AN ARITHMETIC APPROACH TO THE DAVENPORT-HASSE RELATION OVER GF(p)

JAMES G. HUDARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. It is shown how the Davenport-Hasse relation for Gauss sums over GF(p) can be deduced from two simple arithmetic results.

1. Introduction. In this paper we prove two simple arithmetic results and use them to given an elementary proof of the Davenport-Hasse relation (Theorem 3) for Gauss sums over a finite field with p elements, where p is an odd prime. Our first arithmetic result (Theorem 1) gives a congruence (mod p) for a certain root of unity modulo p in terms of factorials. Hudson and Williams [2] deduced this congruence from the Davenport-Hasse relation [1] and a congruence of Yamamoto [5] for Gauss sums. Here we take the reverse approach. We prove Theorem 1 by simple arithmetic manipulations and then use it as a key step in a new proof of the Davenport-Hasse relation; specifically, to determine the root of unity appearing in the relation. The second arithmetic result (Theorem 2) compares the number of integers satisfying two inequalities and is used to establish that the quotient of products of Gauss sums in the Davenport-Hasse relation is an algebraic integer. In addition to these two theorems we need only the basic properties of Gauss sums, Jacobi sums, and the ring of integers of a cyclotomic field. After proving the Davenport-Hasse relation we use it to show that the inequality proved in Theorem 2 is actually an equality.

2. Two arithmetic results. In this section we prove the two results discussed in the introduction.

Received by the editors on December 6, 1994.
1991 Mathematics Subject Classification. 11L05.
Key words and phrases. Gauss sums, Jacobi sums, Davenport-Hasse relation.
Research of the first author supported by a Canisius College Faculty Fellowship.
Research of the third author supported by a Natural Sciences and Engineering Research Council of Canada Grant A-7233.

Copyright ©1995 Rocky Mountain Mathematics Consortium
Theorem 1. Let f, m and n be integers with $f \geq 1$, $m \geq 2$, $n \geq 1$, and $p = mnf + 1$ prime. Let t be an integer with $1 \leq t \leq m - 1$. Then

$$
(ntf)! \prod_{j=1}^{n-1} (mjf)! / \prod_{j=0}^{n-1} ((mj + t)f)! \equiv n^{(p-1)t/m} (mod p).
$$

Proof. Consider the first mnf positive integers. Arrange these consecutively in mn rows each of length f. Let A_h, $h = 1, \ldots, mn$, be the product of the integers in the hth row, so that

$$
A_h = ((h - 1)f + 1) \cdots (hf) = (hf)!/(h - 1)f!.
$$

Next, arrange the first ntf positive integers in tf rows of length n. Let B_l, $l = 1, \ldots, n$, be the product of the integers in the lth column, so that

$$
B_l = l(l + n) \cdots (l + n(tf - 1)).
$$

Multiplying each of the f factors of A_{jm+i}, $i = 1, \ldots, t$, $j = 1, \ldots, n-1$, by n, we have

$$
n^f A_{jm+i} = (jmnf + nif - nf + n) \cdots (jmnf + nif) \equiv (n(if - f + 1) - j) \cdots (nif - j) \ (mod p),
$$

so that

$$
\prod_{j=1}^{n-1} \prod_{i=1}^{t} n^f A_{jm+i} \equiv \prod_{j=1}^{n-1} B_{n-j} (mod p).
$$

Multiplying both sides of this congruence by $B_n = n(2n) \cdots (tfn) = n^{tf}(tf)!$, we obtain

$$
n^{tf}(tf)! n^{(n-1)tf} \prod_{j=1}^{n-1} \prod_{i=1}^{t} A_{jm+i} \equiv (ntf)! (mod p);
$$

that is,

$$
n^{ntf}(tf)! \prod_{j=1}^{n-1} ((mj + t)f!/(mjf)!) \equiv (ntf)! (mod p),
$$

that is,
from which the assertion of the theorem follows. □

Before continuing, we note that since $p = mnf + 1$, we have

$$A_{mn-h+1} = ((mn - h)f + 1) \cdots ((mn - h + 1)f)$$

$$\equiv (-hf) \cdots (-hf + f - 1) \pmod{p},$$

for $h = 1, \ldots, mn$; that is,

$$(2) \quad A_{mn-h+1} \equiv (-1)^h A_h \pmod{p},$$

which we will use later in the proof of Theorem 3.

We also introduce some notation. For a real number x, $[x]$ denotes the greatest integer not exceeding x. For integers $k \geq 1$ and a, $[a]_k$ denotes the least nonnegative residue of a modulo k. The following two properties are immediate and will be used extensively in the proof of our next result:

(3) $[a]_k = a - [a/k]k$;

(4) $[ak]_{lk} = k[a]_l$, for any positive integer l.

Theorem 2. Let m and n be integers with $m \geq 2$ and $n \geq 1$. Let l be an integer such that

$$(l, mn) = 1 \quad \text{and} \quad 1 \leq l < mn.$$

Let t be an integer such that

$$(t, m) = 1 \quad \text{and} \quad 1 \leq t < m.$$

Let

$$A(m, n, l, t) = \# \{ j = 1, \ldots, n-1 \mid [lmj]_{mn} < mn - [lt]_{mn} \}.$$

For any positive integer λ, let

$$B(m, n, l, t, \lambda) = \# \{ j = 1, 2, \ldots, \lambda n - 1 \mid [ltj]_{mn} < mn - [lt]_{mn} \}.$$
Then

(a) \(A(m, n, l, t) = n + n[lt/mn] - [lt/m] - 1; \)

and

(b) if \(t|n \), then \(B(m, n, l, t, 1) \leq A(m, n, l, t) \).

Proof. (a) Set \(r = [lt/mn] \), so that by (3), \([lt]_{mn} = lt - rmn\). Since \(lt/m \) is not an integer, we have

\[
[lm j]_{mn} < mn - [lt]_{mn}
\]

\[
\iff [lj]_n < n - ((lt/m) - rn) \quad (\text{by (4)})
\]

\[
\iff [lj]_n \leq n + rn - ([lt/m] + 1),
\]

whose right side is less than \(n \). As \(j \) runs through 1, \ldots, \(n - 1 \), so does \([lj]_n\). Hence,

\[
A(m, n, l, t) = \# \{ j \in \mathbb{Z} \mid 1 \leq j \leq n + rn - [lt/m] - 1 \}
\]

\[
= n + n[lt/mn] - [lt/m] - 1,
\]

as required.

(b) Suppose that \(t|n \), so that \(n_1 = n/t \) is an integer. Let \(l_1 = [l]_{mn_1} \). Since, by (4), the inequality \([lj]_{mn_1} < mn_1 - [lt]_{mn_1} \) is equivalent to \([lj]_{mn_1} < mn_1 - l_1 \), we have \(B(m, n, l, t, 1) = B(m, n, l_1, t, 1) \).

Next define the integers \(j_w, w = 1, 2, \ldots, [l_1t/m] \) by \(j_w = [wlmn_1/l_1] \). Since \(mn_1/l_1 > 1 \), the \(j_w \)'s are distinct. The \(j_w \)'s satisfy the inequalities

\[
1 \leq w \leq j_w \leq \frac{wmn_1}{l_1} \leq \left[\frac{l_1 t}{m} \right] \frac{mn_1}{l_1} < \frac{l_1 t}{m} \cdot \frac{mn_1}{l_1} = n_1 t = n.
\]

Furthermore, as \(wmn_1/l_1 \) is not an integer, we have \((wmn_1/l_1) - 1 < j_w < wmn_1/l_1\), from which we obtain

\[
0 < mn_1 - l_1 < l_1 j_w - (w - 1)mn_1 < mn_1.
\]

Thus we have shown that the \(j_w \)'s, \(w = 1, \ldots, [l_1t/m] \), belong to the set \{ \(j = 1, \ldots, n - 1 \mid [lj]_{mn_1} < mn_1 - [l_1]_{mn_1} \) \}. Hence,

\[
B(m, n, l, t, 1) = B(m, n_1, l_1, 1, t)
\]

\[
\leq n - 1 - [l_1t/m]
\]

\[
= n - 1 - [(l - [l/mn_1mn_1])t/m] \quad (\text{by (3)})
\]

\[
= n - 1 - [lt/m] + [l/mn_1]n
\]

\[
= n - 1 - [lt/m] + n[l/t/mn]
\]

\[
= A(m, n, l, t) \quad (\text{by (a)}).
\]
In fact, we will see later from the Davenport-Hasse relation that \(B(m, n, l, t, 1) = A(m, n, l, t) \), where the condition \(t|n \) in (b) has been removed.

3. Jacobi sums and Gauss sums. For any positive integer \(k \), set \(\beta_k = \exp(2\pi i/k) \). Let \(K \) denote the cyclotomic field \(\mathbb{Q}(\beta_{mn}) \), where \(m(\geq 2) \) and \(n(\geq 1) \) are integers. Let \(p \) be a prime with \(p \equiv 1(\mod mn) \) and set \(f = (p - 1)/mn \). Let \(O_K \) denote the ring of integers of \(K \) and let \(P \) be a prime ideal of \(O_K \) dividing the prime \(p \). Choose a primitive root \(g \) modulo \(p \) so that \(g^f \equiv \beta_{mn}(\mod P) \). For any integer \(l \not\equiv 0(\mod p) \), let \(\text{ind}_g(l) \) be the least nonnegative integer for which \(g^{\text{ind}_g(l)} \equiv l(\mod p) \). Then define the character \(\chi(\mod p) \) of order \(mn \) by \(\chi(g) = \beta_{mn} \), so that \(\chi(l) \equiv l^f(\mod P) \). The Jacobi sum \(J(\chi^r, \chi^s) \) is defined for integers \(r \) and \(s \) by

\[
J(\chi^r, \chi^s) = \sum_{x=2}^{p-1} \chi^r(x)\chi^s(1-x),
\]

and is in \(O_K \). The Gauss sum \(G(\chi^r) \) is defined for an integer \(r \) by

\[
G(\chi^r) = \sum_{x=1}^{p-1} \chi^r(x)\beta_p^x,
\]

which is an integer of \(\mathbb{Q}(\beta_{mnp}) \). The basic formula relating Jacobi sums and Gauss sums is

\[
J(\chi^r, \chi^s) = \frac{G(\chi^r)G(\chi^s)}{G(\chi^{r+s})}, \quad \text{if } r, s, r + s \not\equiv 0(\mod mn).
\]

Let \(\sigma_a \) be the automorphism of \(K \) given by \(\sigma_a(\beta_{mn}) = \beta_{mn}^a \), where \(a = 1, \ldots, mn, (a, mn) = 1 \), and set \(P_a = \sigma_a(P) \), so that \(pO_K \) is the product of the \(P_a \)'s. If \(r, s, r + s \not\equiv 0(\mod mn) \), then \(J(\chi^r, \chi^s)J(\chi^r, \chi^s) = p \), so that \(J(\chi^r, \chi^s)O_K \) is a squarefree product of some of the \(P_a \)'s. The congruence

\[
J(\chi^r, \chi^s) \equiv \begin{cases} 0(\mod P_{k-1}), & \text{if } [kr]_{mn} + [ks]_{mn} < mn, \\ (-1)^{k_{af}+1} \left(\frac{[kr]_{mn}f}{(mn - [ks]_{mn})f} \right)(\mod P_{k-1}), & \text{otherwise}, \end{cases}
\]
(where \(k^{-1} \) denotes the inverse of \(k \) modulo \(mn \)) follows from (5) by means of the binomial theorem. The argument is a straightforward modification of that given in [2] for Theorem 5.1. From (7), we see that

\[
J(\chi^r, \chi^s)O_K = \prod_{\substack{k=1 \atop (k, mn)=1 \atop [kr]_{mn}+[ks]_{mn}<mn}}^{mn} P_{k^{-1}}.
\]

A full discussion of Jacobi sums can be found, for example, in [3].

4. The Davenport-Hasse relation. We now give our new proof of the relation [1]. We state the relation in two equivalent forms, first using Gauss sums and then using Jacobi sums.

Theorem 3 (Davenport-Hasse relation). *Using the notation of Section 3, for \(t = 1, \ldots, m - 1, \)

\[
G(\chi^{tn}) \prod_{j=1}^{n-1} G(\chi^{mj}) \bigg/ \prod_{j=0}^{n-1} G(\chi^{mj+t}) = \beta_{mn}^{nt \text{ind}_p(n)},
\]
equivalently,

\[
\prod_{j=1}^{n-1} \left(J(\chi^{mj}, \chi^t) / J(\chi^{tj}, \chi^t) \right) = \beta_{mn}^{nt \text{ind}_p(n)}.
\]

Proof. We first prove that equations (9) and (10) are equivalent by expressing the left side of (9) in terms of Jacobi sums:

\[
\frac{G(\chi^{tn}) \prod_{j=1}^{n-1} G(\chi^{mj})}{\prod_{j=0}^{n-1} G(\chi^{mj+t})} = \frac{G(\chi^{tn})}{G(\chi^t)} \cdot \prod_{j=1}^{n-1} \frac{G(\chi^{mj})}{G(\chi^{mj+t})}
\]

\[
= \prod_{j=1}^{n-1} \left(\frac{G(\chi^{(j+1)t})}{G(\chi^t)} \cdot \frac{G(\chi^{mj})}{G(\chi^{mj+t})} \right)
\]

\[
= \prod_{j=1}^{n-1} \left(J(\chi^{mj}, \chi^t) / J(\chi^{tj}, \chi^t) \right) \quad \text{(by (6))}.
\]
We define \(\rho(m, n, t, \chi) \) in \(K \) by
\[
(11) \quad \rho(m, n, t, \chi) = \prod_{j=1}^{n-1} (J(\chi^{m_j}, \chi^t)/J(\chi^{t_j}, \chi^t)).
\]

It suffices to prove (10) under the assumption that \((t, m) = 1\), for if \((t, m) = e\), then \(t = et_1, m = em_1 \), \((t_1, m_1) = 1\) for some integers \(t_1 \) and \(m_1 \), and so (10) becomes \(\rho(m_1, n, t_1, \chi^e) = \beta^{nt_1 \text{ind}_e(n)}_{m_1 n} \), where \(\chi^e(g) = \beta_{m_1 n}^e = \beta_{m_1 n} \).

Assume now that \((t, m) = 1\). We show that we may also suppose that \(t|n \). To see this, let \(t' = (t, n) \), and let \(c \) be such that \(tc \equiv t' \pmod{mn} \). As \(c \) is coprime with \(mn/t' \), there is an integer \(x \) such that \(a = c + (mn/t')x \) is coprime with \(mn \). Now apply the automorphism \(\sigma_a \) to (10) to obtain
\[
\prod_{j=1}^{n-1} J(\chi^{am_j}, \chi^{at})/J(\chi^{at_j}, \chi^{at}) = \beta^{nt' \text{ind}_e(n)}_{mn}.
\]

In the numerator of the left side we may change the product index \(j \) to \(aj \). After relabelling and using (11) we obtain \(\rho(m, n, t', \chi) = \beta^{nt \text{ind}_e(n)}_{mn} \).

The next step is to show that \(\rho = \rho(m, n, t, \chi) \) is a root of unity for \(t = 1, \ldots , m - 1 \), with \((t, m) = 1\) and \(t|n \). Now, by (8),
\[
(12) \quad \rho O_K = \prod_{j=1}^{n-1} \left(\prod_{k=1}^{mn} P_{k-1} \left/ \sum_{k=1}^{mn} P_{k-1} \right. \right)_{(k,mn)=1, \lfloor km_j \rfloor mn + [kt]_m < mn}^{\lfloor km_j \rfloor mn + [kt]_m < mn}^{\lfloor km_j \rfloor mn + [kt]_m < mn}
\]
that is, using the notation of Theorem 2,
\[
(13) \quad \rho O_K = \prod_{k=1}^{mn} (P_{k-1}^A(m, n, k, t) / P_{k-1}^B(m, n, k, t, 1))_{(k,mn)=1}
\]
which is an integral ideal by Theorem 2(b). Hence, \(\rho \in O_K \). The conjugates of \(\rho \) are given by \(\sigma_a(\rho) \), where \(a = 1, \ldots , mn \), with \((a, mn) = 1\).
A typical conjugate has modulus.

$$|\sigma_a(\rho)| = \prod_{j=1}^{n-1} (|J(\chi^{a_0j}, \chi^a)| / |J(\chi^{aj}, \chi^a)|)$$

$$= \prod_{j=1}^{n-1} (\sqrt{p} / \sqrt{p}) = 1.$$

Since ρ and all of its conjugates have modulus 1, by a classical result (see, for example, Lemma 11.6 in [4]), ρ is a root of unity in O_K, so that $\rho = \beta^u_{mn}$ for some integer u.

In order to determine the value of u, we need a prime ideal P_{k-1} that does not divide any of the Jacobi sums occurring in ρ. By (12), $k = mn - 1$ satisfies these conditions since $(k, mn) = 1$, $[km_j]_{mn} + [kt]_{mn} = mn - mj + (mn - t) \geq m + mn - t > mn$, and $[ktj]_{mn} + [kt]_{mn} = (mn - tj) + (mn - t) = 2mn - (j + 1)t > mn$. We next use Theorem 1 and the properties of the A_h's introduced in its proof to compute $\rho(\mod P_{k-1})$. Using (7) and (11), we see that

$$\rho \equiv \prod_{j=1}^{n-1} \left((-1)^{ktf+1} \left(\frac{[km_j]_{mn}f}{(mn - [kt]_{mn})f} \right) \right) (\mod P_{k-1})$$

$$\equiv \prod_{j=1}^{n-1} \left(\left(\frac{(mn - mj)tf}{(mn - tj)tf} \right) \right) (\mod P_{k-1})$$

$$\equiv \prod_{j=1}^{n-1} \left(\frac{(mn - mj)!((mn - tj) - t)!}{((mn - mj - t)!((mn - tj - t)!)} \right) (\mod P_{k-1})$$

$$\equiv \prod_{j=1}^{n-1} \frac{A_{mn - mj}A_{mn - mj - 1} \cdots A_{mn - mj - t + 1}}{A_{mn - tj}A_{mn - tj - 1} \cdots A_{mn - tj - t + 1}} (\mod P_{k-1}) \quad \text{(by (1))}$$

$$\equiv \prod_{j=1}^{n-1} \frac{(-1)^{tf}A_{mj+1}A_{mj+2} \cdots A_{mj+t}}{(-1)^{tf}A_{tj+1}A_{tj+2} \cdots A_{tj+t}} (\mod P_{k-1}) \quad \text{(by (2))}$$

$$\equiv \prod_{j=1}^{n-1} \left(\frac{(mj + tj)!((mj + t)!}{(mj)!((mj + t)!} \right) (\mod P_{k-1}) \quad \text{(by (1))}$$
\[n^{-ntf} \equiv g^{nktf \text{ind}_g(n)} \equiv \beta_{mn}^{nt \text{ind}_g(n)} (\text{mod } P_{k-1}). \]

Therefore,
\[\rho \equiv n^{-ntf} \equiv n^{nktf} \equiv g^{nktf \text{ind}_g(n)} \equiv \beta_{mn}^{nt \text{ind}_g(n)} (\text{mod } P_{k-1}). \]

But we also have \(\rho = \beta_{mn}^u \equiv g^{kfu} (\text{mod } P_{k-1}) \), so that \(g^{kfu} \equiv g^{nktf \text{ind}_g(n)} (\text{mod } p) \). This can occur only if \(kfu \equiv nktf \text{ind}_g(n) (\text{mod } (p - 1)) \); that is, \(u \equiv nt \text{ind}_g(n) (\text{mod } mn) \). Finally, we have \(\rho = \beta_{mn}^{nt \text{ind}_g(n)} \) as required. \(\square \)

Using Theorem 3, we may remove the condition \(t|n \) in Theorem 2(b) and replace the inequality by an equality.

Theorem 4. Using the notation of Theorem 2, we have

\[B(m, n, l, t, 1) = A(m, n, l, t). \]

Proof. By (13), since \(\rho \) is a unit, we have (14). \(\square \)

We have been unable to prove (14) in a purely arithmetic manner.

5. **Final remarks.** The impediment to extending our method to prove the Davenport-Hasse relation for Gauss sums over an arbitrary finite field is that it is not always possible to find a prime ideal of \(O_K \) that divides \(p \) but does not divide any of the Jacobi sums occurring in \(\rho \). For example, consider \(m = 2, n = 2, K = \mathbb{Q}(\beta_4) = \mathbb{Q}(i), q = 3^2 \equiv 1 (\text{mod } 4) \), where \(f = (q - 1)/mn = 2 \) and \(3O_K \) is a prime ideal. The group of units of the field \(GF(3^2) = \{ x + iy | x, y \in GF(3) \} \) is generated by \(\gamma = 1 + 2i \), where \(\gamma^f = (1 + 2i)^2 \equiv i (\text{mod } 3O_K) \). We define the character \(\chi \) by \(\chi(\gamma) = i \) and the Jacobi sum by \(J(\chi^r, \chi^s) = \sum_{X \in GF(3^2), X \neq 0, 1} \chi^r(X)\chi^s(1 - X) \). For \(t = 1 \), we have \(\rho = J(\chi^2, \chi)/J(\chi, \chi) = 3/3 = 1 \), so that the only prime ideal dividing 3 also divides each Jacobi sum occurring in \(\rho \).
REFERENCES

DEPARTMENT OF MATHEMATICS, CANISIUS COLLEGE, BUFFALO, NY 14208

DEPARTMENT OF MATHEMATICS AND STATISTICS, OKANAGAN UNIVERSITY COLLEGE, KELOWNA, B.C. V1V 1V7, CANADA

DEPARTMENT OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO K1S 5B6, CANADA