The *n*th Power of a 2×2 Matrix

KENNETH S. WILLIAMS

Carleton University Ottawa, Ontario, Canada K1S 5B6

Let α and β be the eigenvalues of the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

We present a very simple derivation of the formula for A^n (n is a positive integer) in terms of α and β . As A satisfies its characteristic polynomial, we have

$$A^{2} - (\alpha + \beta)A + \alpha\beta I = 0$$
, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. (1)

The matrices X, Y, Z defined by

$$\begin{cases} X = \frac{A - \beta I}{\alpha - \beta}, Y = \frac{A - \alpha I}{\beta - \alpha}, & \text{if } \alpha \neq \beta, \\ Z = A - \alpha I, & \text{if } \alpha = \beta, \end{cases}$$

satisfy

$$\begin{cases} X^2 = X, \ XY = YX = 0, \ Y^2 = Y, & \text{if } \alpha \neq \beta, \\ Z^2 = 0, & \text{if } \alpha = \beta, \end{cases}$$

so that for $k \ge 2$

$$\begin{cases} X^k = X, Y^k = Y, & \text{if } \alpha \neq \beta, \\ Z^k = 0, & \text{if } \alpha = \beta. \end{cases}$$

Hence we have

$$A^{n} = \begin{cases} (\alpha X + \beta Y)^{n} = \alpha^{n} X^{n} + \beta^{n} Y^{n} = \alpha^{n} X + \beta^{n} Y, & \text{if } \alpha \neq \beta, \\ (\alpha I + Z)^{n} = \alpha^{n} I + n \alpha^{n-1} Z, & \text{if } \alpha = \beta, \end{cases}$$

giving

$$A^{n} = \begin{cases} \alpha^{n} \left(\frac{A - \beta I}{\alpha - \beta} \right) + \beta^{n} \left(\frac{A - \alpha I}{\beta - \alpha} \right), & \text{if } \alpha \neq \beta, \\ \alpha^{n-1} (nA - (n-1)\alpha I), & \text{if } \alpha = \beta. \end{cases}$$
 (2)

If the matrix A is invertible $(\alpha \neq 0, \beta \neq 0)$, it is easy to see that (2) holds for all integral values of n.

If A is real but its eigenvalues $\alpha = p + iq$ and $\beta = p - iq$ are nonreal $(q \neq 0)$ with some power of them real, say $(p + iq)^m = (p - iq)^m = r$, then, by (2), we have $A^m = rI$.

In the case of distinct eigenvalues, the reader will recognize the matrices X and Y as supplementary projections (X + Y = I) and

eigenspace of α = range of X = null space of Y, eigenspace of β = null space of X = range of Y.