ON THE DIVISIBILITY OF THE CLASS NUMBER OF $\mathbb{Q}(\sqrt{-pq})$ BY 16

by PHILIP A. LEONARD and KENNETH S. WILLIAMS*

(Received 29th January 1982)

1. Introduction

Let $d(<0)$ denote a squarefree integer. The ideal class group of the imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ has a cyclic 2-Sylow subgroup of order ≥ 8 in precisely the following cases (see for example [5] and [6]):

(i) $d = -p$, $p = 2g^2 - h^2 \equiv 1 \pmod{8}$, $(g/p) = +1$;
(ii) $d = -2p$, $p = u^2 - 2v^2 \equiv 1 \pmod{8}$ with u chosen so that $u \equiv 1 \pmod{4}$, $(u/p) = +1$;
(iii) $d = -2p$, $p \equiv 15 \pmod{16}$;
(iv) $d = -pq$, $p \equiv 1 \pmod{4}$, $q \equiv 3 \pmod{4}$, $(q/p) = +1$, $(-q/p)_4 = +1$,

where p and q denote primes and g, h, u and v are positive integers. The class number of $\mathbb{Q}(\sqrt{d})$ is denoted by $h(d)$ and in the above cases $h(d) \equiv 0 \pmod{8}$. For cases (i), (ii) and (iii) the authors [6] have given necessary and sufficient conditions for $h(d)$ to be divisible by 16. In this paper we do the same for case (iv) extending the results of Brown [4].

As the ideal class group of $\mathbb{Q}(\sqrt{-pq})$ is isomorphic to the group (under composition) of classes of integral positive-definite binary quadratic forms $(a, b, c) = ax^2 + bxy + cy^2$ of discriminant $b^2 - 4ac = -pq$, we can work with forms rather than ideals. In order to determine $h(-pq)$ modulo 16 we construct explicitly a form f of discriminant $-pq$ whose square is in the ambiguous class containing the form $(p, p, \frac{1}{2}(p+q))$ (see Theorem 1 in Section 2). The form f is given in terms of a solution in positive integers X, Y, Z of the Legendre equation

$$pX^2 + qY^2 - Z^2 = 0$$

satisfying

$$(X, Y) = (Y, Z) = (Z, X) = 1, \ p \nmid YZ, \ q \nmid XZ,$$

and

$$X \ odd, \ Y \ even, \ Z \equiv 1 \pmod{4}.$$

*Research supported by Natural Sciences and Engineering Research Council Canada Grant No. A-7233 and also by a travel grant from Carleton University.
That there is a solution of (1.1) satisfying (1.2) follows immediately from Legendre's theorem in view of (iv). However we must justify that we can always find a solution with \(Z \equiv 1 \pmod{4} \). In order to see this we let \(R + S \sqrt{q} \) be the fundamental unit \((>1)\) of the real quadratic field \(\mathbb{Q}(\sqrt{q}) \). As \(q \equiv 3 \pmod{4} \) we have
\[
R^2 - qS^2 = +1.
\]
It is well known that
\[
R \equiv 2 \pmod{8}, \quad S \equiv 1 \pmod{2}, \quad \text{if} \quad q \equiv 3 \pmod{8},
\]
\[
R \equiv 0 \pmod{8}, \quad S \equiv 1 \pmod{2}, \quad \text{if} \quad q \equiv 7 \pmod{8},
\]
and hence
\[
R_1 = R^2 + qS^2 \equiv 7 \pmod{8}, \quad S_1 = 2RS \equiv 0 \pmod{4}, \quad R_1^2 - qS_1^2 = +1.
\]
Hence if \(Z \) is even (so that \(X \) and \(Y \) are both odd) we can replace the solution \((X, Y, Z)\) of (1.1) by the solution \((X_1, Y_1, Z_1)\) given by
\[
X_1 = X, \quad Y_1 = RY + SZ, \quad Z_1 = qSY + RZ,
\]
for which \(Z_1 \) is odd. Further if \(Z \equiv 3 \pmod{4} \) (in which case \(X \) is odd and \(Y \) is even) we can replace the solution \((X, Y, Z)\) by the solution \((X_2, Y_2, Z_2)\) given by
\[
X_2 = X, \quad Y_2 = R_1 Y + S_1 Z, \quad Z_2 = qS_1 Y + R_1 Z,
\]
for which \(Z_2 \equiv 1 \pmod{4} \).

Our main result is the following theorem.

Theorem 2. If \(p \) and \(q \) are primes such that
\[
p \equiv 1 \pmod{4}, \quad q \equiv 3 \pmod{4}, \quad \left(\frac{p}{q} \right) = +1, \quad \left(\frac{-q}{p} \right) = +1,
\]
and \((X, Y, Z)\) is any solution in positive integers of (1.1) which satisfies (1.2) and (1.3), then
\[
h(-pq) \equiv 0 \pmod{16} \Rightarrow \left(\frac{Z}{p} \right)_4 = \left(\frac{2X}{Z} \right)_4.
\]

We remark that \((Z/p)_4\) is well-defined as \((Z/p) = +1\) and \(p \equiv 1 \pmod{4} \). To see that \((Z/p) = +1\) we perform the following calculation: letting \(Y = 2^n Y_1, \ Y_1 \) odd, we have, using
ON THE DIVISIBILITY OF THE CLASS NUMBER OF \(Q(\sqrt{-pq}) \) BY 16

(1.1) and (1.2),

\[
\left(\frac{Z}{p} \right) = \left(\frac{Z^2}{p} \right) = \left(\frac{qY^2}{p} \right) = \left(\frac{q}{p} \right) \left(\frac{Y}{p} \right) = \left(\frac{q}{p} \right) \left(\frac{2}{p} \right)^n \left(\frac{Y_1}{p} \right)
\]

\[
= \left(\frac{q}{p} \right) \left(\frac{2}{p} \right) \left(\frac{p}{Y_1} \right) \quad (\text{as } n = 1 \text{ when } p \equiv 5 \pmod{8})
\]

\[
= \left(\frac{q}{p} \right) \left(\frac{-1}{p} \right) \left(\frac{pX^2}{Y_1} \right) \quad (\text{as } p \equiv 1 \pmod{4})
\]

\[
= \left(\frac{-q}{p} \right) \left(\frac{Z^2}{Y_1} \right)
\]

\[
= +1. \quad \text{(by (1.4)).}
\]

2. Square root of \((p, p, (p+q)/4)\)

In this section we construct a form \(f \) of discriminant \(-pq\) such that \(f^2 \sim (p, p, \frac{1}{4}(p+q)) \).

As \((X, Y) = 1\) there exists an integer \(u_0 \) such that \(u_0X \equiv 1 \pmod{Y} \). If the integer \(e = (u_0X - 1)/Y \) is odd we set \(u = u_0 \). If the integer \((u_0X - 1)/Y \) is even then the integer

\[
e = (u_0 + Y)X - 1 \equiv u_0X - 1 \equiv X \pmod{Y}
\]

is odd and we set \(u = u_0 + Y \). Thus the integers \(u \) and \(e \) satisfy

\[
uX \equiv 1 \pmod{Y}, \ u \text{ odd, } e = (uX - 1)/Y \text{ odd.} \quad (2.1)
\]

Next, appealing to (1.1) and (2.1), we have

\[
X(pX - uZ^2) \equiv 0 \pmod{Y}
\]

so that, as \((X, Y) = 1\), we have

\[
pX - uZ^2 \equiv 0 \pmod{Y}.
\]

Hence we can define a positive integer \(a \) and an integer \(b \) by

\[
a = Z, \ b = (pX - u^2)/Y. \quad (2.2)
\]

From (2.2) we obtain

\[
pX - bY = u^2. \quad (2.3)
\]
Also using (1.1), (2.1) and (2.2) we get
\[bX + qY = -ea^2, \]
(2.4)
and
\[b^2 + pq = (pe^2 + qu^2)a^2. \]
(2.5)

From (1.4) and (2.1) we see that \(pe^2 + qu^2 \equiv 0 \pmod{4} \) so we can define an integer \(c \) by
\[c = (pe^2 + qu^2)/4. \]
(2.6)
Thus, from (2.5) and (2.6), we have
\[b^2 - 4a^2c = -pq, \]
(2.7)
showing that the form \((a,b,ac) \) has discriminant \(-pq\). We note that (2.7) shows that \(b \) is odd.

With \(a, b \) and \(c \) as defined in (2.2) and (2.6) we prove the following theorem.

Theorem 1. \((a,b,ac)^2 \sim (p,p,(p+q)/4). \)

Proof. We define integers \(v, \alpha \) and \(\beta \) by
\[v = 2Y, \quad \alpha = (u+e)/2, \quad \beta = X + Y. \]
(2.8)
Appealing to (1.1), (2.3) and (2.7) we obtain, on completing the square for \(u, \)
\[a^2u^2 + buv + cv^2 = p, \]
(2.9)
and appealing to (2.3), (2.4), (2.7) and (2.8), we obtain
\begin{align*}
bu + 2cv &= \frac{1}{a^2} (bua^2 + 4a^2cY) \\
&= \frac{1}{a^2} (bua^2 + (b^2 + pq)Y) \\
&= \frac{1}{a^2} (b(bY + ua^2) + pqY) \\
&= \frac{1}{a^2} (bpX + pqY),
\end{align*}
ON THE DIVISIBILITY OF THE CLASS NUMBER OF $Q(\sqrt{-pq})$ BY 16

that is

$$bu + 2cv = -pe. \quad (2.10)$$

Hence from (2.3), (2.8) and (2.10) we have

$$\alpha = (pu - bu - 2cv)/2p, \quad \beta = (2ua^2 + bv + pv)/2p. \quad (2.11)$$

Thus from (2.9) and (2.11) we obtain

$$u\beta - v\alpha = 1 \quad (2.12)$$

and

$$2a^2ux + bu\beta + bvx + 2cv\beta = p. \quad (2.13)$$

Hence from (2.7), (2.9) (2.12) and (2.13) and the identity

$$(2a^2ux + bu\beta + bvx + 2cv\beta)^2 - 4(a^2u^2 + buv + cv^2)(a^2x^2 + b\alpha\beta + c\beta^2) = (u\beta - v\alpha)^2(b^2 - 4a^2c),$$

we deduce

$$a^2x^2 + b\alpha\beta + c\beta^2 = (p + q)/4. \quad (2.14)$$

Hence the unimodular transformation with matrix $\begin{bmatrix} u & v \\ \beta & \gamma \end{bmatrix}$ changes the form (a^2, b, c) into

$$(a^2u^2 + buv + cv^2, 2a^2ux + bu\beta + bvx + 2cv\beta, a^2x^2 + b\alpha\beta + c\beta^2) = (p, p, (p + q)/4).$$

Thus we have (see for example [3, p. 185])

$$(a, b, ac)^2 \sim (a^2, b, c) \sim (p, p, (p + q)/4),$$

which completes the proof of Theorem 1.

3. Determination of $h(-pq)$ modulo 16; Proof of Theorem 2

By Theorem 1 the class of the form (a, b, ac) is of order 4 and so as the 2-Sylow subgroup of the class group of forms of discriminant $-pq$ is cyclic, the form (a, b, ac) is equivalent to the square of a form (r, s, t), where we may take $(r, 2pqac) = 1$. Hence (a, b, ac) represents r^2 primitively so that there are integers x and y such that

$$r^2 = ax^2 + bxy + acy^2, \quad x > 0, \quad (x, y) = 1. \quad (3.1)$$

We define non-negative integers S and T by

$$S = |2Xx - aey|, \quad T = |2Yx - axy|. \quad (3.2)$$
Appealing to (1.1), (2.1), (2.2), (2.6) and (3.1) we obtain
\[4ar^2 = pS^2 + qT^2. \] (3.3)

From (3.3) we easily deduce that \(S \) and \(T \) are positive.

We now show that \(S \) and \(T \) have no odd common divisors greater than 1. Suppose \(k \) is an odd prime divisor of both \(S \) and \(T \). Then \(k \) divides
\[u(2Xx - aey) - e(2Yx - auy) \]
\[= 2x(uX - eY) \]
\[= 2x \quad \text{(by (2.1)),} \]
that is \(k|x \). Further from (3.3) we have \(k|ar^2 \) so that \(k|a \) or \(k|r \). If \(k|a \) from (3.1) we have \(k|r \) contradicting \((r, a) = 1 \). If \(k|r \) by (3.1) we have \(k|acy^2 \) contradicting \((r, ac) = (x, y) = 1 \).

Similarly we can show that \(T \) and \(apr \) have no odd common divisors greater than 1.

We note that as \(a \) is represented by \((a, b, ac) \) and the class of the form \((a, b, ac) \) is in the principal genus we have
\[\left(\frac{a}{p} \right) = +1. \] (3.4)

Further by (1.3) and (2.2) we have
\[a \equiv 1 \pmod{4}. \] (3.5)

Then
\[\left(\frac{r}{p} \right) \left(\frac{a}{p} \right)_4 = \left(\frac{ar^2}{p} \right)_4 = \left(\frac{2}{p} \right) \left(\frac{4ar^2}{p} \right)_4 \]
\[= \left(\frac{-1}{p} \right)_4 \left(\frac{qT^2}{p} \right)_4 \quad \text{(by (3.3))} \]
\[= \left(\frac{-q}{p} \right)_4 \left(\frac{T}{p} \right)_4. \]

that is (by (1.4))
\[\left(\frac{r}{p} \right) \left(\frac{a}{p} \right)_4 = \left(\frac{T}{p} \right)_4 = \left(\frac{2}{p} \right)^n \left(\frac{t}{p} \right). \] (3.6)

where
\[T = 2^t, \quad t \text{ odd.} \] (3.7)
ON THE DIVISIBILITY OF THE CLASS NUMBER OF $Q(\sqrt{-pq})$ BY 16

Then

$$\left(\frac{t}{p}\right) = \left(\frac{p}{t}\right)$$

$$= \left(\frac{ps^2}{t}\right)$$

$$= \left(\frac{4ar^2}{t}\right) \quad \text{(by (3.3))}$$

$$= \left(\frac{a}{t}\right)$$

$$= \left(\frac{t}{a}\right) \quad \text{(by (3.5))}$$

$$= \left(\frac{2}{a}\right)^* \left(\frac{T}{a}\right) \quad \text{(by (3.7))}$$

$$= \left(\frac{2}{a}\right)^* \left(\frac{2Yx - auy}{a}\right)$$

$$= \left(\frac{2}{a}\right)^* \left(\frac{2Yx - auy}{a}\right) \quad \text{(by (3.5))}$$

$$= \left(\frac{2}{a}\right)^{n+1} \left(\frac{Y}{a}\right) \left(\frac{x}{a}\right)$$

$$= \left(\frac{2}{a}\right)^{n+1} \left(\frac{Y}{a}\right) \left(\frac{b}{a}\right) \left(\frac{y}{a}\right) \quad \text{(by (3.1)).}$$

Now set

$$|y| = 2^m y_1, \quad y_1 \text{ odd, } \quad y_1 > 0,$$

so appealing to (3.1) and (3.5) we have

$$\left(\frac{y}{a}\right) = \left(\frac{|y|}{a}\right) = \left(\frac{2}{a}\right)^m \left(\frac{y_1}{a}\right) = \left(\frac{2}{a}\right)^m \left(\frac{a}{y_1}\right) = \left(\frac{2}{a}\right)^m,$$

giving

$$\left(\frac{t}{p}\right) = \left(\frac{2}{a}\right)^{m+n+1} \left(\frac{bY}{a}\right).$$
Next as $bY = pX - ua^2$ and using (3.4) we have

$$\left(\frac{bY}{a} \right) = \left(\frac{pX}{a} \right) = \left(\frac{a}{p} \right) \left(\frac{X}{Z} \right) = \left(\frac{X}{Z} \right),$$

so

$$\left(\frac{t}{p} \right) = \left(\frac{X}{Z} \right)^{m+n+1},$$

giving

$$\left(\frac{r}{p} \right) = \left(\frac{2}{p} \right)^n \left(\frac{2}{Z} \right)^{m+n+1} \left(\frac{X}{Z} \right) \left(\frac{a}{p} \right)_4.$$ \hfill (3.8)

Taking (1.1) modulo 8 we obtain $p + qY^2 \equiv 1 \pmod{8}$, so that

- $p \equiv 1 \pmod{8} \Rightarrow Y \equiv 0 \pmod{4},$
- $p \equiv 5 \pmod{8} \Rightarrow Y \equiv 2 \pmod{4}.$

We now treat the case $p \equiv 1 \pmod{8}$: we have

- $m = 0 \Rightarrow y \text{ odd} \Rightarrow T \text{ odd} \Rightarrow n = 0;$
- $m = 1 \Rightarrow 2 \mid y \Rightarrow 2 \mid T \Rightarrow n = 1;$
- $m = 2 \Rightarrow 4 \mid y \Rightarrow 4 \mid T \Rightarrow n = 2;$
- $m \geq 3 \Rightarrow 8 \mid y \Rightarrow x \text{ odd} \Rightarrow a \equiv 1 \pmod{8} \Rightarrow \left(\frac{2}{Z} \right) = +1;$

so that in each case

$$\left(\frac{2}{p} \right)^n \left(\frac{2}{Z} \right)^{m+n} = 1.$$

For the case $p \equiv 5 \pmod{8}$ we have

- $m = 0 \Rightarrow y \text{ odd} \Rightarrow T \text{ odd} \Rightarrow n = 0;$
- $m = 1 \Rightarrow 2 \mid y \Rightarrow 4 \mid S, 2 \mid T \Rightarrow pS^2 + qT^2 \equiv 12 \pmod{16}$
 \Rightarrow ar^2 \equiv 3 \pmod{4}, \text{ which is impossible;}
- $m = 2 \Rightarrow x \text{ odd}, 4 \mid y \Rightarrow a \equiv 5 \pmod{8} \Rightarrow \left(\frac{2}{Z} \right) = -1;$
ON THE DIVISIBILITY OF THE CLASS NUMBER OF \(Q(\sqrt{-pq}) \) BY 16

\[m \geq 3 \Rightarrow x \text{ odd}, \quad 8 | y \Rightarrow \begin{cases} a \equiv 1 \pmod{8} \Rightarrow \left(\frac{2}{Z} \right) = +1, \\ 4 \mid T \Rightarrow n = 2; \end{cases} \]

so that again in each case we have

\[\left(\frac{2}{p} \right) \left(\frac{2}{Z} \right)^{m+n} = 1. \]

Hence by (3.8) we have

\[\left(\frac{r}{p} \right) = \left(\frac{2}{Z} \right) \left(\frac{X}{Z} \right) \left(\frac{1}{p} \right)_4. \]

Now by a theorem of Bauer [1] (see also [2, Theorem 6])

\[h(-pq) \equiv 0 \pmod{16} \Leftrightarrow \left(\frac{r}{p} \right) = +1 \]

so we have

\[h(-pq) \equiv 0 \pmod{16} \Leftrightarrow \left(\frac{Z}{p} \right)_4 = \left(\frac{2X}{Z} \right). \]

This completes the proof of Theorem 2.

We remark that Theorem 2 of Brown [4] is the special case of our Theorem 2 which arises when (1.1) has a solution with \(X = 1 \).

4. Examples

Example 1. \(p = 5, \quad q = 19 \).

Here

\[\left(\frac{q}{p} \right) = \left(\frac{19}{5} \right) = 1, \quad \left(\frac{-q}{p} \right)_4 = \left(\frac{-19}{5} \right)_4 = +1. \]

A solution of (1.1)-(1.3) is given by

\[X = 1, \quad Y = 2, \quad Z = 9 \]

so

\[\left(\frac{Z}{p} \right)_4 = \left(\frac{9}{5} \right)_4 = \left(\frac{3}{5} \right) = -1, \quad \left(\frac{2X}{Z} \right) \left(\frac{2}{9} \right) = +1, \]
and Theorem 2 implies $h(-pq) = h(-95) \equiv 8 \pmod{16}$. Indeed $h(-95) = 8$.

Example 2. $p = 37$, $q = 11$.

Here

$$\left(\frac{q}{p} \right) = \left(\frac{11}{37} \right) = \left(\frac{37}{11} \right) = \left(\frac{4}{11} \right) = +1, \quad \left(\frac{-q}{p} \right)_4 = \left(\frac{-11}{37} \right)_4 = \left(\frac{100}{37} \right)_4 = \left(\frac{10}{37} \right) = +1.$$

We start with a solution of (1.1) and (1.2) for which Z is even, say,

$$X = 1, \quad Y = 7, \quad Z = 24,$$

in order to illustrate how to obtain a solution which satisfies (1.3) as well. Since the fundamental unit of $Q(\sqrt{11})$ is $10 + 3\sqrt{11}$ we have

$$R = 10, \quad S = 3, \quad R_1 = 199, \quad S_1 = 60.$$

First we transform the solution (X, Y, Z) into a solution (X_1, Y_1, Z_1) with Z_1 odd:

$$X_1 = X = 1, \quad Y_1 = RY + SZ = 142, \quad Z_1 = qSY + RZ = 471.$$

As $Z_1 \equiv 3 \pmod{4}$ we transform the solution (X_1, Y_1, Z_1) into a solution (X_2, Y_2, Z_2) with $Z_2 \equiv 1 \pmod{4}$:

$$X_2 = X_1 = 1, \quad Y_2 = R_1Y_1 + S_1Z_1 = 56518, \quad Z_2 = qS_1Y_1 + R_1Z_1 = 187449,$$

so that

$$\left(\frac{Z_2}{p} \right)_4 = \left(\frac{187449}{37} \right)_4 = \left(\frac{7}{37} \right)_4 = \left(\frac{81}{37} \right)_4 = +1, \quad \left(\frac{2X_2}{Z_2} \right)_4 = \left(\frac{2}{187449} \right)_4 = +1,$$

and Theorem 2 implies $h(-pq) = h(-407) \equiv 0 \pmod{16}$. Indeed $h(-407) = 16$.

Example 3. $p = 5$, $q = 79$.

Here

$$\left(\frac{q}{p} \right) = \left(\frac{79}{5} \right) = +1, \quad \left(\frac{-q}{p} \right)_4 = \left(\frac{-79}{5} \right)_4 = +1.$$

A solution of (1.1) and (1.2) is given by

$$X = 3, \quad Y = 2, \quad Z = 19.$$
ON THE DIVISIBILITY OF THE CLASS NUMBER OF $Q(\sqrt{-pq})$ BY 16

As $Z \equiv 3(\mod 4)$ we transform this solution into one for which $Z \equiv 1(\mod 4)$ obtaining

$$X = 3, \quad Y = 52958, \quad Z = 470701,$$

so that

$$\left(\frac{Z}{p}\right)_4 = +1, \quad \left(\frac{2X}{Z}\right) = \left(\frac{2}{Z}\right) = (-1)(+1) = -1,$$

and Theorem 2 implies $h(-pq) = h(-395) \equiv 8(\mod 16)$. Indeed $h(-395) = 8$.

This example illustrates Theorem 2 in a situation where (1.1) has no solution with $X = 1$ as

$$u^2 - 79v^2 = 5$$

is insolvable in integers u and v (see for example [7, Theorem 109]).

REFERENCES

2. Ezra Brown, The power of 2 dividing the class-number of a binary quadratic discriminant, J. Number Theory 5 (1973), 413–419.

4. Ezra Brown, The class-number of $Q(\sqrt{-pq})$, for $p \equiv -q \equiv 1(\mod 4)$ primes, Houston J. Math. 7 (1981), 497–505.

Department of Mathematics
Arizona State University
Tempe, Arizona 85287, U.S.A.

Department of Mathematics
and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6