NOTE ON THE QUADRATIC CHARACTER OF A QUADRATIC UNIT

DUNCAN A. BUELL, PHILIP A. LEONARD AND KENNETH S. WILLIAMS

Results are obtained concerning evaluations of the quadratic character of real quadratic units of norm -1.

1. Introduction. Let m be a positive squarefree integer, and let ε_m denote the fundamental integral unit of the real quadratic field $\mathbb{Q}(\sqrt{m})$, so that $\varepsilon_m = T + U\sqrt{m}$ with positive integers T and U. Throughout, it is assumed that ε_m has norm -1, so that $m \equiv 1, 5$ or $2(\text{mod } 8)$, and all odd primes q dividing m satisfy $q \equiv 1(\text{mod } 4)$. A number of recent papers ([1] - [3], [7], [9]-[12], [14], [16], [17]) have computed the quadratic character of such ε_m modulo a rational prime p, in terms of representations of a power of p by positive-definite binary quadratic forms of a certain discriminant associated with m. In this note we prove a result which, among other things, identifies the correct form-discriminant for evaluations of this type.

A number of illustrations will be given in §3 and §4, after the proof in §2 of the following theorem.

THEOREM. Let $f = 1, 2$ or 4 according as $m \equiv 1, 5$ or $2(\text{mod } 8)$. Let G denote the group of primitive positive-definite binary quadratic forms of discriminant $-4mf^2$. Then G contains a subgroup H such that

(i) G/H is cyclic of order 4,

and

(ii) the prime p satisfies $(-1/p) = (m/p) = (\varepsilon_m/p) = 1$ if and only if p is represented by a form from a class in H.

Before proving this result, we note that an analysis of the equation $T^2 + 1 = mU^2$ in the ring of Gaussian integers gives the following result.

LEMMA. There exist integers A, B, C, D such that $1 + Ti = (A + Bi)(C + Di)^2$, $m = A^2 + B^2$, $A \equiv 1(\text{mod } 4)$, and $B \equiv 0, 2$ or $T(\text{mod } 4)$ according as $m \equiv 1, 5$ or $2(\text{mod } 8)$. (Note: $C - 1 \equiv D \equiv 0 (\text{mod } 2)$.)

2. Proof of the theorem. The splitting field, over \mathbb{Q}, of the polynomial $x^4 - 2Tx^2 - 1$ is $M = Q(i, \sqrt{m}, \sqrt{\varepsilon_m})$, which is dihedral over \mathbb{Q}, and cyclic of degree 4 over $K = Q(\sqrt{-m})$. The primes p
satisfying \((-1/p) = (m/p) = (\varepsilon_m/p) = 1\) are precisely those which split completely in \(M\). It follows (see [4], especially Satz 8, proof of sufficiency) that, for the positive integer \(f\) such that \((f)\) is the conductor of the abelian extension \(M/K\), the group \(G\) of classes of forms of discriminant \(-4mf^2\) has a subgroup \(H\) with the properties given in the theorem. It remains to show that \(f = 1, 2\) or 4 according as \(m \equiv 1, 5\) or 2(mod 8). Besides \(M\) and \(K\), we shall require \(L = Q(\sqrt{\varepsilon_m} - \sqrt{\varepsilon_m'})\) and its subfield \(k = Q(i)\). For an abelian extension \(E/F\) of number fields, we let \(d(E/F)\) denote the relative discriminant, \(f(E/F)\) denote the finite part of the conductor, and \(N_{E/F}(I)\) the relative norm of the ideal \(I\) of \(E\). Then from the work of Halter-Koch ([5], Satz 7) \(f(M/K) = (f)\) for a positive integer \(f\). Moreover ([5], Satz 24, (2')), we have

\[
(2.1) \quad d(L/Q) = d(K/Q)d(k/Q)(f(M/K))^2 = 16mf^2.
\]

On the other hand (see, for example, [13], p. 148), we have

\[
(2.2) \quad d(L/Q) = (d(k/Q))^2N_{k/Q}(d(L/k)) = 16N_{k/Q}(d(L/k)).
\]

Finally, as \((\sqrt{\varepsilon_m} - \sqrt{\varepsilon_m'})^2 = (1 - i)^3(A + Bi)(C + Di)^3\) by the lemma, we have \(L = Q(i, \sqrt{A + Bi})\). Hence, by direct calculation (or see [8], p. 149), we obtain

\[
(2.3) \quad d(L/k) = 2^e(A + Bi),
\]

where \(e = 0, 1\) or 2 according as \(m \equiv 1, 5\) or 2(mod 8). Appealing to (2.1), (2.2), (2.3) we obtain the evaluation of \(f\) stated above.

3. A numerical example. We illustrate the theorem by calculating the subgroup \(H\) for the case \(m = 226\). As \(226 \equiv 2\) (mod 8), the theorem tells us that the correct discriminant is \(-128.113\). The group \(G\) is of order 32, and its structure is \(C(8) \cdot C(4)\). The 32 classes can be represented by computing the primitive reduced forms of this discriminant. In order for \(p\) to be represented by a class from \(H\), \(p\) must satisfy \((-1/p) = (226/p) = +1\), so by genus theory only 16 of these forms must be examined. By considering primes represented by these forms, and by appealing to the theorem, we find that \(H\) is made up of the principal class, together with the classes of the forms \([5, \pm 4, 724]\), \([29, \pm 6, 125]\), \([32, 0, 113]\) and \([25, \pm 6, 145]\). Since \(H\) contains only two ambiguous classes, \(H\) is cyclic of order 8, and \(G/H\) is cyclic of order 4, as indicated by the theorem.

4. Conclusion. It is difficult to give \(H\) explicitly in general. In spite of this, we can make the theorem explicit in several cases, by considering primitive representations of powers of \(p\) by ambiguous
NOTE ON THE QUADRATIC CHARACTER OF A QUADRATIC UNIT

Sometimes this is possible when G has a particular structure. For example, if $m = q_1q_2 \cdots q_r \equiv 1 \pmod{8}$, $N(\varepsilon_m) = -1$ and the 2-Sylow subgroup of G is of the type $C(2^t) \cdot C(2)^{r-1}$ with $t \geq 2$. G^2 is the principal genus in G, so that $[G : G^2] = 2^r$ and G^2 has a unique subgroup of index 2. This subgroup must be $H \cap G^2$, for otherwise $H \cap G^2 = G^2$, implying $G^2 \subseteq H$ which contradicts the fact that G/H is cyclic of order 4. Thus $H \cap G^2$ has order $l = h/2^{r+1}$, where h denotes the class-number of $Q(\sqrt{-m})$, and consists of those classes C in G^2 such that C' is the principal class. A prime p satisfying \((-1/p) = (q_i/p) = \cdots = (q_r/p) = +1\) is represented by a class from G^2. This class lies in H if and only if p^t is represented by the principal class. Therefore, by the theorem, $(\varepsilon_m/p) = +1$ if and only if $p^t = x^2 + my^2$. This result is due to Parry \([14]\) when $r = 1$. When $r \geq 2$, a large class of examples is provided by choosing $m = q_1q_2 \cdots q_r$, where $r = 2$ or r is odd, each $q_i \equiv 1 \pmod{8}$, and $(q_i/q_j) = -1$ when $i \neq j$, since in this situation ε_m has norm -1 \([15]\) and the 2-Sylow subgroup is of the required type \([6]\).

Another example is provided by choosing $m = q_1q_2 \cdots q_r$, where r is odd, each $q_i \equiv 5 \pmod{8}$ and $(q_i/q_j) = -1$ when $i \neq j$. Again ε_m has norm -1 \([15]\) and the 2-Sylow subgroup of the group of form-classes of discriminant $-4m$ has the structure $C(2)^r$. Thus the 2-Sylow subgroup of G has the structure $C(4) \cdot C(2)^{r-1}$, as going from discriminant $-4m$ to discriminant $-16m$ doubles the number of classes but introduces no new genera. The “principal genus case” then follows exactly as in the previous example. The remaining cases in this example are covered by a result of Kaplan and Williams \([7]\). With h as in the previous paragraph, we set $l' = h/2^r$, so that l' is odd. If p satisfies $(1/p) = (m/p) = +1$ then $p^{l'}$ is represented by an ambiguous class, and so $p^{l'} = Qx^2 + Q'y^2$, where $QQ' = m$, $Q \equiv 1 \pmod{8}$ and $Q' \equiv 5 \pmod{8}$. Then \([7]\) $(\varepsilon_m/p) = +1$ if and only if y is even.

References

7. P. Kaplan and K. S. Williams, Quadratic character of quadratic units and representa-
tions of primes by binary quadratic forms, in preparation.
17. K. S. Williams, On the evaluation of \(\varepsilon_{212} \), Rocky Mountain J. Math., 10 (1980), 559-573.

Received January 24, 1978. Research of the third author was supported by National Research Council of Canada Grant No. A-7233.

LOUISIANA STATE UNIVERSITY
BATON ROUGE, LA 70803
ARIZONA STATE UNIVERSITY
TEMPE, AZ 85281
AND
CARLETON UNIVERSITY
OTTAWA ONTARIO, CANADA, (K1S 5B6)