ON THE RESIDUES OF A CUBIC POLYNOMIAL (Mod p)

K. McCann and K. S. Williams

(received November 18, 1966)

If \(f(x) \) is a polynomial with integral coefficients then the integer \(r \) is said to be a residue of \(f(x) \) modulo an integer \(m \) if the congruence

\[
f(x) \equiv r \pmod{m}
\]

is soluble for \(x \); otherwise \(r \) is termed a non-residue. When \(m \) is a prime \(p \), Mordell [4] has shown that the least non-negative residue \(l \) of \(f(x) \) (mod \(p \)) satisfies

\[
l \leq d \cdot p^{1/2} \log p,
\]

where \(d \) is the degree of \(f(x) \). When \(f(x) \) is a cubic he has also shown that the least non-negative non-residue \(k \) of \(f(x) \) (mod \(p \)) is* \(0(p^{1/2} \log p) \). It is the purpose of this note to discuss the distribution of the residues of the cubic \(f(x) \) (mod \(p \)) in greater detail. To keep the notation simple we take \(f(x) \) in the form \(x^3 + ax \); no real loss of generality is involved, everything we do for \(x^3 + ax \) can be done for \(Ax^3 + Bx^2 + Cx + D \) but at the cost of complicating the notation. When \(a \equiv 0 \pmod{p} \), \(f(x) = x^3 \) and our results are well-known in this case. Henceforth we assume that \(a \neq 0 \pmod{p} \). Let

\[
\begin{align*}
(1) \quad n_i &= \sum_{r=1}^{p} 1, \quad (i = 0, 1, 2, 3) \\
N_i &= i \\
\end{align*}
\]

* Unless otherwise stated all constants implied by \(0 \)-symbols are absolute.
where N_r denotes the number of solutions x of

(2) \[x^3 + ax \equiv r \pmod{p}. \]

It is well-known that for $p > 3$

(3) \[n_1 = \frac{1}{2} \left\{ p + \left(\frac{-3}{p} \right) - \left(\frac{-3a}{p} \right) - 1 \right\}, \]

(4) \[n_2 = \left(\frac{-3a}{p} \right) + 1 \]

and

(5) \[n_3 = \frac{1}{6} \left\{ p - \left(\frac{-3}{p} \right) - 3 \left(\frac{-3a}{p} \right) - 3 \right\}. \]

Hence the number of residues of $x^3 + ax \pmod{p}$, which is just $n_1 + n_2 + n_3$, is

(6) \[\frac{1}{3} \left\{ 2p + \left(\frac{-3}{p} \right) \right\} = \frac{2}{3} p + O(1), \quad \text{as } p \to \infty. \]

This tells us that, for large p, approximately two-thirds of the integers

(7) \[1, 2, 3, \ldots, p \]

are residues of $x^3 + ax$. We show that this is also true for

(8) \[1, 2, 3, \ldots, h \]

provided h is sufficiently large. More precisely we show that the number of residues of $x^3 + ax$ in (8) is

(9) \[\frac{2}{3} h + O(p^{1/2} \log p). \]

A consequence of this is Mordell's estimate for k. In addition, as $\frac{2}{3} > \frac{1}{2}$, it shows that the least pair of consecutive positive
residues is also $O(p^{1/2} \log p)$.

In the proof of (9) (and later) we use Vinogradov's method for incomplete character and exponential sums. This requires the familiar Polya-Vinogradov inequality, namely,

$$\sum_{y=1}^{p-1} \sum_{x=1}^{h} e(yx) \leq p \log p,$$

(10)

for $p \geq 61$, where $e(t)$ denotes $\exp(2\pi i tp^{-1})$. For the complete sums involved we appeal to the general estimates of Perel'mut' [5]. These include the estimate of Carlitz and Uchiyama [2], used by Mordell in [4], namely

$$\sum_{x=1}^{p} e(f(x)) \leq (d-1)p^{1/2},$$

(11)

where d denotes the degree of the polynomial f, and Weil's estimate [6] for the Kloosterman sum, i.e.,

$$\sum_{x=1}^{p-1} e(ax + bx^{-1}) \leq 2p^{1/2},$$

(12)

where x^{-1} denotes the inverse of $x \pmod{p}$ and $a, b \not\equiv 0 \pmod{p}$. All these estimates are consequences of Weil's proof of the Riemann hypothesis for algebraic function fields over a finite field.

Analogous to (1) we set

$$m_i = \sum_{r=1}^{h} 1,$$

(13)

$$N = i,$$

so that we require $m_4 + m_2 + m_3$. From [4] we have

$$m_2 = O(1),$$

(14)

and from Mordell's paper [4]

31
(15) \[m_1 + 2m_2 + 3m_3 = h + 0(p^{1/2} \log p), \]

so that it suffices to determine \(m_1 \). Now (2) has one solution if and only if

\[\left(\frac{-4a^3 - 27r^2}{p} \right) = -1 \]

so

\[m_1 = \frac{1}{2} \sum_{r=1}^{h} \left\{ 1 - \left(\frac{-4a^3 - 27r^2}{p} \right) \right\} + O(1). \]

Applying Vinogradov's method and appealing to Perel'muter's results [5] (or to Weil's estimate (12) for the Kloosterman sum) we have

\[\sum_{r=1}^{h} \left(\frac{-4a^3 - 27r^2}{p} \right) = O(p^{1/2} \log p) \]

so that

(16) \[m_1 = \frac{1}{2} h + O(p^{1/2} \log p). \]

We now consider pairs of consecutive residues of \(x^3 + ax \pmod{p} \). Define \(n_{ij} \) \((0 \leq i, j \leq 3) \) by

(17) \[n_{ij} = \sum_{r=1}^{p} 1 \quad N_r = i, \quad N_{r+1} = j \]

so that the number of such pairs is just

(18) \[\sum_{1 \leq i, j \leq 3} n_{ij}. \]

From (4) \(n_{12}, n_{2j} = O(1) \) for \(0 \leq i, j \leq 3 \). Also it is easy to
show that \(n_{13} = n_{34} \) so it suffices to evaluate \(n_{14}, n_{43} \) and \(n_{33} \). We begin by showing that

\[
n_{14} = \frac{p}{4} + O(p^{1/2}).
\]

We have

\[
n_{14} = \sum_{r=1}^{p} 1
\]

\[
\left(\frac{-4a^3 - 27r^2}{p} \right) = -1, \quad \left(\frac{-4a^3 - 27(r+1)^2}{p} \right) = -1
\]

\[
= \frac{1}{4} \sum_{r=1}^{p} \left\{ 1 - \left(\frac{-4a^3 - 27r^2}{p} \right) \right\} \left\{ 1 - \left(\frac{-4a^3 - 27(r+1)^2}{p} \right) \right\} + O(1)
\]

\[
= \frac{p}{4} - \frac{1}{4} \sum_{r=1}^{p} \left(\frac{-4a^3 - 27r^2}{p} \right) - \frac{1}{4} \sum_{r=1}^{p} \left(\frac{-4a^3 - 27(r+1)^2}{p} \right)
\]

\[
+ \frac{1}{4} \sum_{r=1}^{p} \left(\frac{-4a^3 - 27r^2}{p} \right) \left(\frac{-4a^3 - 27(r+1)^2}{p} \right) + O(1).
\]

The first two character sums are \(O(1) \) and the last one by Perel'muter's results is \(\leq 3p^{1/2} \) in absolute value, since \((-4a^3 - 27r^2)(-4a^3 - 27(r+1)^2) \) is not identically \((\text{mod } p)\) a square in \(r \).

We next prove that

\[
n_{13} = \frac{p}{12} + O(p^{1/2}).
\]

We do this by showing that

\[
n_{14} + 2n_{12} + 3n_{43} = \frac{p}{2} + O(p^{1/2}).
\]

(20) follows since we know \(n_{11} \) and \(n_{12} \). We have
\[
\begin{align*}
3 \sum_{j=0}^{\frac{p}{r+1}} - 2 & = \sum_{j=0}^{\frac{p}{r+1}} j \sum_{r=1}^{N_r} 1 = \sum_{r=1}^{N_r} \frac{p}{r+1} \\
& = \sum_{r=1}^{\frac{p}{N_r+1}} \sum_{x=1}^{\frac{p}{r+1}} 1 \\
& = \frac{1}{2} \sum_{x=1}^{\frac{p}{2}} \left(1 - \left(-\frac{4a^3 - 27x^2}{p} \right) \right) + O(1) \\
& = \frac{p}{2} - \frac{1}{2} \sum_{x=1}^{\frac{p}{2}} \left(-\frac{4a^3 - 27(x^3 + ax - 1)^2}{p} \right) + O(1). \end{align*}
\]

Now \(27^2(x^3 + ax - 1)^2 + 108a^3\) is not identically \((\text{mod } p)\) a square in \(x\) as \(a \neq 0 \pmod{p}\). Hence Perel'muter's work tells us that the character sum is \(O(p^{1/2})\). This proves (21).

Finally consider
\[
\begin{align*}
n_{11} + 2(n_{12} + n_{21}) + 3(n_{13} + n_{31}) + 4n_{22} + 6(n_{23} + n_{32}) + 9n_{33}. \end{align*}
\]
This is just the number of solutions \((x, y)\) of
\[
(x^3 + ax) - (y^3 + ay) - 1 \equiv 0 \pmod{p}.
\]
By a result of Lang and Weil [3] this number is
\[
p + O(p^{1/2}).
\]
Hence
\[
(22) \quad n_{33} = \frac{p}{36} + O(p^{1/2}).
\]
Thus the number of pairs of consecutive residues is
\begin{equation}
\frac{4}{9} p + O(p^{1/2}).
\end{equation}

We conclude by calculating the number of pairs of residues of \(x^3 + ax \mod p \) in (8). We define \(m_{ij} \) \((0 \leq i, j \leq 3)\) by
\begin{equation}
m_{ij} = \sum_{r=1}^{p} 1, \quad N_r = i, \quad N_{r+1} = j
\end{equation}

From (4) we have \(m_{12}, m_{2j} = O(1) \) \((0 \leq i, j \leq 3)\) and, much as before, we can show that
\begin{equation}
m_{11} = \frac{h}{4} + O(p^{1/2} \log p)
\end{equation}
and
\begin{equation}
m_{13} = m_{31} = \frac{h}{12} + O(p^{1/2} \log p).
\end{equation}

The only difficulty is the estimation of \(m_{33} \). We find it necessary to appeal to a recent deep estimate of Bombieri and Davenport [1] for an exponential sum of the type
\begin{equation}
\sum_{x, y=1}^{p} e(f(x))
\end{equation}
\(\varnothing(x, y) \equiv 0 \mod p \)

where \(\varnothing(x, y) \) is absolutely irreducible \(\mod p \). We have
\begin{equation}
m_{11} + 2(m_{12} + m_{21}) + 3(m_{13} + m_{31}) + 4m_{22} + 6(m_{23} + m_{32}) + 9m_{33}
\end{equation}
\begin{equation}
= \sum_{r=1}^{h} N_r N_{r+1}
\end{equation}
\[
= \frac{1}{p} \sum_{\rho} \sum_{\nu} \sum_{\pi} N_{r} N_{r+1} e(t(r-s)) \\
= \frac{1}{p} \sum_{\rho} \sum_{\nu} N_{r} N_{r+1} + \frac{1}{p} \sum_{\rho} \sum_{t=1}^{\rho-1} N_{r} N_{r+1} e(tr) \quad \{ \sum_{s=1}^{h} e(-st) \} \\
\]

Hence
\[
|m_{11} + 2(m_{12} + m_{21}) + \ldots + 9m_{33} - \frac{h}{p} (p + 0(p^{1/2}))| \leq \max_{1 \leq t \leq p-1} \left| \sum_{r=1}^{p} N_{r} N_{r+1} e(tr) \right| \log p.
\]

Now
\[
\sum_{r=1}^{p} N_{r} N_{r+1} e(tr) \\
= \frac{1}{2} \sum_{r=1}^{p} \sum_{x=1}^{p} \sum_{u=1}^{p} e\{u(f(x)-r)\} \sum_{y=1}^{p} \sum_{v=1}^{p} e\{v(f(y)-r-1)\} e(tr). \\
= \frac{1}{2} \sum_{r=1}^{p} e\{uf(x) + vf(y) - v\} \sum_{r=1}^{p} e\{(t-u-v)r\} \\
= \frac{1}{p} \sum_{x, y, u, v = 1}^{p} e\{(t-v)f(x) + vf(y) - v\} \\
= \frac{1}{p} \sum_{x, y = 1}^{p} e\{tf(x)\} \sum_{y=1}^{p} e\{v(f(y) - f(x) - 1)\} \\
= \sum_{x, y = 1}^{p} e(tf(x)).
\]

\[f(y) - f(x) - 1 \equiv 0\]
As \(f(y) - f(x) - 1 \) is absolutely irreducible \((\text{mod } p)\), by the mentioned result of Davenport and Bombieri, this sum in absolute value is less than \(18p^{1/2} + 9 \). Hence

\[
m_{33} = \frac{h}{36} + o(p^{1/2} \log p)
\]

and the number of pairs of consecutive residues in (8) is

\[
\frac{4h}{9} + o(p^{1/2} \log p)
\]

This implies that the least triple of consecutive positive residues of \(x^3 + ax \pmod p \) is also \(o(p^{1/2} \log p) \).

In conclusion we would like to say that a number of modifications of this work are possible; for example the results obtained can be extended to arbitrary arithmetic progressions without difficulty and also to quartic polynomials. Finally we offer the following

CONJECTURE: For a fixed positive integer \(k \) the number \(N_k(a) \) of blocks of \(k \) consecutive residues of \(x^3 + ax \pmod p \) satisfies

\[
\lim_{p \to \infty} \frac{N_k(a)}{p} = \left(\frac{2}{3} \right)^k
\]

for each \(k \), uniformly in \(a \neq 0 \pmod p \).

This has been verified for \(k = 1 \) and 2.

REFERENCES

Manchester University
Manchester, England

Carleton University
Ottawa, Canada