known, and 
will not be discussed here. Brillhart's proof of his algorithm uses the fact that 
the continued fraction expansion of p/z is palindromic. 

Before continuing, we pause to give a simple example to illustrate Brillhart's 
algorithm. We take p = 61 so that z = 11. Applying the Euclidean algorithm 
to 11 and 61, we obtain successively the remainders 11, 6, 5, 1, 0. As JiT is 
approximately 7.81, we see that k = 1, r l  = 6, r2 = 5, and 61 = 62 + 5 2 .  

2. Refinements t o  Brillhart's Algorithm 

In 1990 Hardy, Muskat and Williams [2] extended Brillhart's algorithm to the 
following more general situation. Let f and g denote positive integers. For a 
positive integer n, we are interested in determining all positive integers u and v 
(if any) such that 

Clearly we may assume that (f,g) = 1, otherwise, we consider the equation 
nl = flu2 +g1v2, where nl = nld, f l  = f ld ,  gl = gld, d = (f,g). Similarly, 
if (n, f )  > 1 and/or (n,g) > 1, we may reduce the problem to one in which 
(n, fg) = 1. Further, if n 5 f + g, the solutions of n = fu2 + gv2 are easily 
found, so we may assume that n 2 f + g + 1. Under these assumptions, it was 
shown in [2] that the solutions of (1) are determined by the following algorithm. 

Hardy-Muskat- Williams algorithm 

(i) Determine all solutions z of fz2 + g - 0 (mod n), where 0 < z < n/2. 
(ii) For each z, apply the Euclidean algorithm to z and n, and let r(z) denote 

the first remainder < m. Then all solutions (u, v) in positive integers 
o f n =  fu2+gv2 with (u,v) = 1 andu > v if f = g =  1 lieamongthe 
pairs 
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Before making a few comments on this algorithm, we present an example. 
We choose n = 128744, f = 1, g = 40, so we are seeking the solutions 

(u, v) in positive integers of 128744 = u2 + 40v2 with (u, v) = 1. We note that 
(n, g) > 1 but this is unimportant. The solutions z of the congruence z2 = -40 
(mod 128744) are listed below together with the remainders r(z) obtained by 
applying the Euclidean algorithm to each z and 128744. We note that d m  x 

358.8. 

Computing v = d(128744 - r ( ~ ) ~ ) / 4 0 ,  we find that the solutions are 

(u, v) = (328,23), (128,53), (272,37), (248,41). 

We emphasize that the algorithm did not produce the solutions with (u, v) > 1, 
namely, (u, v) = (352,ll) and (88,55). 

It is shown in [2, Theorem 21, when (u, v) = (r(z), J(n - f {r(z)I2)/g) is a 
solution of (I), how v can be expressed in terms of the remainders preceding and 
following r(z). Brillhart's algorithm is then seen to be the special case n = p 
(prime) - 1 (mod 4), f = 1, g = 1 of the Hardy-Muskat-Williams algorithm. 
The proof of the ~ a r d ~ - ~ u s k a t - ~ i l l i a m s  algorithm is much more involved than 
Brillhart's proof of his algorithm as the palindromic nature of the continued 
fraction used in [l] does not usually hold in the more general situation. A 
deterministic version of this algorithm is described and analyzed in [3] and an 
estimate of the worst case running time given. A refinement of this algorithm 
has been given by Muskat [5]. 

A natural extension of the Hardy-Muskat-Williams algorithm would be to re- 
place f u2 +gv2 by a general positive-definite, primitive, integral binary quadratic 
form au" +v + cv2. We might hope for an algorithm of the following type. 

Proposed extension of the Hardy-Muskat-Williams algorithm. 
Let a, b, c be integers with 












