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Abstract

In this thesis, we study several problems concerning semigroup algebras K[S] of a
semigroup S over a field K.

In Chapter 1 and Chapter 2 we give some background on semigroups and
semigroup rings. In Chapter 3, we discuss the global dimension of semigroup rings
R[S] where R is a ring and S is a monoid with a sequence of ideals S = L D6LD
-++ D Iy D L4 such that each [;/[;;, is a non-null Rees matrix semigroup.

In Chapter 4, we investigate when a semigroup algebra has right global dimen-
sion at most 1, that is, when is it right hereditary. As an application of the results
in Chapter 3, we describe when K[S!] is hereditary for a non-null Rees semigroup
S. For arbitrary semigroups that are nilpotent in the sense of Malcev, we describe
when its semigroup algebra is hereditary Noetherian prime. And for cancellative
semigroups we obtain a description of when its semigroup algebra is hereditary
Noetherian.

In Chapter 5, we generalize the concept of unique factorization monoid and
investigate Noetherian unique factorization semigroup algebras of submonoids of

torsion-free polycyclic-by-finite groups.

il
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In Chapter 6, we investigate when a semigroup algebra K[S] is a polynomial
identity domain which is also a unique factorization ring. In order to prove this

result we describe first the height one prime ideals of such algebras.
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Introduction

Maximal orders in simple Artinian rings of quotients have attracted considerable
interest. In particular, it has been shown that various algebraic ring constructions
yield examples of Noetherian maximal orders or of maximal orders satisfying a
polynomial identity. For a field K and a commutative monoid S Chouinard proved
that the monoid algebra A’[S] is a Krull domain if and only if S is a Krull order in
its group of quotients. Moreover, the class group of K [S] equals the class group of
S. This shows, in particular, that the height one primes of K'[S] determined by the
minimal primes of S are crucial. Brown described when a group algebra K[G] of a
polycyclic-by-finite group G is a prime Noetherian maximal order. It is always the
case if G is torsion-free. If G is a finitely generated torsion-free abelian-by-finite
group (equivalently, K[G] is a Noetherian PI domain) then all height one primes
are principally generated by a normal element. So, in the terminology of Chatters
and Jordan, K[G] is a unique factorization ring.

[t remains an unsolved problem to characterize when an arbitrary semigroup
algebra K[S] over a field K is a prime maximal order that is Noetherian or satisfies

a polynomial identity.



2 INTRODUCTION

Apart from the two cases mentioned above, an answer to the question has been
obtained only for some special classes of semigroups, such as Malcev nilpotent
semigroups, or for some special classes of maximal orders, such as principal ideal
rings.

In this thesis we continue these investigations. We investigate when a semigroup
algebra is hereditary Noetherian prime or a unique factorization ring in the sense
of Chatters and Jordan. The former part is basically a question of Okninski,
Problem 37 in [52]. For a ring to be (right) hereditary one needs the (right) global
dimension to be at most one. Hence, our first contribution to the the subject is to
control the global dimension of certain types of matrix semigroups.

We now briefly outline the content of each chapter. Chapters 1 and 2 cover
some notation and background on semigroups and semigroup rings.

In [45], Kuzmanovich and Teply determined a lower and upper bound for the
homological dimension of K[S] for the class of finite monoids S that have a sequence
ofideals S =1, D I, D --- D I, D I, such that all the Rees factors I/ ;4 are
non-null Rees matrix semigroups. In Chapter 3 we sharpen their upper bound. We
also include some examples of semigroups which have a null Rees factor. These
examples indicate that in this case the solution is yet rather unclear. Hence the
solution to arbitrary finite semigroups is still open.

As an application of the results in Chapter 3 we first determine in Chapter 4

when the (contracted) semigroup algebra Ky[S] of a finite non-null Rees matrix
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semigroup S is hereditary. Next we characterize when A,[S] is a hereditary Noe-
therian prime ring when S is an arbitrary nilpotent semigroup (in the sense of
Malcev). It turns out that such a ring is a prime principal ideal ring. In the last
part of this chapter we fully describe when a semigroup algebra of a cancellative
monoid is a Noetherian hereditary ring. Our results rely on the solution of the
problem for group algebras. These were obtained by Goursaud and Valette for
nilpotent groups and Dicks for arbitrary groups.

In Chapter 5 we investigate when a monoid algebra K[S] of a cancellative
monoid is a Noetherian unique factorization ring. Such monoids S have a group
of fractions, say G. Because of Quinn’s result on graded rings, K[S] is (right)
Noetherian if and only if S satisfies the ascending chain condition on right ideals.
Since K[G] also is a Noetherian unique factorization ring and because these have
only been described for groups G that are polycyclic-by-finite, we restrict to this
situation. In case G is also torsion-free, we show that the problem is closely
related to group algebras K[G] and the monoid S, and actually the monoid N (S )
consisting of the normalizing elements of S. Hence in the first part of the chapter
we investigate unique factorization monoids, and more generally Krull monoids.
As in the ring case it turns out that S is a unique factorization monoid if and only
if S is a Krull order with trivial normalizing class group.

In the final Chapter, we investigate when a monoid algebra K[S ] of a cancella-
tive monoid S is a domain satisfying a polynomial identity and which is a unique

factorization ring (the Noetherian condition is not assumed). In this case S has



4 INTRODUCTION

a group of fractions that is torsion-free abelian-by-finite group G and the group
algebra K[G] is a unique factorization ring. First we show that for such a monoid
S, if P is a prime ideal of K[S] with PN S # @ then K[S N P] is also a prime
ideal. It follows that, if K[S] is a Krull order, then the height one prime ideals
intersecting S are precisely the ideals of the form K[Q] with Q a minimal prime
ideal of S. The proof of this result relies on the structure theory of skew linear
semigroups, as developed by Oknirski. This result on prime ideals is the crucial

step for us to investigate when K'[S] is a unique factorization ring.



CHAPTER 1

Semigroups

In this chapter, we give some definitions and structural descriptions of certain
important classes of semigroups. For more information, the reader is referred to

[13], [28] and [52].

1.1. Some basic Definitions

A semigroup S is a multiplicatively closed set such that the operation is as-
sociative. A subsemigroup T of S is a non-empty subset which is closed under

multiplication. A subgroup G of S is a subsemigroup which is a group.

1.1.1. An element e of S is called a left identity of S if ea = a for all @ € S.
Similarly one defines right identity and an identity of S if it is an element that is
both a left and a right identity. A semigroup S may have multiple right or left
identities, but if it has a right identity and a left identity, they must necessarily
coincide and in this case S has a unique identity.

A semigroup S is called a monoid if S contains an identity element 1. Then u
is a right unit of S if there is a v € S such that uv = 1. Similarly, one defines left
unit and u is a unit if it is both a left and right unit. We write U(S) for the set of

units of 5.
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1.1.2. An element z of S is called left zero if za = z for every a € S. Similarly
one defines right zero and z is called a zero element if it is both a left and right
zero element. As for identity elements, a semigroup S may have multiple right or
left zeros, but if has a right zero and a left zero, they must necessarily coincide and
in this case S has a unique zero. If S has a zero element, it will usually be denoted
. A semigroup S with zero element § will be called a zero or null semigroup if

ab=40foralla,be S.

1.1.3. Let S be any semigroup, and let 1 be a symbol not representing any
element of S. Extend the given binary operation in S to one in SU {1} by defining

11 =1 and la = al = a for every a € S. Obviously SU {1} is a monoid. Let

gt S if S has an identity element,
SU {1} otherwise;

Similarly one can adjoin a zero element 8 to S, denoted by S° = S U {6}.

1.1.4. An element e € S which satisfies e = €* is called an idempotent. We
write E(S) for the set of idempotent elements of a semigroup S. The set E(S)
can be partially ordered by e < f if and only if ef = fe = e. If S contains a zero
element 8, then § < e for every idempotent e € E. A band is a semigroup S every

element of which is idempotent.

1.1.5. A homomorphism of a semigroup S into a semigroup T is a mapping

¢ : S — T which preserves products:
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L.1. SOME BASIC DEFINITIONS

é(zy) = #(z)o(y) forall z,y € S.

If¢:S = Tandv: T — U are homomorphisms, then so is the composite mapping

Yo¢:S5 — U. An isomorphism of semigroups is a bijective homomorphism.

1.1.6. By a left ideal of a semigroup we mean a non-empty subset [ of S
such that S'I C I. Similarly one defines a right ideal and [ is a two-sided ideal,
or simply tdeal, if [ is both a left and right ideal of S. If § has a zero element g,
then {6} is always an ideal of S.

If {Io | @ € A} is a family of ideals of a semigroup S then U/, and NI, are
also ideals of S, the latter provided that it is non-empty. The same is true for the
family of left or right ideals.

If a € S then the right ideal generated by a is denoted by aS!; clearly aS! =
aS U {a}. Similarly, the left ideal generated by a is denoted by S'a. The ideal

generated by a is 5'aS' = SaSU SaUaS U {a}.

1.1.7.  Anequivalence relation p is called a right congruence on a semigroup S
if apb implies that acpbe for every a,b,c € S. A left congruence is defined similarly.
A congruence is an equivalence relation p on S which is both a left and a right
congruence.

Let [ be an ideal of a semigroup S and a,b € S. Define apb if either a = b
or else both a and b belong to I. We call p the Rees congruence modulo I. The

equivalence classes of S mod p are I itself and every one element set {a} with
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a € S\ I. We shall write S/I instead of S/p, and we call S/I the Rees factor

semigroup of S modulo I.

1.1.8. For the Rees factors of semigroups, we have analogues of two of the

isomorphism theorems for groups.

THEOREM 1.1. (Theorem 2.36 in [13]) Let J be an ideal and T a subsemigroup
of a semigroup S and JNT # Q. Then JOT is an ideal of T, JUT is a subsemigroup

of S, and

(JUT)/J=T/(JNT).

THEOREM 1.2. (Theorem 2.37 in [13]) Let J be an ideal of a semigroup S,
and let 6 be the natural homomorphism of S upon the Rees factor S/J. Then ¢
induces a one-to-one, inclusion-preserving mapping A — §(A) = A/J of the set of

all ideals A of S containing J upon the set of all ideals of S/J, and

(5/9)/(A/J) = S/A.

1.2. Green relations

1.2.1. The Green relations on a semigroup S are the equivalence relations,

which are denoted respectively by £,R,#, and J. These were introduced by
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Green in 1951 and defined as follows, for a,b € S,

aCb ifand only if Sla = S,

aRb ifand only if aS' = bS',

aHb if and only if aS'=0b6S" and Sla = S'b,
aJb if and only if S'aS!' = S'bSt.

Clearly £ is an equivalence relation such that a£b implies that acLbc for all ¢ € S,
that is, £ is a right congruence. If aLb, we say that a and b are L-equivalent. By
L, we mean the set of all elements of S which are L-equivalent to a, that is, the
equivalence class of S mod L; we call L, the £-class containing a.

Similarly R,, H,, and J, denote respectively the R, #, and J-class containing

LEMMA 1.3 (Theorem 2.16 in [13]). For any H-class H of a semigroup S the

following are equivalent:

1. abe€ H for some a,b € H;
2. H contains an idempotent;
3. H 1is a subsemigroup of S;

4. H is a subgroup of S.

COROLLARY 1.4. The mazimal subgroups of a semigroup S coincide with the
H-classes of S which contain idempotents. They are pairwise disjoint. Each sub-

group of S is contained in ezactly one mazimal subgroup of S.
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1.3. Regular semigroups and Inverse semigroups

1.3.1. An inverse of an element a in a semigroup S is an element b of S such

that
aba = a and bab = b;

the elements a and b are also called mutually inverse. As shown in the next

example, an element can have many inverses.

EXAMPLE 1.5. Let X and Y be two sets, and define a binary operation on

S =X xY as follows:
(xlayl)(z:?’y?) = ($1, y2)7 ZT1,Z2 € Xay17y2 ey

This semigroup is called the rectangular band on X x Y. In such a rectangular

band S, every two elements are mutually inverse.

1.3.2. An element a of a semigroup S is called regular if ¢ & aSa, that is,
if aza = a for some z € S. In this case, az is an idempotent. Note we have the

following equivalent conditions.

LEMMA 1.6 (Lemma I1.2.2 in [28]). For an element a of a semigroup S the
following are equivalent:

1. a s regular;

2. a has an inverse;

3. R, contains an idempotent;
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4. L, contains an idempotent.

In other words, a is regular if and only if aS' = eS! ( S'a = S'e ) for some
idempotent element e, i.e. the principal right (left) ideal of S generated by a has

an idempotent generator e.

A semigroup is called regular if all its elements are regular. From the equivalent
definitions of regular elements, we know that S is a regular semigroup if and only if
every R-class of S contains an idempotent, if and only if every £-class of S contains
an idempotent, if and only if every principal right (left) ideal of S is generated by

an idempotent.

1.3.3. An inverse semigroup is a semigroup such that every element has a

unique inverse.

THEOREM 1.7 (Proposition [1.2.6 in [28]). The following conditions on a semi-

group S are equivalent:

1. S is an inverse semigroup;
2. every R-class of S contains ezactly one idempotent and every L-class of §
contains exactly one idempotent.

3. S is regular and the idempotents of S commute with each other.
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1.4. 0-Minimal Ideals and 0-Simple Semigroups.

1.4.1. A semigroup S is left simple if it does not properly contain any left
ideal. Similarly we can define a right simple semigroup and a simple semigroup S
if it does not properly contain a two-sided ideal.

A two-sided (left, right) ideal M of a semigroup S is called minimal if it does
not properly contain any two-sided (left, right) ideal of S. If A is any other ideal of
S of the same type as M, either M C Aor M N A = . In particular, two distinct
minimal ideals of the same type are disjoint.

Since two two-sided ideals A and B of a semigroup S always contain the set
product AB, it follows that there can be at most one minimal two-sided ideal of S.
If § has a minimal two-sided ideal K, then K is called the kernel of S. Since K is
contained in any two-sided ideal of S, it may be characterized as the intersection
of all the two-sided ideals of S. If the intersection is empty, then S does not have a

kernel. It has been proved by Suschkewsch that any finite semigroup has a kernel.

1.4.2.  According with the theory of minimal ideals in rings, we introduce the
notion of 0-minimality. A two-sided (left, right) ideal M of S with zero 8 is called
0-minimal if M # 0 and 6 is the only two-sided (left, right) ideal of S properly
contained in M.

If M is a O-minimal two-sided ideal (left, right) ideal of a semigroup S with
zero 6, then M? is an ideal of the same type as M contained in M, so we must

have either M? = {0} or M? = M.
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1.4.3. A semigroup S is 0-simple if S* # {6} and {8} is the only proper
two-sided ideal of S. Let S be a semigroup with zero § such that {6} is the only
proper two-sided ideal of S. Then either S is 0-simple or S is the null semigroup
of order 2. Furthermore, S is 0-simple if and only if SaS = S for every element
a#0ofS.

Moreover, Clifford proved the following.

THEOREM 1.8 (Theorem 2.29 in [13]). Let M be a O-minimal ideal of a semi-
group S with zero . Then either M? = 8 or M is a O-simple subsemigroup of

S.

Furthermore, by using Theorem 1.2 and Theorem 1.8, we have the following

Corollary.

COROLLARY 1.9. 1. An ideal J of a semigroup is mazimal (proper) ideal
of S if and only if S/J has no proper non-zero ideal, hence if and only if
S/J is either 0-simple or the null semigroup of order two.

2. If J and J' are tdeals of S with J C J', then J is mazimal in J' if and only
if J'/J is a 0-minimal ideal of S/J. If this is the case, then J'[/J is either

a 0-simple semigroup or a null semigroup.

1.4.4. Let S be a semigroup without zero, and let S° = S U {f}. Then
A — AU {0} is a one-to-one mapping of the set of all two-sided (left, right)

ideals A of S upon the set of all non-zero two-sided (left, right) ideals of S9.
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This mapping preserves inclusion, and, in particular, A is minimal if and only
if AU {0} is 0-minimal. Consequently, any theorem concerning 0-minimal ideals
implies an evident corollary concerning minimal ideals in a semigroup without
zero. Similarly, any theorem concerning 0-simple semigroups implies an evident

corollary concerning simple semigroups. For example, Theorem 1.8 implies that

COROLLARY 1.10. If a semigroup S contains a kernel K, then K is a stmple

subsemigroup of S.

1.4.5. Let s € S. The principal ideal S'sS* of S generated by s is denoted
by Js, while the subset of J, consisting of non-generators of J; (as an ideal of S )
is denoted by I;. Thus I; = 0 if and only if J, is a minimal ideal of S, and if it
is not the case, then I is an ideal of S. Each Rees factor semigroup J,/I;, with
s € S, is called a principal factor of S. Obviously I, is maximal in Js, then we

have

COROLLARY 1.11. Each principal factor of any semigroup S is 0-simple, sim-
ple, or null of order two. Only if S has a kernel is there a simple principal factor,

and in this case the kernel is the only simple principal factor.

1.4.6. A semigroup S is semisimple if every principal factor of the semigroup
is O-simple or simple. This amounts to excluding null factors. Note any regular
semigroup is semisimple since S'azaS' = S'aS! for some z € S implies that

(S'aS')? contains the element aza which is still a generator of S'aS!.
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1.4.7. A principal series of a semigroup S is a chain
S=S]_D~923"‘35m35m+1

of ideals S;( 7 = 1,---,m) of S, beginning with S and ending with S,,,,, which
is the empty set if S does not contain a zero, otherwise, Spmi; = {6}, and there
is no ideal of S strictly between S; and S;y1(¢ = 1,--- ,m). By the factors of the
principal series we mean the Rees factor semigroups S;/S:t1(i = 1,--- ,m). By

Theorem 1.8, S;/S;4, is either O-simple, simple, or null.

THEOREM 1.12 (Proposition I1.4.9 in [28]). Let S be a semigroup admitting a

principal series,
S§5=8285D2-28.D Sny1-

Then the factors of this series are isomorphic in some order to the principal factors

of S. In particular, any two principal series of S have isomorphic factors.

1.5. Completely 0-Simple Semigroups

1.5.1. Let E be the set of idempotents of a semigroup S. Recall that e < f if
and only if e = ef = fe for ¢, f idempotents. An idempotent f is called primitive
if f# 6 and if e < f implies that e = or e = f.

By a completely 0-simple semigroup we mean a O-simple semigroup that has a

primitive idempotent.
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For example, any finite 0-simple semigroup is completely O-simple. It is been
shown by E. H. Moore that some power of every element of a finite semigroup
1s idempotent, hence any finite O-simple semigroup must contain an idempotent,
that is, £ # 0. Furthermore, £ # {8}, since £ = {6} implies that every element
of 5, and hence § itself, is nilpotent, contradicting $? = S. It is then clear that
the finite partially ordered set E \ {#} must contain a minimal element, that is, a

primitive idempotent.

1.5.2. We have the following descriptions of completely 0-simple semigroup

which is due to Clifford.

THEOREM 1.13 (Theorem 2.48 in [13]). Let S be a 0-simple semigroup. Then
S is completely 0-simple if and only if it contains at least one O-minimal left ideal
and at least one 0-minimal right ideal of S. In fact, a completely 0-simple semi-

group is the union of its O-minimal left ( right ) ideals.

1.6. Rees Theorem

The Rees Theorem gives a complete construction of all completely O-simple
semigroups using groups and sets. To show this result we recall the definition of a

Rees matrix semigroup over a group G.

1.6.1. Let G° be a group with zero adjoined, and let /, A be two sets. By a
Rees I x A matriz over G° we mean a [ x A matrix over G® with at most one

nonzero entry. If g € G,2 € I, and A € A, then (g); denotes the Rees matrix over
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G° having g in the ith row and Ath column, its remaining entries being 0. For

any : € [ and A € A, the expression (0);y will mean the [ x A zero matrix, which
simply will be denoted by 4.

Further, let P = (pj;)aea.ier be a generalized A x [ matrix over G°, that is,
every py; lies in G°. We use P to define a binary operation on the set of Rees [ x A
matrices over G° as follows:

AB=AoPoB,
where o means the usual matrix multiplication. If A and B are Rees / x A matrices

over G°, then so is AB. In fact, if A = (a);y and B = (b)j. then we easily find that
(@)ir(8)in = (apa;0)iu (a,6 € Gi4,5 € LA, € A).

The set of all Rees / x A matrices over G° is a semigroup with respect to the above
defined operation. We call it the Rees [ x A matriz semigroup over the group with
zero G° with sandwich matriz P, and denote it by M°(G; I, A; P). The group G is
called the structure group of M°(G; I, A; P) and P is called the sandwich matriz.
In fact, G is a maximal subgroup.

Actually, any nonzero element of M%(G; I, A; P) is uniquely determined by its
nonzero entry, and so it may be denoted by (g,%,m), where ge G, € l,meA.
Therefore, M°(G; I, A; P) may be treated as the set of all triples (g,z,m), g €
G° i€ I,m € A, with the multiplication given by

(g,%,m)(h,7,n) = (9Pmjh,i,n) for g,h € G%,i,5 € [,m,n € A.

All triples (0g,7,m) are identified with the zero element 8 of MO(G; I, A; P).
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1.6.2. The sandwich matrix P is said to be regular in case for each i € [
there exist A € A such that py; # 6, and for each A € A there exists i € [ such
that py; # 6. The importance of Rees matrix semigroups comes from the following

fundamental result which is known as the Rees Theorem.

THEOREM 1.14 (Lemma 3.1 in [13]). Let S be a semigroup. Then S is com-
pletely 0-simple if and only if S is isomorphic to MO(G;1,A; P), a Rees matriz
semigroup for some group G, nonempty sets [ and A, and regular sandwich matriz

P.

1.6.3. For a completely 0-simple semigroup S, Theorem 1.7 tells us that to
be an inverse semigroup, each row and column of the regular sandwich matrix P
does not contain more than one non-zero element. This remark will be used in
Chapter 6. Moreover, we have a nice representation for this type of semigroups.

A Brandt semigroup is a Rees matrix semigroup B(G;I) = M°(G; [,A; P) in
which G is a group, A = [ # 0 and P is the identity matrix (Ppi=1€G,p;=0

if i # §).

COROLLARY 1.15 (Theorem 3.9 in [13]). A completely 0-simple semigroup ts

an inverse semigroup if and only if it is isomorphic to a Brandt semigroup.

1.7. Cancellative semigroups

An element a of a semigroup S is said to be left (right) cancellable if, for any

T,y € S,az =ay ( za =ya ) implies z = y. We say that S is cancellative if every
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element of S is left and right cancellable. A cancellative semigroup S has a group
G of right fractions if and only if S satisfies the right Ore condition, that is, for

every s,t € S,
sSNtS #0.

Then G is unique, up to isomorphism, and may be identified with SS—L. If S also
satisfies the left Ore condition ( defined symmetrically ) then G = SS-! = S-1§
is called the group of fractions of S. We give two natural classes for which a

semigroup has a group of right fractions.

THEOREM 1.16 (Lemma 7.1, Proposition 7.12 in [52]). Let S be a cancella-

tive semigroup such that either of the following conditions hold:

1. § has no non-commutative free subsemigroups.

2. S has the ascending chain condition on right ideals.

Then S has a group of right fractions.

1.8. Nilpotent semigroups

Let z,y be elements of a semigroup S and let wy,w,, -- be elements of the

monoid S!'. Consider the sequence of elements defined inductively as follows:
To=Z, Yo=Y,
and

Tntl = ZaWni1Yn, Yntl = YnWn41Zn, for n > 0.
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We say that the identity X, = Y, is satisfied in S if T, =y, forall z,y € S,
wy, Wy, --- € S'. A semigroup S is called (generalized) nilpotent of class n if S
satisfies the identity X, = Y, and n is the least positive integer with this property.

Obviously every power nilpotent semigroup, that is, a semigroup S with zero
such that §™ = 6§ for some integer m > 1, satisfies the identity X,, = Y,,, and so

it is nilpotent.

1.8.1. Actually for a group G, this definition coincides with the classical

notion of nilpotency.

THEOREM 1.17 (Theorem 7.2 in [52]). Let n > 1. Then the following condi-

tions are equivalent for a group G.

1. G is a nilpotent group of class n in the classical sense.
2. n is the least positive integer for which the identity X, = Y, is satisfied in
G.

Note that a subsemigroup of a nilpotent group is a nilpotent semigroup.

1.8.2. Note that the condition X, = Y, is a bit stronger than the one required
by Malcev, who required elements w; in S only (see [52]). However the definitions
agree on the class of cancellative semigroups. Indeed, to prove the next result one

only needs to use w; € S.
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THEOREM 1.18 (Theorem 7.3 in [52]). Let S be a cancellative Malcev nilpo-
tent semigroup of class n. Then S has a group of fractions that is nilpotent of

class n.

1.8.3. An inverse semigroup S = MO(G; M, M; I) (with [ an M x M identity
matrix) of matrix type over a nilpotent group G, i.e. an inverse completely 0-simple
semigroup, satisfies the identity X,;» = Y;,2, where n is the nilpotency class of

G. Moreover,

PROPOSITION 1.19 (Lemma 2.1 in [31]). Let S be a completely 0-simple semi-
group over a mazimal group G. Then S is nilpotent if and only if G is nilpotent

and S is an inverse semigroup.
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CHAPTER 2
Semigroup Rings

In this chapter, we give some background on semigroup rings.

2.1. Basic definitions

Semigroup rings have been extensively studied. See, for example, Gilmer’s
book [23] for commutative semigroup rings, and Okniriski’s book [52] for the non-

commutative case.

2.1.1. Let R be a ring and S a semigroup. The semigroup ring R[S] is the

ring whose elements are all formal sums

E TsS

SES
with each coefficient r; € R and all but finitely many of the coefficients equal to

zero. Addition is defined component-wise so that
Esesrss + zsesq.ss = EseS(rs + QS)S-
Multiplication is given by the rule

(rss)(Qtt) = (rs(Zt)(St)
23
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which is extended distributively so that

(ESESTSS) (ZSGSQSS) = Z:sES(Zuuzsru(h)3~

This is the natural generalization of group ring. For a = %r,s € R[S], the set
{s € § | r; # 0} is called the support of a and is denoted by supp(a). R =K is

a field, then K[S] is called a semigroup algebra.

2.1.2. Let T be another semigroup and ¢ : S — T is a semigroup homomor-
phism. By ¢ we mean the extension of ¢ to the ring homomorphism of R[S] into
R[T] given by the formula ¢(Za,s) = Sa,d(s).

If S has a zero element 6, we write Ro[S] for the quotient R[S]/RO; Ro[S] is
called a contracted semigroup ring. Thus Ro[S] may be identified with the set of
finite sums Er,s with r, € R, s € S\ {6}, subject to the component-wise addition

and multiplication given by the rule

st ifst#6
st

I

0 ifst=4

defined on the basis S\ {6}. If S has no zero element, then by definition Ro[S] =
R[S]. For any a = Zr,s € R[S], by suppo(a) we mean the set {s € S\{6} | rs #0}.
Thus, suppo(a) = supp(a) \ {#}. The following lemma shows that in the study of

semigroup rings one needs to consider contracted semigroup rings.
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[®)
w

LEMMA 2.1 (Lemma 4.7, Corollary 4.9 in [52]). Let I be an ideal of a semi-
group S. Then Ro[S/I] = R[S|/R[I]. In particular, if S has a zero element g,
then R[S]= R® Ry[S].

2.1.3. Let K be a field and S be a semigroup. This section explores the nice
relationship between the the set of right congruences on S and the set of right
ideals of K[S].

Let p be a right congruence on S, that is, p is an equivalence relation such that,
for any s,¢,z € S, we have (sz,tz) € p whenever (s,t) € p. If @, : S — S/pis the
natural mapping onto the set S/p of p-classes in S, then we denote by I(p) the
right ideal of K'[S] generated by the set {s — ¢t | s,t € S, (s, t) € p}. Since p is a
right congruence on S, then [(p) coincides with the right & -subspace generated by
the set {s —¢|s,t € 5,(s,t) € p}. Moreover, the K-vector space K[S/p] is a right
K[S]-module under the natural action defined by ®o(s) 0ot = ¢,(st) for s5,t € S.

With this notation, we have the following result.

LEMMA 2.2 (Lemma 4.1, [52]). For any right congruence p on S, b, : K[S] —»
K[S/p] is a homomorphism of right K[S]-modules such that
Ker(¢,) = I(p) = Seesws(p)
where ws(p) = {EZ,cu5; € K[S] | m > 1,57 a; = 0,(s,s;) € p foralli =
1,2,---,m}, and K[S/p] = K[S]|/I(p) as right K[S]-modules. Moreover, the cor-
respondence p — I(p) establishes a one-to-one order preserving mapping of the set

of right congruences on S into the set of right ideals of K[S].



26 2. SEMIGROUP RINGS

Combining Lemma 2.2 with its left-right symmetric analog, we derive the fol-

lowing consequence.

COROLLARY 2.3. For any congruence p on S, é, - K[S] — K[S/p] is a ho-
momorphism of algebras such that ker(d,) = [(p) and K[S/p] = K[S]/I(p) as
K-algebras. Consequently, p — I(p) is an order-preserving mapping of the set of

congruences of S into the set of two-sided ideals of K[S].

It is clear that the trivial congruence of S determines the zero ideal of K [S].
The universal congruence S x S leads to the ideal / = {s—t]|steSIK =
{Za,s € K[S] | Za, = 0}. This ideal is usually denoted by w(K[S]) and is
called the augmentation ideal of K[S], where the corresponding homomorphism
K[S] — K is called the augmentation map.

From Lemma 2.2 we know that the right ideal / (p) determines a right con-
gruence p = {(s,t) € S xS | s—t € I(p)}. More general, any right ideal of
K[S] determines a right congruence on S. Let J be a right ideal of KS], define a

relation py on S by py = {(s,t) € Sx S |s—t e J}.

LEMMA 2.4 (Lemma 4.5, [52]). Let J be a right ideal of K[S]. Then,

1. ps is a right congruence on S such that I{ps) C J.
2. There exzist natural right K[S]-module homomorphisms, K[S] = K[S/pj] =

K[S]/J.
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3. If J is a two-sided ideal of K[S], then p; is a congruence on S, the mappings
in (2) are homomorphisms of K-algebras, and the semigroup S/py embeds

into the multiplicative semigroup of the algebra K[S]/J.

2.2. Munn algebras

In this section, we describe an important class of semigroup algebras arising

from completely 0-simple semigroups.

2.2.1. Let K be a field and let R be any algebra over K. Let [ and A be
indexing sets, and P be a A x [ matrix with entries in R. By R = M(R; [,A\; P)
one defines the following associative K-algebra. The elements of R are all [ x A
matrices over R with finitely many non-zero entries. Addition is the usual addition
of matrices, and the scalar multiplication by elements of K is component-wise.
Matrices multiply by insertion of the sandwich matrix P, that is, if A and B are

two elements of R, then the product Ao B in R is defined by
Ao B = APB.

The K-algebra R = M(R; I, A; P) is called the Munn I x A matriz algebra over
R with sandwich matriz P. If | I |= m and | A |= n, then denote this algebra by
R= M(R;m,n; P). The crucial example and motivation comes from the following

observation.
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LEMMA 2.5 (Lemma 5.17, [13]). The contracted algebra Ky[S] of Rees matriz
semigroup S = M®(G; I, A; P) over a field K is isomorphic with the Munn algebra

M(K[G]; I, A; P).

2.2.2. Tt is well known when Munn algebras are semisimple, see for example,

Theorem 5.19 in [13].

THEOREM 2.6. Let K be a field. A Munn algebra R = M(R;m,n; P) over a
finite dimensional K-algebra R is semisimple if and only if

1. R is semisimple,

2. m = n and P is non-singular (that is, P is invertible in the matriz ring
M,.(R)).

If this is the case, then R = M,(R).

Recall that a semisimple algebra contains an identity. The following property
states that condition two in the theorem is equivalent with R having an identity

element.

THEOREM 2.7 (Lemma 5.18 [13]). Let K be a field. The Munn algebra R =
M(R;m,n; P) over a finite dimensional K-algebra R contains an identity if and
only if

1. R contains an identity,

2. the sandwich matriz P is non-singular (in particular m =n).
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If this is the case, then the mapping A — AP is an isomorphism of R onto the full

matriz algebra M,(R).

Maschke’s Theorem describes when the group algebra A [G] of a finite group G
is semisimple Artinian: K[G] is semisimple if and only if the characteristic of X
does not divide the order of G. For the contracted semigroup algebras Ky[S] of a
finite completely 0-simple semigroup S = MO(G;m,n; P), we have the following

corollary.

COROLLARY 2.8. Let S = M°(G;m,n; P) be a finite completely 0-simple semi-
group and K a field, Then K[S] is semisimple if and only if (i) the characteristic
of K does not divide the order of G. (ii) P is non-singular (in particular m=n)

regarded as a matriz over K[G].

Zelmanov showed that K[S] is right Artinian implies that S is a finite semi-
group and the converse holds if S is a monoid (see also Theorem 14.23 in [52]).
More generally, Munn and Poinzovskii obtained independently the following gen-

eralization of Maschke’s Theorem.

THEOREM 2.9 (Theorem 14. 24, [52]). Let S be a semigroup and K a field.
The semigroup algebra K[S] is semisimple Artinian if and only if S has a chain of
tdeals S=S5,285,_;, D --- D8, such that every S;/S;_, and S| is a completely 0-

sitmple semigroup with a Rees representation of the type M°(G;m,m; P) for some
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m 2 1, and an invertible matriz P in Mn(K[G]), where G is a finite group of

order not divisible by the characteristic of K.

2.3. Semigroup Algebras and Group Algebras

In this section, S will be a cancellative semigroup and K a field. If S has a
group of (right) fractions G = SS~! then the group algebra K [G] is a localization
of the semigroup algebra K[S]. Since group algebras have been well studied, this
fact can be exploited in the study of semigroup algebras. Therefore we recall some

properties of localization and group algebras.

2.3.1. We start with the following basic result (see [54], Lemma 10.2.13 or

Lemma 7.13 in [52]).

LEMMA 2.10. Let T be a right Ore subset of a ring R. Then,

1. for every ay,--- ,a, € RT™!, there exists t € T such that a;t € R, for all
1=1,---,n.
2. for every right ideal I of RT™", we have (I N R)RT! = I.
Moreover, if Z is a right Ore subset of cancellative semigroup S, then Z is a right

Ore subset of K[S] and K[S|Z~' = K[SZ™1].

Hence one has the following observation on the behavior of primeness and

semiprimeness under localizations.



2.3. SEMIGROUP ALGEBRAS AND GROUP ALGEBRAS 31

LEMMA 2.11. Let B be a ring that is the localization of its subring A with
respect to a right Ore subset Z. Then,

1. B is prime (semiprime) whenever A is prime (semiprime, respectively).

2. If Z is contained in the centre Z(B) of B or B is right Noetherian, then the

converse holds.

2.3.2. We now state a result that will be crucial for studying the relationship

between the properties of K[S] and K[SS~!] (see [52] Lemma 7.15).

LEMMA 2.12. Let G be a group of right fractions of its subsemigroup S. Then,

1. For any right ideals Ry C R, of K[G], we have R; N K[S] C R, N K|[S].

2. If P is a prime ideal of K[G] and K[G]/P is a Goldie ring (or K[G] is a
right Noetherian ring), then P N K[S] is a prime ideal of K[S].

Let 5 be a semigroup with a group G of right fraction. We now solve when K[S]
is prime or semiprime. That these conditions are equivalent with K[G] being prime
or semiprime was shown by Okniniski (Theorem 7.19 in [52]). The equivalence of

the other conditions is well known (see for example [54], Section II.2).

THEOREM 2.13. Assume S has a group G of right fractions. Then the follow-
ing conditions are equivalent.
1. K[S] is prime (semiprime).

2. K[G] is prime ( semiprime).



32

2. SEMIGROUP RINGS

3. G has no non-trivial finite normal subgroups (ch(K) =0, orch(K)=p >0
and G has no finite normal subgroups of order divisible by p)-

4. The FC-center A(G) (defined in Chapter 5) is torsion-free abelian (ch(K) =
0, or ch(K) = p > 0 and A(G) has no p-torsion).

5. Z(K[G]) is prime (semiprime).



CHAPTER 3

Global Dimensions of Semigroup Rings

In [50] and [51], Nico discussed the upper bound for homological dimensions of
semigroup rings R[S] of a finite regular semigroup S over a commutative ring
R. Recently, in [45], Kuzmanovich and Teply discovered bounds for homological
dimensions of semigroup rings R[S] of semigroups S which are monoids with a
chain of ideals such that each factor semigroup is a finite non-null Rees matrix
semigroup: the bounds are in terms of the dimension of the coefficient ring K and
the structure of the semigroup S. In this Chapter we continue these investigations.
Amongst other results we show that the upper bound obtained by Kuzmanovich
and Teply can be sharpened. The results proved in this chapter will appear in
[37].

We now outline the contents of this chapter. We will discuss the global dimen-
sion of semigroup rings R[S] where R is a ring and S is a monoid with a sequence
ofideals S=1,D>0LD>---DI[, D [y such that [;/I;, is a non-null Rees matrix
semigroup M°(G;;m;,ni; P:) (forall 1 <4 < n) and Iny = {6} or 0.

In Section 3.1 we recall the definition of global dimension of a ring. In Section
3.2 we recall some results on the global dimension of group algebras. In Section 3.3,

we show that the global dimension of R[S] is bounded by the global dimension of

33
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R[G;] and a parameter ;(.S) which somehow depends on the sandwich matrices P;
of the Munn algebras M(R[G;];m;,n;; P;). In Section 3.4, we apply these results
to finite semigroups. We obtain the exact global dimension of K [S] where K is a
field and S is a monoid extension of a finite non-null Rees matrix semigroup (the
latter is not necessary a completely O-simple semigroup). Specific examples are
given in Section 3.5.

The above mentioned results are a step toward handling the global dimension
of a semigroup algebra K[S]| of an arbitrary finite semigroup S. The remaining
step is to deal with semigroups which have a principal factor that is a null semi-
group. The examples given in Section 3.6 indicate that the solution here is rather
unclear. Indeed we give two examples (with a null factor), but one has finite global

dimension and the other does not.

3.1. Global Dimensions

3.1.1.  Projective dimension of a right module Mg, written pd Mg, is the

shortest length n of a projective resolution
0—2FP—--->FP—->M=0
or oo if no finite length projective resolution exists.
In fact, the following numbers are all equal:
1. sup{pd M | M any right R-module};

2. sup{pd M | M any cyclic right R-module};

The common number is called the right global dimension of R, written rgld R.
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3.1.2. rgld R = 0 means precisely that R is a semisimple Artinian ring.
rgld R <1 means that R is a right hereditary ring. Note a right hereditary ring
means every right ideal is projective or equivalently every submodule of projective
module Rg is projective. (For a right hereditary ring, every submodule of a free

module is isomorphic to a direct sum of right ideals).

3.1.3. Similarly one can define left global dimension [gld R. In general
lgld R # rgld R. However, if R is left and right Noetherian, then lgld R=rgld R

(see [48] 7.1.11).

3.1.4. We list several properties on the global dimension. For more details,

we refer the reader to [48] and [54].
1. Consider a short exact sequence of right R-modules
0=-A—-B->C—0

If two of the modules A, B, C have finite projective dimension then so does
the third. Moreover, we have the following three possibilities:
(a) if pd B < pd A, then pd C = pd A + 1.
(b) if pd B = pd A, then pd C < pd B + 1.
(c) if pd B > pd A, then pd C = pd B.
2. rgld R = sup{pd [ | I 9, R} + 1 unless R is semisimple.
3. If ¢ is a right denominator set in a ring R then rgld R¢~! < rgld R where
R¢™! is a localization ring of R.

4. If o is an automorphism of R, then rgld R[z,o] = rgld R + 1.
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3.2. Global dimensions of group rings
Most of the following results come from [48] and [54].

3.2.1. In this subsection, we consider the global dimension of a group ring

R[G].

LEMMA 3.1 (Theorem 7.5.6 in [48]). Let R be a ring, G be finite group with

| G | a unit in R, and then rgld R[G] = rgld R.

We say that G is a polycyclic-by-finite group if G has a finite subnormal series
(1) =Go<G1<---<1Gr =G

with each quotient Gi;,/G; infinite cyclic or finite. Particularly, if each quotient is
infinite cyclic, then we call G a poly-infinite cyclic group. The Hirsch number of a
polycyclic-by-finite group G, written A(G), is defined to be the number of infinite
cyclic quotients which occur in the above series. It is well known that R[G] is right
Noetherian if R is right Noetherian and G is a polycyclic-by-finite group. But the

converse is still an open question.

LeMMA 3.2 (Corollary 7.5.6, [48]). Let R be a ring and G be a group. Then
1. rgld R < rgld R[G);

2. If G is poly-infinite cyclic with Hirsch number h then rgld R[G] < rgld R+h;
3. If R is a Q-algebra and G is polycyclic-by-finite with Hirsch number h then

rgld R[G] < rgld R+ h.
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3.2.2. Itis well known when a group algebra K[G] has zero global dimension,

that is, when it is semisimple Artinian. This is known by Maschke’s Theorem.

THEOREM 3.3. Let G be a finite group. Then K|[G] is semisimple if and only

if charK =0 or charK = p and G is a p'-group.

In the next chapter we will investigate the description of when rgld K [G] =1.

But now we list some properties on when the global dimension is finite (see Chapter

10 in [54]).

THEOREM 3.4. Let K[G] be a group algebra. The following properties hold.

1. IfV is the principal right K[G] module, then rgld K[G] = pd V.

2. If H s a subgroup of G, then rgld K[H| < rgld K[G].

3. Let H be a normal subgroup of G. If K[H| and K[G/H] have finite global
dimensions, then so does K[G], and we have rgld K[G] < rgld K[H] +
rgld K[G/H].

4. Ifrgld K[G] < co and if charK = p, then G is a p'-group. In particular, if
G is finite group, rgld K[G] < oo implies that K[G] is semisimple.

5. If G = (z; | i € I) is a nontrivial free group, then the augmentation ideal
w(K[G]) is a free right K[G]|-module with free generators {z; — 1 |7 € I}.
Furthermore, rgld K[G] = 1.

6. Let H be a subgroup of G of finite indez. If rqld K[H] < 0o and if G has

no element of order p in case charK = p, then rgld K|[G] < oo.



38 3. GLOBAL DIMENSIONS OF SEMIGROUP RINGS

7. Let G be a polycyclic-by-finite group. Then rgld K[G] < oo if and only if
G has no elements of order p in case K has characteristic p. Furthermore,

rgld K[G]| = h(G), the Hirsch number of G.

3.3. Monoid extensions of Rees matrix semigroups

In this section, we will investigate the global dimension of semigroup rings
R[S], where R is a ring with an identity and S is a monoid with a chain of ideals
S =828, D---2> 8 such that each factor semigroup S;/S;iy; is a non-null
Rees matrix semigroup M°(Gi;m;,n;; P;). In particular, any finite semisimple
semigroup S satisfies the above assumption. In [45], Kuzmanovich and Teply

showed

THEOREM 3.5 (Theorem 3.7 in [45]). Let R be a ring with identity and S be a
monoid with a chain of ideals S=85,>5,>---28, > S.+1 such that each factor
semigroup S;/S:+1 is a finite, non-null Rees matriz semigroup MO°(Gi;m;, n;; P)
and 5.4y = 0 or {0}. Then the global dimension of R[S] is finite if and only if
each R[G;] has finite global dimension. In this case, rgldR[G;] = rgldR and then

rgldR < rgldR[S]) < rgldR + 2. — 2.

3.3.1. We will sharpen the above upper bound. First we note that for a
Rees matrix semigroup M%(G;m,n; P) with non-null multiplication, there is no
loss of generality in assuming that P;; = 1 (Remark 3.5 in [45]). To see this,

suppose that P;; = g for an element ¢ € G. Let Q be the m x m permutation
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matrix corresponding to the transposition (1,7). Let Q; be the n x n permutation
matrix corresponding to the transposition (1, ). By definition, Q 0 Q = I,, and
@10 Q1 = I,. Define ¢ : M°(G;m,n; P) - M°(G;m,n;Q,0Po Q@) by ¢(A) =
@ o Ao Q;. Note that ¢(A)d(B) = (Qo Ao Q;) o (Q, oPoQ)o(QoBo@,) =
QoAoPoBoQ; = ¢(AB). It follows that ¢ is an isomorphism. Clearly the (1,1)-
entry of the sandwich matrix @, 0 P o Q is g. Hence we may assume that P;; = g-
Now let W be the n x n diagonal matrix given by W = diag(g~t,1,---,1), and
define ¢ : M°(G;m,n; P) - M°(G;m,n; W o P) by ¥(A) = Ao W-L. It follows
that ¢ is an isomorphism and the sandwich matrix Wo P has 1 on its (1,1)-entry.

So indeed we may assume that P;; = 1.

THEOREM 3.6 (Lemma 3.6 in [45]). Let S be a monoid with an ideal U which
is isomorphic to a non-zero Rees matriz semigroup M%(G;m, n; P). Then the ideal

I = Ro[U] of A = Ry[S] satisfies the following properties:

1. There exist subsets A,B of U and an idempotent e € U such that [ =
Docaal = By Ib. Moreover, I = [el = AeA, eA = el and Ae = Ie.

2. For anya € A and b € B, ae = a, eb = b and thus ba = ebae € G U{6},
where § denotes the zero element.

3. As a right A-module, [ = @, al is projective. Similarly, [ = Drep [b is
a left projective A-module.

4. Ie is a left projective A-module. Considered as a right R[G]-module, [e =

Daca aR[G] is free.
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5. Any nonzero element of I can be ezpressed as a sum of ach where a € A,b e

B, and o € R[G].

Proof. Without loss of generality, we can assume P,; = 1. Abusing notation, we

identify G'(J{6} with {(g,1,1) | g € GJ{6}}.

1. Let e = (1,1,1), that is, e has a 1 in (1,1) entry and zero elsewhere. Then
e’ =eoPoe=eis an idempotent and thus eA = e and Ae = Je (again
o means the ordinary product of matrices). Clearly, Iel C I. Now we need
to show that I C [el. It is sufficient to show that, for an arbitrary element
a € R[G], Iel contains a matrix that has a as its (7,7) entry and zero in
its other entries. Indeed, let A; be the matrix with 1 in the (i,1) entry and
all other entries 0, and let C; be the matrix with @ in the (1, ) entry and
all other entries 0. Then A;eC; has a as its (4, 7) entry and zero for all its
other entries. Hence lel = I. Let A = {(1,4,1)|1 < i < n}. Choose A;
as before, clearly A;l is the i-th row of I, so [ = @A;GA A;l. Similarly,
I =@pg cpB; where B = {(1,1,5)|1 < j < m} and B, is the matrix with
L in (1,7) entry and all other entries 0.

2. This follows from the proof of 1. For example, A;e = A;0 Poe = A;.

3. Since A;e = A;, a direct computation shows that left multiplication by A;
yields a (right) A-isomorphism from el to A;/. So [ = Ca.ealil = By.enel

is projective as a right A-module.
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4. As [e = Ae, it is clear that Ie is a left projective A-module. Hence, from

the above,

le =@, .c44ile
= @A;EA A{G[&
= Daiea ARG

Since A;R[G] = R[G] as R[G] modules, we obtain that e is a free right
R[G]-module.
5. Similar as in the proof of the first part (replace e by ea € R[G] and C; by

BJ’). a

3.3.2. With notations as in 3.3.1, for any left A-module M, we define two

modules M~ and M~ via the natural exact sequences as in [50]:

0 — AeM — M — M~ — 0,

0 — M™ — Ae®pg) eM >+ AeM — 0.
Here [eM = AeM is a submodule of M, eM is also a left R[G]-module; the map

¢ in the second sequence is given by 8 ® m — Bm.

Then we have the following lemma generalizing that in the completely-0-simple

case discussed by Nico in [50].
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LEMMA 3.7. With M~ and M~ defined as above, zM* = z M~ = 0 for all
T € [. Moreover, if the subalgebra I has a left identity, then M= = 0 for every

left Ro[S]-module M.

Proof. Because of Lemma 3.6, AeM = AeAM = IM and thus M~ = M/IM.
Hence zM™ = 0 is obvious. By Lemma 3.6.(4), any element @ € M™= can be written
asa =), .,a®m,, where m, € eM and Y eca @M, =0in AeM. Now, let z € I.
By Lemma 3.6.(5), write z = }_ a’a’b’ with o’ € 4,8’ € B, and o € R[G]. For
each term a ® m, of o, if b'a € R[G], then d'a’'ba @ m, = o' ® o'b’am,, and if
b'a = 0, then a’a’t'a @ m, = 0. Hence, always, a'a/b'a = ZaeA a ® o'blam, =
a' ® o&'b'(3,caama) = 0. Therefore za = 0, as desired. The last part of the

statement of the lemma is obvious by using = equal the left identity of /. O

It follows from the Lemma 3.7 that for any left Ro[S]-module M both modules
M~ and M~ are left Ro[S/[]-modules. We also mention the following well known

lemma on change of rings (see Proposition 7.2.2 in [48]).

LEMMA 3.8. Let R, S be rings with identity. If R — S is a ring homomor-

phism, then for any left S-module M,

pdr(M) < pds(M) + pdr(S).

3.3.3. In order to show the main theorem of this section, we also need the

following lemma.
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LEMMA 3.9. Assume S is a monoid with an ideal U that is tsomorphic to
a non-null Rees matriz semigroup M°(G;m,n;P) and S # U. Let T = S/U.
Consider Ro[T] as a left Ro[S]-module, then pdpros)(Ro[T]) < 1. Furthermore,

Ro[T] is projective if and only if Ro[U] has a right identity.

Proof. Obviously, we have a short exact sequence
0 — Ro[U] — Ry[S] — Ro[T] — O.

By Lemma 3.6, Ro[U] is a projective Ro[S]-module and thus pdRry(s1(Fo[T]) < 1.
Furthermore, Ro[T7] is projective if and only if the sequence splits, or equivalently

if Ro[U] has a right identity. O

THEOREM 3.10. Let S be a monoid, U an ideal which is tsomorphic to a non-
null Rees matriz semigroup M°(G;m,n; P) and let T = S/U. Then, for any ring
R with identity,

lgld (RolS]) < maz{lgld (R[G]),lgld (Ro[T]) + o (U)},
where
0, ¢f Ro[U] has an identity.
oU)=4q 1, if Ro[U] has a left or right identity, but not an identity.

2, if Ro[U] has neither a left nor a right identity.

Proof. As before, put A = Ry[S]. Consider the following exact sequences:

0 — AeM — M — M~ — 0,
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0 — M™ — Ae @pe eM -5 AeM — 0.
for any left A-module M. By 3.1.4,
pda(M) < max{pds(AeM), pdp(M™)},
and
pda(AeM) < max{pds(Ae @pig) eM), pdp (M=) + 1}.

By Lemma 3.6, Ae = le is a free right R[G]-module, hence pd,(Ae Qg1 eM) <

pdric)(eM). Thus the second inequality becomes
pda(AeM) < max{pdgic)(eM), pda(M™™) + 1}.

And by Lemma 3.8 and Lemma 3.9, we have,

Pda(M~) < pdryri(M~) + pda(Ro[T1)
lgld(Ro[TY]), if Ro[U] has a right identity.
lgld(Ro[T]) + 1, otherwise.

If Ro[U] does not have a left identity, then again by Lemma 3.8 and Lemma 3.9,

PAA(M™) < pdpyz)(M™) + pda(Ro[T))
lgld(Ro[T)), if Ro[U] has a right identity.
lgld(Ro[T]) + 1, otherwise.
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Hence

pda(M) < max{pds(AeM), pda(M™)}
< max{pdrig|(eM), pda(M==) + 1, pdp (M~)}
< maz{lgld(R[G]), lgld(Ro[T]) + o(U)}.

So the result follows in this case. On the other hand, if Ry[U] has a left identity,
then, by Lemma 3.7, M*= = 0 for any left A-module M. From the second exact

sequence, we then get,

pdA(AeM) = pdA(Ae ®R[G] elW)
< pdgic)(eM)
< lgld(RIG))

Hence

pdy(M) < maz{pdr(AeM),pdy(M™)}
< maz{lgld(R[G]), lgld(Ro[T]) + o(U)}.

So the result follows. O

COROLLARY 3.11. Let S = M°(G;m,n; P) with nonzero sandwich matriz P.
Then S* is a monoid with an ideal S which is isomorphic to a non-null Rees matriz

semigroup. Thus

lgld Ro[S'] < maz{lgld (R[G]),lgld (R) +0(S)}.
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where
0, if Ro[S] has an identity.
o(S)=19 1, if Ro[U] has a left or right identity, but not an identity.

2, if Ro[S] has neither a left nor a right identity.

3.3-4. Theorem 3.10 also allows us to find the following upper bound for
the left global dimension of contracted semigroup algebras Ry[S] of more general

semigroups S.

THEOREM 3.12. Let S be a monoid with a sequence of ideals S = IL DL D>

- D dn D Iy, where Iy, = {6} or 0. Let R be a ring with an iden-
tity. Assume that, for all 1 < i < n, [;/I;11 is a non-null Rees matriz semi-
group M®(G;;mi,n;; P;). Let o be defined as in Theorem 3.10 and let ki(S) =

o(Li/ L) + -+ 0(LnfIny1), for 1 <j <n. Let tnt1(S) =0. Then

lgld Ro[S] < maz{lgld(R[G;]) + pj+1(S) : j = 1,--- ,n}.

Proof. Ifn = 1, that S being a monoid implies m; = n, = 1. Hence Ro[S] = R[G],
a group ring. In this situation the assertion is obvious. We now prove the result by
induction on n. For n > 2 consider the factor semigroup S/I.. By Theorem 3.10,
we have

lgld Ro[S] < maz{lgld (R[G.]),lgld (Ro[S/L,]) + o(l.)}-
By the induction hypothesis,

lgld Ro[S/1,] < maz{lgld (R[G;]) + pjz1(S/I) :5=1,--- ,n— 1}.
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As pin1(S/ 1) = o(Ljg1/Liv2) + - - - + 0(Ia=1/ I.), we therefore get

lgld Ro[S] < maz{lgld (R[G.]),lgld (R[G;]) + 1i+1(S/ L)+
o(ln):5=1,--- ,n—1}

< max{lgld (R[GJD +/‘.7'+1(S) y=1---, TI.}

Obviously Theorem 3.12 is applicable to finite regular semigroups. This case

was also investigated by Nico in [50], [51].

3.4. Applications

3.4.1. First recall the following result on m x n matrix A over a division ring

D (Corollary 11.2.3 in [14]).

LEMMA 3.13. For a m x n matriz A over a division ring D the following
conditions are equivalent:

1. A is left regular, that is, XA = 0 implies X = 0.

2. A has a right inverse, that is, AB = [ for some n x m matriz B.
Moreover, when (1) and (2) hold, then m < n, with equality if and only if (1) and

(2) are equivalent to their left-right analogue.

3.4.2. As an application of Theorem 3.10, we obtain the exact value of the

global dimension of K,[S'] for non-null Rees matrix semigroups S and K a field.
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THEOREM 3.14. Let S be a non-null Rees matriz semigroup MOG;n,m; P)
with G a finite group. If K is a field of characteristic not dividing the order of G,

then lgld (Ko[S"]) = o(S) = Igld (K[SY]).

Proof. The assumption implies that Igld(K[G]) = 0. From Theorem 3.10, we
have Igld(Ko[S']) < 1 provided that (S) < 1. It is obvious that [gld(K,[S!]) = 0
if and only if p;(S') = o(S) = 0. Hence the theorem holds for o(S) < 1.

Next assume 0(S) = 2. We may assume (gld(K,[S']) > 1. Hence by 3.1.4,
lgld(Ko[S']) = 1 + sup{pda,ps1y(I) : [ C Ko[S'] is a left ideal}

So to prove the theorem, it is sufficient to find a left ideal of projective dimension 1.
Since K'[G] is semisimple, say K[G] = My, (D) D --- P My, (D,) for some division
rings D;, we can decompose Ko[S] naturally as the sum of M (M, (D;); n;, m:; P;)
for 1 <7 < r. Here P = PL@---@P P- and entries of P; belong to My, (D;)
for all 1 < ¢ < r. Since Ky[S] does not have a left identity, there exists ¢,
such that M(My, (Dig); nig,mig; Pry) = M(Dyy; kignig, kigmiy; P;,) does not have
a left identity. Here P, denotes the k;m; x kiyni, matrix obtained from P;
by erasing the matrix brackets of all the entries. Hence P, does not have a
left inverse. From Lemma 3.13, we have ann,(M(My, (Dg,); niy, mig; Py)) # 0
and thus ann,.(Ko[S]) # 0. (By ann.( ) we denote the right annihilator.) Let
0 # & € ann,(Ko[S]) and let I = Ko[S']d. Clearly Ko[S!]6 = K as left Ko[S']
modules. By Lemma 3.9 and the fact that K;,[S] does not have a right identity,

Pdr,(s1](K) = 1. The result follows. That lgld Ky[S'] = lgld K[S'] is obvious. O
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3.5. Examples

The following examples show that in Theorem 3.14 all possible values for the
global dimension can be reached. It follows that in Theorem 3.10 the upper bound

obtained can not be sharpened.

EXAMPLE 3.15. Let G = {1} be the trivial group and let S = M%(G;2,2; P)

11
with P = - Thus, for any field K, by Theorem 2.9, Ko[S'] is semisimple
01

and then rgld Ko[S'] = 0.

EXAMPLE 3.16. Let G be the trivial group and let S = M%(G;1,2; P) with

1
P = - So § is a completely 0-simple semigroup. Let K be a field. Because

1
of Theorem 2.7, K,[S] does not have an identity element. However, any nonzero

element of S is a left identity of KoS]. Hence, from Theorem 3.14, rgld Ko[S'] =

1.

EXAMPLE 3.17. Let G be the trivial group and let S = MO(G;1,2; P) with

P = - S0 S is not completely 0-simple semigroup, as P is not a regular
1

matriz. Let K be a field. Again Ko[S] does not have an identity element, but it

has (1,1,2) as a left identity. So, again by Theorem 3.14, rgld Ko[S'] = 1.
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EXAMPLE 3.18 (Example 4.1 [45]). Let G = {1} be the trivial group and let

1 1

S = M%G;2,2; P) with P = - Let K be a field. Again by Theorem 2.7,
1 1

Ko[S] does not have an identity and it is easily verified that it neither contains a

left nor a right identity. So, again by Theorem 3.14, rgld Ko[SY] = 2.

3.6. Null factors

If S contains A null factor, then it is still unknown when K [S] has finite global
dimension or not. We give two examples, one of finite global dimension (given by

Kuzmanovich and Teply, Example 4.1 in [45]) and one of infinite global dimension.

3.6.1. By a graph, say ', we understand a system consisting of a nonempty
set, V(I'), whose elements are called vertices of [, and a set E (['), whose elements
are called edges of ', and an incidence map (3,t) : E(I') — V(T) x V(T). For any
edge e of T, i(e), t(e) are called initial and termsinal vertices of e, respectively. By
a path B in ' we mean a sequence of edges ay, -+ ,am,, written 8 = a; -- -,
with o(aiy1) = t(e;) for 1 <7 < m — 1. Define o(8) = o(a;) and t(8) = t(anm).
Let B be the set of all paths in ['; we regard each vertex as a path of length 0
with £(v;) = o(v;) = v;, so V(T') € B. Then the path algebra KT of [ over the
field K is the K-vector space with basis the set B, and multiplication defined via
B-y=p0vift(B)=o(y)and B-v =10 otherwise, for 3,7 € B (note v;a; = a; and

a;viy1 = a;). A familiar example is that of the path algebra KT where [’ is the
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directed graph v; =% v, =23 ... 2224 o, The algebra KT is isomorphic with the
ring T,,(K) of upper triangular n x n matrices over a field K. (see 3.6 in [18])

If K is an algebraically closed field then any finite dimensional K-algebra A
is isomorphic with a quotient KT/{p) of a path algebra AT, where (p) is the
two-sided ideal of KT generated by a set p in L.

Again take " as v; =4 v, =25 --- 223 4 and p = {paths of length 2} =
{aiai11}, then KT/(p) = T.(K)/(rad T.(K))?, a ring known to have global di-
mension n — 1 (see [19]). In fact A = KT/(p) is a semigroup algebra. To see
this, let T' be the set of all paths in ' with a special element 6 (zero) adjoined.
Then T becomes a semigroup where the product of paths « and £ is defined to the
conjunction of & and f (as before). Let U be all the paths with length greater than
and equal to 2 and 8, then U is an ideal of 7. Let S be the Rees factor semigroup
T/U. Obviously, A = K[S].

For the semigroup S = {0, v,,--- ,v,,a;,---, @n—1}, by induction, we can con-
struct the ideal chain as follows:

n n—1 n—1
S=JSuiS2(JSvS2JSv:iS2 -+ D SvaeiS 2 SaniS.
=1

=1 =2

Denote the above chain by

§28 2---28,,
where S, = Sa,_;S and S; = ;-:-1 Sv;jS for all 1 < ¢ < n — 1. Note that
Svp_1S = {Vn_1,8n-2,8,_1,0} and Sa,_,;S = {6,a,-1}. Obviously, Si/Siy1 =
{vi,aiy,0} = MO(1;2,1; P) with P = (1,1,1) for2 < i< mn. And S, is a null
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semigroup. Note also S/S = {v,,0}, and 5,/S; = {v1,8} are trivial groups with
zero adjoined.
This example shows that the global dimension of Ky[S] is finite and S has a

principal ideal chain with a null factor semigroup.

3.6.2. The following example based on the above shows that there exists a
semigroup S with a null factor semigroup but the global dimension of the con-
tracted semigroup algebra K,[S] is infinite.

Let I be a directed graph as follows:

with the relations p = {a1az, - ,@n_2an_1, an_;b, b%’}. Then A = KT/(p) has
infinite global dimension (see Example 1.1 and 1.2 in [25]). We can also think
of A as a semigroup algebra. If § = {6,v1,--- ,vn,aq,--- +@n_1,b}, then we have
principal ideal chain as follows:

S = O Su:S 2 OSU,-S 22 50,15 SvaS 2 50,5 D SIS

=1 =2

Denote the above chain by
Sle 2"'2511 25n+1~

where S,41 = SbS = {b,0} and S; = |J}_; Sv;S for all 1 < i < n. Note also that

=i

Si/Siz1 = {vi,aio1} = MO(1;2,1; P) with P = (1,1,1) for 2 < ¢ < n are non-null
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semigroups. Obviously S.4; is a null semigroup. And §;/S; = {v1,80} is a trivial

group with zero adjoined.
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CHAPTER 4

Hereditary Group Rings and Semigroup Rings

In this chapter we investigate when a semigroup algebra has right global dimension
at most 1, that is, when is it right hereditary. Hence we consider a question posed
by Okninski in [52]: characterize hereditary semigroup algebras. Recall that if a
ring is left and right Noetherian, then the left and right global dimension are equal.
It follows that such a ring is left hereditary if and only if it is right hereditary. Such
rings we simply call hereditary rings.

Hereditary and semihereditary rings have been the subject of considerable
study. Many interesting examples of these Tings arise as group rings or semigroup
rings. Dicks has characterized the hereditary group rings [17], earlier, Goursaud
and Valette classified hereditary group rings of nilpotent groups [26]. Cheng and
Wong [16] characterized the hereditary monoid rings that are also domains.

In Section 1 we recall the characterizations of group algebras that are right
hereditary. As said above, for semigroup algebras a solution is known only in case
K[S] is a domain. In Section 2, as an application of the results in Chapter 3, we
describe when K,[S!] is hereditary for a finite non-null Rees Matrix semigroup S.
Under the extra assumption that A[S] is Noetherian we are able in Section 6 to

solve the problem in case S is a cancellative monoid. In section 5 we are able to

(4]
%]
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describe, for arbitrary nilpotent semigroups S (thus not necessarily cancellative),
when a semigroup algebra is hereditary Noetherian prime.

Recall that a Noetherian commutative domain is hereditary if and only if it
is a Dedekind domain, in particular it is completely integrally closed, that is, a
maximal order. Also in the non commutative setting there is a close relationship
with maximal order. For example a hereditary Noetherian prime ring which is P.I.
is equivalent to a Dedekind prime ring. Hence, in some sense, it is not surprising
that our answer in Section 5 relates our description to a special class of maximal
orders, in particular to principal ideal rings. We therefore recall some background
on maximal orders in Section 3 and in Section 4 we recall some results on group and
semigroup rings that are principal ideal rings. The results proved in this chapter

will appear in [37].
4.1. Hereditary Group Rings

4.1.1. In the case where G is a nilpotent group, Goursaud and Valette [26]

(see for example in [52]) showed the following result.

LEMMA 4.1. Let G be a nilpotent group. Then K[G] is right hereditary if and
only if either of the following holds:
1. G is finite-by-(infinite cyclic), and the order of the torsion subgroup of G is
tnvertible in K.
2. G is locally finite and countable, and the order of every element of G is

invertible in K.
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4.1.2. A very deep result on right hereditary group rings for any group G
was described by Dicks. To state this result, we need some preparation. Let us
fix a connected graph X. We may view X as a small category with object set
0b(X) = E(X)U V(X) and non-identity morphism i, : e — i(e),te : e — t(e)
for e € E(X). A functor G : X — Groups, into the category of groups, is called
a connected graph of groups. For vertices v of X, the G(v) will be called vertez
groups of G, and for edges e of X, the G(e) will be called the edge groups of G. The
image of z € G(e) under homomorphism G(i.) : G(e) — G(i(e)) will be denoted
by z'¢, and a similar notation is used for te- Let T be a spanning tree for X,
that is, a subgraph with the same vertex set and with a minimal edge set so that
the subgraph is still connected. The fundamental group of G with respect to T is

defined as the group m(G,T") universal with respect to the following properties:

L. for each vertex v of X, there is a group homomorphism G(v) — =(G, T).
2. for each edge e of X, there is an element g(e) of 7(G, T) such that q(e)"tzieq(e) =

z' for all z € G(e), and if e is an edge of T, then q(e) = 1.

J. P. Serre showed that the isomorphism class of 7(G, T) is independent of choice
of T'. For this reason one usually speaks of the fundamental group of G, without
reference to a spanning tree. For more details, proofs, and applications, the reader

is referred to [17].

LEMMA 4.2 (Dicks, Theorem 1 in [17] or Theorem 17.4 in [52]). Let G be a group.

Then K[G] is right hereditary if and only if
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*) G is the fundamental group of a connected graph of finite groups with in-
vertible orders in K.
Moreover, if G is finitely generated, then the above is equivalent to any of the

following conditions:

1. G has a free subgroup of finite indez, and the orders of finite subgroups of G
are tnvertible in K.
2. G is the fundamental group of a finite connected graph of finite groups of

orders itnvertible in K.

4.1.3. It is well known when a fundamental group G of a connected graph
of finite groups has no free subgroup of rank 2. By G, * G, we denote the free

product of the groups G; and G. The cyclic group of order two is denoted by C,.

LEMMA 4.3 (Dicks, Theorem 2, [17]). A fundamental group G of a connected
graph of finite groups has no free subgroup of rank 2 if and only if either of the
following holds:

1. G is countable locally finite.
2. G is finite-by-(infinite cyclic).
3. G is finite-by-(Ca x Cs).

The infinite dihedral group D, is the group with presentation {s,t | £* =

1,tst™! = s7'}. It is well known that C, * C, = D..
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4.1.4. Monoid algebras that are hereditary domains are characterized in the

following result.

LEMMA 4.4 (Chen and Wong, [16]). The following conditions are equivalent
for a monoid S.

1. K[S] is a hereditary domain.

2. K[S] is hereditary, and S is torsion free and weakly cancellative.

3. S is a free product of a free group and a free monoid.

4. K[S] is a free ideal ring (fir).

Here, torsion free means that, for any a € S, we have ¢ = 1 whenever a™ = 1
for some n > 1, and weakly cancellative means that either of the equalities ab =
a,ba = a implies that 6 = 1 and that aub = ab for some u € U(S) implies that

u=1.
4.2. Finite Non-null Rees Matrix Semigroups

Let S be a non-null Rees matrix semigroup MO(G;n, m; P) with G a finite
group. In Chapter 3, we showed that if A is a field of characteristic not dividing the

order of G, then [gld(K,[S]) = 0(S). We now describe when Ko[S'] is hereditary.

THEOREM 4.5. Let S be a non-null Rees matriz semigroup MO%(G;n,m; P)
with G a finite group. Let K be a field. Then the following are equivalent:
1. Ko[S'] is hereditary.

2. K[G] is semisimple and Ky[S] has a left or right identity,
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3. K[G] is semisimple and there ezists a € Kqy[S] that is not a right or not a
left divisor of zero in Ky[S).
4. K[G] is semisimple and ann.(Ko[S]) = 0 or anni(Ko[S]) = 0.

Proof. First we show that (1) implies (2). Since K[S!] is hereditary, K[G] =
eKo[S']e is also hereditary by Proposition 7.8.9 in [48]. Since G is finite, Theo-
rem 3.4 implies that K[G] is semisimple. So (2) follows and that (2) implies (1)
follows from Theorem 3.14. That (2) implies (3) and (3) implies (4) are clear. (4)
implies (2) is shown in the last part of the proof of Theorem 3.14 in Chapter 3. O
Remark: If G is trivial, then the above conditions are equivalent to rank(P) =
min{m,n}. In general, the above conditions are equivalent to rank(P;) = k; -
min{m;,n;} for all 1 < i < r when K[G] = M, (D)) --- P Mi.(D,) and
K[S] = @i, M(D;; kin;, k;m;; P;). Here rank(P:) is defined as the dimension

of the column space of P; ( see [52]).

4.3. Maximal Orders

Recall that a ring @ is a quotient ring if every regular element of @ is a unit.
Given a quotient ring @, a subring R is called a right order in Q@ if each q € Q
has the form rs~' for some r,s € R (s regular in R). A left order is defined
analogously; and a left and right order is called an order. For a right order R, we

have the following results.
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LEMMA 4.6 (Lemma 3.1.6 in [48]). Let R be a right order in a quotient ring
Q and let S be subring of Q. Then

1. If there are units a,b € @ such that aRb C S, then S is a also a right order
n Q.

2. f RC S CQ then S is a right order in Q.

3. If R is a prime right Goldie ring, A is a nonzero ideal of R, and S is a
subring of R with A C S C R then S ts a prime right Goldie ring, and has

the same right quotient ring s R.

Let Ry, R; be two right orders in a fixed quotient ring Q. If there are units
ai,as,b1,02 € Q such that a; R;6, C Ry and ay Ryb; C Ry, then R;, R, are called
equivalent right orders. Further, Let R be a right or left order in a quotient @,
then R is mazimal right or left order if it is maximal within its equivalence class
as above.

Recall that a commutative domain R is completely integrally closed in its quo-
tient field @ if, for ¢ and ¢ in @ with a # 0, ag™ € R for all n implies ¢ € R. A
commutative integral domain is a maximal order in its quotient field if and only if

it is completely integrally closed.

4.3.1. Let R be a right or left order in a quotient ring Q. Then a fractional
right R-ideal is a submodule I of Qg such that a/ € R and bR C I for some units
a,b € Q. In a similar fashion frac#ional left R-ideal and fractional (two-sided)

R-ideal are defined. Further, if I/ C R, then [ is called an (integral) R-ideal.
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The right order and left order of a fractional right (or left) R-ideal I are defined

respectively to be

O-(I)={qe Q| IqgC I},

O(l) ={qe@lql CI}.

THEOREM 4.7 (Proposition 5.1.4 in [48]). If R is a right order in Q then the

following conditions are equivalent:

1. R is a mazimal right order;
2. O.(I) = Oi(I) = R for all fractional R -ideals I ;
3. O-(I) =0((I) = R for all R -ideals I.

4.3.2. We will use the following notations. Let R be an order in a quotient
ring Q. For subsets A, B of Q we denote (A B) ={qe Q| qB C A} and (A
B) ={q€ Q| Bq C A}. In particular for a fractional R-ideal I, (L4 1) =0(I).
A fractional R-ideal [ is invertible if there exist a fractional R-ideal B such that
IB = Bl = R. In this case B is usually denoted by /~!. Note that R is a maximal
order if and only if ({ ; I) = ({ :, I) = R for every fractional R-ideal I. Hence, if
R is a maximal order, then (R : I) = (R :, I) for any fractional R-ideal I. Indeed,
let g € (R: I), then ¢/ C R. Hence [q/ C IR C [ and thus Iq C R. Therefore
(R4 I) = (R: I) by the symmetry. We simply denote this fractional R-ideal by
(R :1I) or by I™'. Recall that [ is divisorial if [ = I~, where [~ = (R:(R:1D)).
The divisorial product [ * J of two divisorial ideals I and J is defined as (LJ)~.
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A prime Goldie ring R such that every nonzero ideal is invertible is called an
Asano prime ring or an Asano order. It is equivalent with R being a maximal
order so that every ideal of R is divisorial (Proposition 5.2.6 in (48]).

For an hereditary ring, every ideal is projective. Further, a projective ideal is
divisorial (5.1.7 in [48]), and thus in an hereditary ring every ideal is divisorial.

Rings satisfying the following conditions are called Dedekind prime Tings.

LEMMA 4.8. The following conditions on a ring R are equivalent:

1. R is a hereditary Noetherian prime ring and is a mazimal order.

2. R is a hereditary Noetherian Asano order.

4.4. Principal Ideal Rings

In this section we recall some results on semigroup rings that are principal
ideal rings. We first state a result of Passman [55] on the group ring case K[G]
(as mentioned in [42] one can allow the coefficient to be a matrix algebra). Fisher

and Sehgal had dealt with the case that G is a nilpotent group [21].

LEMMA 4.9 (Theorem 1.1, [42]). Let G be a group and R = M.(K) a matriz
ring over a field K. The following conditions are equivalent:

1. R[G] is a left principal ideal ring;

2. R[G] is left Noetherian and the augmentation ideal w(R[G)) is a left principal

tdeal;
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3. if charK =0, then G is finite or finite-by-infinite cyclic; if charK = p>0,

then G is (finite p' )-by-cyclic p or G is (finite p’ )-by-infinite cyclic.

In [42] Jespers and Wauters obtained the following extension to semigroup

algebras K[S] of cancellative monoids S.

LEMMA 4.10 (Theorem 2.1 in [42]). Let S be a cancellative monoid and K a
field. The following conditions are equivalent:
1. K[S] is a left principal ideal ring;
2. either S is a group satisfying the conditions of Lemma 4.9 or § contains
a finite subgroup H and a non-periodic element = such that tH = Hz and
S =UienHZ', if charK = p > 0, then H is a p’- group; moreover the central
idempotents of K[H| remain central in K[S].
In particular K[S] is a left principal ideal ring if and only if K[S] is a right principal

tdeal ring.

For contracted semigroup algebras of arbitrary nilpotent semigroups Jespers

and Wauters proved the following.

LEMMA 4.11 (Theorem 1.5 in [42]). Let S be a nilpotent semigroup and K
be a field such that Ko[S] is a prime ring. Then the following conditions are

equivalent:

1. Ky[S] is an Asano-order;
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2. Ko[S] is a left principal ideal ring;

3. S =M°({e}in,n;A) or § = MO({z]i € N};n,n;A) or S = M°({z' |i €

Z};n,n;A) (A denotes the identity matriz) and thus Ko[S] = M.(K) or
Ko[S] = ML(K[X]) or Ko[S] = M, (K[X,X"1]).

In particular K[S] is a left principal ideal ring if and only if K[S] is a right principal

tdeal ring.

Note that Jespers and Oknirski in [32] describe arbitrary semigroup algebras
that are principal. In particular it is shown that such algebras are P.I.. Since we

do not need this result we will not go into the details.

4.5. Nilpotent semigroups

It is well known that a Noetherian commutative domain is hereditary if and
only if it is a Dedekind domain. For the non-commutative case, this conclusion
is false in general. But when R is a hereditary Noetherian prime (HNP) ring
satisfying a polynomial identity(PI), then R is obtained from a Dedekind prime
ring by a finite iteration process of forming idealizers of generative isomaximal
right ideals, i.e. R is equivalent to a Dedekind prime ring (Theorem 13.7.15, 5.6.12
and 5.6.8, [48]). In this section, we prove that if S is a nilpotent semigroup and
K[S] is a HNP, even without the PI condition, then K[S] is a Dedekind prime ring

and thus K[S] is a maximal order.
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4.5.1. Jespers and Okninski have given a structural description of semigroup
algebras of nilpotent semigroups (this ultimately is based on the structure theorem
of Oknirski on linear semigroups, [53] ). We will exploit one of their structural
theorems. Recall that a semigroup S is called uniform if it embeds into a completely
0-simple semigroup U such that S intersects non-trivially all H-classes of U (
every maximal subgroup G of the least completely 0-simple subsemigroup $ of U
containing S is then generated by SN G ). Recall (from Lemma 2.4) that for a
prime ideal P of K[S], S/pp is a subsemigroup of K[S]/P.

LEMMA 4.12 (Theorem 3.5 in [31]). Let S be a nilpotent semigroup, K a field
and P a prime ideal of K[S] such that K[S]/P is left Goldie with classical ring of
quotients M,(D) and D a division ring. Then the semigroup S/pp has an ideal

chain
Slpp=0L2L_12---DL =12 I,

where Io = {0} if S has a zero element and Iy = § otherwise, and for all j > 0, [;
consists of matrices of rank less than or equal to j+i—1 (i is the rank of elements
inl) of S/pp C M,(D); in particular I is the ideal of elements of S/pp of minimal

nonzero rank in M,(D):

1. I is uniform in a completely 0-simple inverse subsemigroup I of M,(D) with
finitely many idempotents and S = (S/pp) Uf s a nilpotent subsemigroup
of M,(D).
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2. K{I} € K[S|/P C K{I} = K{S}, where K{I} denotes the subalgebra of
M, (D) generated by I; moreover M,(D) is the common classical ring of
quotients of these three algebras and K{f} is a left and right localization of
KA{I} with respect to an Ore set.

3. Denote by G a mazimal subgroup of [ , there ezists a prime ideal Q of K[G]
such that K(G]/Q is a Goldie ring and K{[} = M,(K[G]/Q), where q is the

number of nonzero idempotents of I; moreover G is the group of quotients

of ING.
From this Theorem, we have another lemma considering prime Goldie rings.

LEMMA 4.13 (Theorem 1.6 in [42]). Let S be a nilpotent semigroup , K a field
, P=K -0 ifS has a zero element, otherwise P = {0}. If Ko[S] = K[S]/P is a
prime left Goldie ring satisfying the ascending chain condition on two sided ideals,
then, with notations as in Lemma 4.12, we have Q = 0, K{I} = Ky[l], G is

poly-infinite cyclic and ¢ = n.

4.5.2. From this lemma, we can show that an HNP semigroup algebra of a

nilpotent semigroup is a maximal order.

PROPOSITION 4.14. Let S be a nilpotent semigroup. If Ko[S] is hereditary
prime left Goldie ring satisfying ascending chain condition on two-sided tdeals,
then G is infinite cyclic or trivial. In the latter case, S = MO({e};n,n;A). In

particular, Ky[S] is a mazimal order.
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~

Proof. We use the same notation as in Lemma 4.13. Note here that Ky[[] =
M,(K[G]) is a localization of Ko[I] with respect to an Ore set C. First we show
that Ko[f] = M,(K[G]) is also a localization of Ko [S] with respect to the Ore set
C. Since elements of C are regular, it is suffices to show that C satisfies the Ore
condition in Ko[S]. Let s € Ko[S] and ¢ € C. Then sc™! € Ko[l] = C~1Ky[I], so
sc™t =d~'r for some d € C and r € Ko[[]. Hence ds = rc and thus Cs () Ko[S]c #
0.

Now since Ko[S] is hereditary, so is Ko[l] = M,(K[G]). By Lemma 4.1, G
is either finite-by-(infinite cyclic), and the order of the torsion subgroup of G is
invertible in K, or G is locally finite and countable, and the order of every element
of G is invertible in K. From the proof of Lemma 4.13, we know that G is torsion-
free, hence in this case, G is infinite cyclic or trivial. Obviously in the latter case,
S = M°({e};in,n; A).

Now, we show that K,[S] is a maximal order when G is infinite cyclic. For this it
is sufficient to show that K([S] is a Dedekind prime ring. Because of Proposition
5.6.3 in [48]( A hereditary Noetherian prime ring R is Dedekind if and only if
it has no idempotent ideals other than 0 and R), we only have to show that
any idempotent ideal of K[S] is trivial. So suppose [ is a nontrivial idempotent
ideal of Ko[S]. Then since Ko[[] is Noetherian, I Ky[]] is an idempotent ideal of
Ko[{].(Theorem 1.31 in (11]). This is a contradiction since Ko[[] is a left principal

ideal ring by the result of Lemma 4.9 and the fact that a prime principal ideal ring
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does not contains a nontrivial idempotent ideal. Hence K;[S] has no nontrivial

idempotent ideal and thus we have done. O

4.5.3. Once we know Kj[S] is a maximal order, we have the following struc-

ture theorem:

THEOREM 4.15 (Theorem 3.4 in [87]). Let S be a nilpotent semigroup. The

following conditions are equivalent:

1. Ko[S] is HNP.

2. Ko[S] is a prime Asano-order.

3. Ko[S] is a prime left principal ideal ring.

4. S=M°({e};n,n;A) or § = MO({z'li € N};n,n;A) or S = M°({z' | i €
Z}in,n;A)) (A denotes the identity matriz) and thus Ko[S] = M,(K) or
Ko[S] & M,(K[X]) or Ko[S] = M. (K[X, X1]).

Proof. Note that because of Theorem 4.11, the last three conditions are equivalent.
3 = 1 is obvious and it remains to show that 1 == 2. If K,[S] is a HNP, then
from Proposition 4.14 it follows that K,[S] is a Dedekind prime ring and thus a

prime Asano order. O.

Since K[S] is a HNP, then from proposition 4.14 it follows that G is trivial or

infinite cyclic. A structural proof of 1 = 2 can be done similarly to that in [42].
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4.6. Cancellative semigroups
4.6.1. We first recall a simple but useful lemma on cancellative semigroups

(Lemma 1.3 in [36]). For a completeness’ sake, we include the proof.

LEMMA 4.16. Let S be a cancellative semigroup. If S satisfies the ascending
chain condition on right ideals, then for any a,b € S, there ezists a positive integer

r such that a"b € bS!.

Proof. Let a,b € S. Consider the following ascending chain of right ideals of §:
abS' C abS' U a®bS' C abS! U a2bS* U a3bS! cC-..

Since S satisfies the ascending chain condition on right ideals, there exists positive

integer n > 7 such that
a™b € a'bS*.
Because, by assumption, S is cancellative, it follows that a"~ib € bS!. O

4.6.2. Now we prove the following result.

THEOREM 4.17 (Theorem 4.3 in [87]). Let S be a cancellative monoid and K
a field of characteristic p (not necessarily nonzero). Then the following are equiv-
alent:

1. The semigroup algebra K[S] is a Noetherian hereditary ring.

2. The semigroup S satisfies one of the following conditions:
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(a) S is a finite p'-group.
(b) S is a finite p'-by-infinite cyclic group.
(c) S contains a finite p'-subgroup H and a non-pertodic element z such
that S = J;cp Hz', zH = Hz, and every central idempotent of K[H]
remains central in K[S].
(d) S is a (finite p')-by-C, * C; group (charP # 2).
Proof. If S satisfies one of conditions (a) or (5), then the result is obvious. If S
satisfies case (c), then K'[S] is a skew polynomial ring K[H] lg, 0] with rgld K[S] =
rgld K[H] + 1 (See Theorem 7.5.3 in [48] or Remark 3.1.4 in Chapter 3). Thus
K[S] is hereditary. If S satisfies case (d), then (1) follows from the result of W.
Dicks (Lemma 4.2 and Lemma 4.3).

Conversely, assume K'[S] is hereditary and Noetherian. Then S has a group G
of fractions by Theorem 1.16. So K[G] is a localization of K [S] and K[G] is also
hereditary and Noetherian.

Since K'[G] is Noetherian, the group G satisfies the ascending chain condition
on subgroups. So from Lemma 4.2 and Lemma 4.3 we obtain that G is either finite
or finite-by-(infinite cyclic) or finite-by-Cp * Cy (charP # 2), and moreover, the
orders of finite subgroups of G are invertible in K. In the first case, we get that
K[G] and thus K[S] = K[G] is semisimple Artinian.

Now we discuss the second case, that is, G is finite-by-(infinite cyclic). We will
prove K[S] is a principal left ideal ring. First note that by Lemma 4.9, K[G] is a

principal (left and right) ideal ring.
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Because all finite subgroups of G have invertible order in K, Theorem 2.13
implies that the semigroup algebra K[S] is semiprime (so is K[G]).

Now we claim K[S] is a maximal order. Since K[S] is a semiprime Noetherian
hereditary ring, the semigroup algebra K'[S] can be decomposed into a finite direct

sum of hereditary Noetherian prime rings (see for example Theorem 5.4.6 in [48]):
K[S] = @, e:K[Shn > 1,

where each e; is a primitive central idempotent. Hence to prove the claim it is
sufficient to show that each e;K[S] is a Dedekind prime ring, and thus we only
need to show that each e; K'[S] has no nontrivial idempotent ideal (Proposition 5.6.3
in [48]). So suppose [ is an idempotent ideal of e; K[S]. Since K[G] is a Noetherian
ring and a localization of K[S], it follows that e;A[G] is also a Noetherian ring
and a localization of e;K[S]. Hence [e;K[G] is a two-sided idempotent ideal of
e;K[G]. But the latter is prime principal ideal ring and thus [e;K[G] = 0 or
[e;K[G] = e;K[G], as required.

Finally, we prove K[S] is a left principal ideal ring. Let H be a finite normal
subgroup of GG and g € G so that G/H = (gH) is an infinite cyclic group. Then
K[G] = K[H] * (G/H) = K[H][g,g7";0], a skew Laurent polynomial ring over
K[H]. Obviously, K[S] C K[H][g,g7",0] and SC G = (g, H). Let A={i € Z :
SN Hg' # 0}. Clearly A is a nontrivial subsemigroup of Z. If A is a group, then
A =mZ for some m > 1. Hence S C (J;., Hg™ C G. But G = (S, 5~") implies

UieZ H¢™ = G and thus m = 1.
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Assume now A is not a group. Then, without loss of generality, we may assume
A C N[J{0}. Since submonoids of N U {0} are well known (see for example
Theorem 2.4 in [23] ), there exists Ky such that £ € A for all £ > K,. Denote
Hy = {h € Hjhg* € S}. Hence Hy # 0 for all k£ > K,. Because H is finite, the
automorphism o has finite order, say o. Let j = - |H|- Ky, then ¢/ € S and thus
1 € H;. Obviously, H; C Hy; C --- C H,; C---. Since H is a finite group, there
exists a multiple jo of j such that H,;, = Hj, for any m > 1. So H}, is a subgroup

since it is multiplicatively closed. Clearly also

Hjo-i-l - H2i0+1 c---C Hﬂfo-f-l c---

Hajoy © Hajo1 © - C Hpngr)jo—1 S - -

Hence as H is finite, there exists a multiple v of jo such that

Hv=H2u="'=Hnu="'
Hv+1=H2v+1=”'= nv¢l = 77
Hyyy = Hzyey = --- = H(n+1)v—1 =

We claim that H, = H. Let h € H C G = SS~!'. Then h = p~lt for some
p,t € 5. Soh =p~¥(p""'t). Replacing p by p* we may assume p = h,rg"* for some
huk € Hyx and some positive number k. Hence t = A, g** for some h., € Hy.

As g% acts trivially on H, we get h = (hyrg*) 1 (h,,g"F) = g kR R gvF =

h;klh;k € H,r Hence there exists a positive integer k£ such that H = H, = H,.
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Since H,;; # (), there exists hy € H,t; such that hog"t' € Sfor 1 < i < v.
Hence g?*** = h3'g" - hog*** € S (again we use that v is a multiple of « - |H|).
Thus ¢' € S for all { > 2v and H, = H for all ¢ > 3v. Consider the ideal
I = @P,>3, K[H]g* of K[S]. It follows that HI C I and gI C I. Since K[S]is a
maximal order we obtain that g € S and H € S. Therefore, S = Usen Hg' and
KIS] = @ e KIH]G = K[H][g, o].

We now show that the central idempotents in K[H] remain central in K [S].
Write K[H| = A, D - - - @ An, where each A; is simple Artinian with unit element,
say e;. It is sufficient to prove that each e; is central in K[S]. We do this for i = 1.
Since conjugation by o permutes the idempotents e, - ,en, we get g7lA; =
Amg™!, for some 1 < m < n. We need to show that m = 1. Suppose the contrary.
Then consider the left ideal L = A, + K[S]g of K[S]. Calculating in K [G] we get
(e197")-L = e1g7' (A1 +K[S]g) = e1g™' A1 + 197 K [S]g = €1 Amg™! +eK[S|C L
because e;A,, = 0 and ¢, K[H] C A,. Since K[S] is a maximal order, it follows
eig~' € K[S], a contradiction. Hence condition (c) is satisfied.

Now we discuss fhe third case, that is, G contains a finite p’-subgroup H and
G/H =< a,b| bab=a"'b? =1 >; where p( 2) is the characteristic of the feld
K. We can express any element of G as hz'y or hz’/ where h,h € H,1.5€ 7,
and z,y are pre-images in G of a and b respectively. Because G is the group of
quotients of S, there must exist an element in S with form hz'y with h € H,
¢ € Z. Consider the abelian subgroup N =< z > of G. Because N has finite
index in G and G = §§7!, we get N = (S\N)(S(N)~! by Lemma 7.5 in [52].
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We now claim that, if z* € S for some positive integer ¢, then z=* € S for some
k > 1. Indeed, since K[S] is Noetherian, by Lemma 4.16, for any ¢,d € S, there
exists a positive integer r such that ¢"d € dS'. We apply this to ¢ = z¢! and
d = hz'y. Then ¢'d = z"thziy = hz'yg for some g € S. Hence it is easily seen that
there exists A € H such that g = yz"tyh' = 7"’ and thus z=** € S for some
positive integer k. This proves the claim. It follows that S (1N is a subgroup of
N. Hence N = (SO N)(SOIN)"' =8N N. So N C S and thus S = G is a (finite
p')-by-C> * C, group. O

Note also, by Lemma 4.10 and Theorem 2.13 in [54], the semigroup alge-
bra K[S] is a semiprime principal left ideal ring if and only if one of conditions
(a), (6), (c) holds. However, (d) does not give a principal left ideal ring. Indeed, it
is well known (see for example in (2]) that the group algebra of the infinite dihedral

group C5 * C, is not a maximal order.
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CHAPTER 5

Noetherian Unique Factorization Semigroup Rings

In {12], Chatters and Jordan defined a unital ring R to be a Noetherian unique
factorization ring (or simply, a Noetherian UFR) if R is a prime left and right
Noetherian ring such that every non-zero prime ideal of R contains a non-zero
principal prime ideal. It is shown in [12] that if R is a Noetherian unique factor-
ization ring then R is a maximal order (with trivial normalizing class group). In
[10] , Chatters, Gilchrist, and Wilson studied arbitrary unique factorization rings
(that is, without the Noetherian restriction) and unique factorization domains (or
simply UFD), that is, R is an integral domain such that every non-zero prime ideal
contains a completely prime element.

In [2], [8] and [9], several authors studied the problem of when a group ring is
a unique factorization ring. For G an abelian group and R a ring which satisfies a
polynomial identity, Chatters and Clark [9] showed that the group ring R[G] is a
UFR if and only if Risa UFR and G is a torsion free group satisfying the ascending
chain condition on cyclic subgroups. For G a polycyclic-by-finite group and R a
Noetherian commutative UFD, Brown [2] showed that R[G] is a Noetherian UFR
if and only if A*(G) = {1}, G is dihedral free, and every plinth of G is centric.

Chatters and Clark [9] proved that this result still holds for any commutative

77
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coefficient ring R which is a UFD. In [8] Chatters proved that a prime group ring
R[G] which satisfies a polynomial identity is a UFR. if and only if R is a UFR
and G is a dihedral-free group satisfying the ascending chain condition on cyclic
subgroups.

For an abelian torsion free cancellative monoid S and an integral domain D,
Gilmer [23] showed that the semigroup ring D[S] is UFD if and only if D is a UFD
and S is a unique factorization monoid which satisfies the ascending chain condition
on cyclic submonoids. For semigroup algebras K [S] of arbitrary semigroups over a
field K several related arithmetical structures have been investigated. Jespers and
Okninski in [32] obtained a complete description of left and right principal ideal
semigroup algebras K[S]. For a submonoid S of a finitely generated torsion free
nilpotent group Jespers and Okninski in [34] showed that K[S] is a Noetherian
maximal order precisely when S modulo its unit group is a finitely generated
abelian monoid which is a maximal order in its group of quotients. In particular,
S is a normalizing cancellative monoid which is a Krull order in the sense of
Wauters in [59].

Recently, Jespers and Okniriski in [36] investigated submonoids S of polycyc-
lic-by-finite groups. It is described when K[S] is left and right Noetherian, and in
this case the prime ideals of K[S] are studied. Using these results, we investigate
in this Chapter when Noetherian semigroup algebras of submonoids of torsion free
polycyclic-by-finite groups are unique factorization rings. The results proved will

appear in [38].
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In Section 1, we recall the definition and give some background on unique
factorization rings. In Section 2 we recall the description of group rings that are
unique factorization rings. In Section 3, we generalize the concept of an abelian
unique factorization monoid to the non-commutative setting. In Section 4 we
recall results for monoids that are Krull orders. In Section 5 we first recall some
important properties of semigroup algebras of submonoids of a polycyclic-by-finite
group, such as the description of when these algebras are Noetherian and the
description of the height one primes. Next we describe when such monoids S are
unique factorization monoids. In Section 6 we investigate when the semigroup
algebra of a submonoid of a torsion-free polycyclic-by-finite group is a Noetherian

unique factorization ring. Finally in Section 7 we give some examples.

5.1. Unique factorization rings

We first recall the definition of a unique factorization ring.

5.1.1. Let R be a prime ring. An element z of R is normal if zR = Rz. A
prime element of R is a non-zero normal element p such that pR is a proper prime
ideal. Such a prime p is said to be completely prime if R/pR is an integral domain.
We say R is a unique factorization ring (UFR) if every non-zero prime ideal of R
contains a prime element, and that R is a unique factorization domain (UFD) if R
is an integral domain and every non-zero prime ideal contains a completely prime

element.
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A ring R is said to be a prime Krull order if R is a prime maximal order and
R satisfies ascending chain condition on divisorial ideals contained in R.

If Ris Noetherian, R is Krull order if and only if R is maximal order. Chatters
and Jordan in [12] showed that a Noetherian UFR is a maximal order (Krull

order).

5.1.2. Furthermore, for a UFR, the following results (cf. [10]) hold:

LEMMA 5.1. Let R be a UFR. Then

1. Every non-zero ideal of R contains a product of prime elements.

2. Let z be a non-zero element of R. Then there are only finitely-many non-
associated prime elements p of R such that = € pR.

3. The prime ideal pR with p a prime element of R has height 1.

4. N2, p"R = 0 where p is a prime element of R.

5. C(pR) C C(p"R) for every positive integer n, where C(I) denotes the set of
elements of R which are reqular modulo I.

6. The elements of C(pR) are regular as elements of R.

7. Let z be normal element of R with z € pR. Then zRNp"R = zp"R for
every positive integer n.

8. Every non unit nonzero normal element z is a product of prime elements of
R.

9. For every non unit normal element z, there are non-associated prime ele-

ments p1,- -+ ,pn of R and non-negative integers a(l),--- ,a(n) such that
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zR = p‘f(l) p2MpR = pf(l)R N---Np2™Eg.

10. Let P be a prime ideal of R which is minimal over a normal element z, then
height(P) = 1 and P = pR for some prime element p of R.

11. The set of principal ideals of R is closed under finite intersection and satisfles

the ascending chain condition.

Hence a ring R is a UFR if and only if every nonzero ideal of R contains nonzero
normal element and every non unit nonzero normal element of R is a product of
primes. Thus the notion of UFR is an extension to the non-commutative situation

of that of commutative unique factorization domains.

5.1.3. A ring R is conformal if every non-zero ideal of R contains a non-zero
normal element of R. Denote by N(R) the set of all normal elements in R. Jordan

showed the following result for Noetherian prime rings.

LEMMA 5.2 (Proposition 2.2, [44]). Let R be a prime Noetherian ring. Then

R is UFR if and only if R is conformal and every irreducible element of N(R) is

prime in R.
5.2. Unique factorization group rings

5.2.1. Several authors studied the problem of when a group ring R[G] is
a unique factorization ring. First we recall the commutative situation given by
Gilmer and Parker (see for example [23]). For G an torsion-free abelian group

and R a commutative integral domain, R[G] is a UFD if and only if R is a UFD
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and G is cyclically Noetherian (i-e., G satisfies ascending chain condition on cyclic
subgroups). Actually the latter condition is equivalent to every rank 1 subgroup
of G is cyclic (Lemma 4.2.13 in [43]). Chatters and Clark in [9] then extended the
result as follows. For G an abelian group and R a ring which satisfies a polynomial
identity, the group ring R[G] is a UFR if and only if R is a UFR and G is a

cyclically Noetherian torsion free group.

5.2.2. The best known results are due to Brown (2, 3]. To state his results
we recall some notions. The F.C. subgroup of G, denoted by A(G), is the set of
elements of G which have only a finite number of distinct conjugates. Clearly A(G)
contains all proper finite normal subgroups of G. The torsion elements of A(G)
form a subgroup, denoted by A*(G), and A(G)/A*(G) is torsion-free abelian (see
for example Lemma 4.1.6 in [54]). A subgroup H of G is orbitalin G if H has only
a finite number of distinct conjugates by elements of G, or equivalently, Ng(H)
has finite index in G (where Ng(H) is the normalizer of H in G). We say G is

dihedral free if G has no orbital infinite dihedral subgroups.

A plinth of G is a torsion free abelian orbital subgroup A of G such that AQzQ
is an irreducible QT-module for every subgroup T of finite index in Ng(A). The
plinth A is centric if its centralizer Cc(A) has a finite index in G, or equivalently,

A has rank one. Otherwise, A is eccentric.
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LEMMA 5.3 (Theorem D in [2]). Let R be a Noetherian commutative UFD and
G a polycyclic-by-finite group. Then RG is a UFR if and only if A*(G) = {1}, G

is dihedral free, and every plinth of G is centric.

Chatters and Clark [9] proved that this result still holds for any commutative

coefficient ring R which is a UFD. Brown in [2] also showed that

LEMMA 5.4. Let G be a polycyclic-by-finite group. [f AT(G) = 1, then the
following statements are equivalent:

l. every non-zero ideal of R[G] contains an invertible ideal;

2. every non-zero ideal of R[G] contains a non-zero normal element;

3. every non-zero ideal of R[G] contains a non-zero central element;

4. every plinth of G is centric.

5.2.3. Alsoin [2, 3], Brown described when group rings of polycyclic-by-finite

groups are UFD.

LEMMA 5.5 (Theorem E', [3]). Let R be a commutative Noetherian UFD, and
let G be a polycyclic-by-finite group. Then R[G] is a UFD if and only if

1. G is torsion free,

2. all plinths of G are central,

3. G/A(G) is torsion free.

In fact, by using group theoretic techniques, MacKenzie [47] found a nice rela-

tionship between UFR and UFD when describing group rings of polycyclic-by-finite
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groups. Note that a subgroup H of G is called characteristic in G if $(H) C H for

every automorphism ¢ of G.

LEMMA 5.6 (Theorem 2.1, [47]). Let R be a commutative Noetherian UFD
and G a polycyclic-by-finite group. If R[G] is a UFR then G has a normal (in
fact, characteristic) subgroup H of finite indez that R[H] is a UFD.

If G is a torsion-free finitely generated nilpotent group, the proof of the previous

Lemma yields the following result.

COROLLARY 5.7. Let R be a commutative Noetherian UFD and G a torsion-

free finitely generated nilpotent group. Then R[G] is a UFD.

5.3. Unique Factorization Monoids

As will be proven in the next section, also in the non-commutative situation
the notion of the arithmetical structure on S will play a crucial role. We therefore
will generalize the definitions of unique factorization monoid from the commutative

setting to non commutative situation. This will be done similar to the ring setting.

First let us fix some definitions. As in ring theory, an element ¢ of a monoid S is
said to be normal (invariant in [15]) if ¢S = Sc. The submonoid of normal elements
is denoted N(S). If N(S) = S then S is called a normalizing semigroup (or an
invariant monoid in [15]). A non-invertible element p € S is called irreducible (or

an atom) if it cannot be written as the product of two non-invertible elements in
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S. A normal element p € S is said to be prime if Spis a prime ideal in S, that is,
for any a,b € S, aSb C Sp implies a € Sp or b € Sp. Given two normal elements
a,b € S, if a = bu for some unit u of U(S), then we say a and b are associated.
Recall that an ideal P of a semigroup S is prime if aS6 C P implies a € P or
b € P. Furthermore, if S\ P is a subsemigroup of S then P is called completely
prime. Denote by Spec(S) the set of all prime ideals of § and by X(S) the
set of all minimal prime ideals of S. For any ideal / of S we denote by C(I)
the set of elements of S which are regular (i.e., not zero-divisors) modulo I. Set

C(S) = C(P), where the intersection is taken over all P € X(S).

5.3.1. For completeness’ sake we recall the following definition. An abelian
cancellative monoid S is a unique factorization monoid ( factorial ) if each principal
ideal of S can be written as a finite product of prime ideals of 5. As mentioned

above Gilmer showed that they can be described as follows.

LEMMA 5.8 (Theorem 6.8, [23]). Let G be a group, let {Zs}aca be a family of
monotids, each isomorphic to the additive monoid of nonnegative integers. Then

monoid G@ Z Zy is factorial. Conversely, each factorial monoid S is isomor-
acA

phic to such a monoid G @ Z Zy-

a€A
5.3.2. In [15] Cohn defines a UF-monoid (unique factorization monoid) as
normalizing cancellative monoid S for which the quotient monoid S/U (S) is free

abelian. This clearly generalizes the previous definition.
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A monoid S is said to satisfy right ACC; if S satisfies the ascending chain
condition on principal right ideals. Similarly, one defines left ACC,. Of course,
these two notions coincide in a normalizing monoid. Note that a normalizing
monoid S satisfying ACC| is atomic, which means every element of S is either a
unit or a product of irreducible elements (atoms) (see for example [15]).

We have the following descriptions of UF-monoid, ¢f. Theorem 3.1.1. in [15]

LEMMA 5.9. Let S be a normalizing cancellative monoid. The following con-
ditions are equivalent:
1. § is ¢ UF-monoid,
2. S satisfies ascending chain condition on principal ideals (ACC,) and any
two elements have a greatest common divisor,
3. S satisfies ACC\ and any two elements have a least common multiple,

4. S is atomic and every atom of S is prime.

5.3.3. More generally, we define a monoid to be a /F-monoid (unique factor-
ization monoid) if every prime ideal of S contains a principal prime ideal P, ie.,
P = Sn for some normal element n of 5. Note that (as for the ring case [12]), if
S is cancellative, then P = Sn is equivalent with P = Sa = bS for some a,besS.
Indeed, if Sa = bS, then @ = bs and b = ta. Since Sa is an two sided ideal we get
as = s'a for some s’ € S. Hence a = tas = ts'a, and thus ts' = 1. So t € U(S)

and therefore S = Sa = Sta = Sb.

LEMMA 5.10 (Lemma 2.1 in [39]). Let S be a submonoid of a group. Then,
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(1) C(pS) € C(p™S) for every positive integer n and prime element pofS.
(2) If p is a prime element of S and z € N(S) with z & pS, then zSNp"S =
zp"S, for any positive integer n. In particular, for any non-associate prime

elements py,--- ,pp, of S and non-negative integers a(l),--- ,a(n)
pi - pe™Ms = pis .. A pins,

If, furthermore, S is a UF-monoid, then the following conditions hold.

(3) Every proper ideal of S contains a product of prime elements.

(4) For any prime element p € S, N, p"S = 0.

(3) C(S)NN(8)=U(S).

(6) Let = be a non-invertible element of S, then there are only finitely many
non-associated prime elements p of S such that z € pS.

(7) Every non-invertible normal element of S can be written as a product of

prime elements.

Proof. (1) Let ¢ € C(pS) and suppose that ¢ € C(p*S) for some positive integer
k. We must show that ¢ € C(p**'S). Let s € S and cs € p*+'S. Then cs € p*S
and thus s € p*S. So s = yp* for some y € S. Also ¢cs = zpF*! for some z € S.
Hence cyp* = zp**!, and so ey = zp. But ¢ € C(pS) implies y € pS and hence
s € pF*1S, as required.

(2) Let n be a positive integer. Obviously 5 N pS D zp"S. Conversely,
suppose p“a = zb € p"S N zS. Because of the assumption z € C(pS) we get from

(1) that z € C(p™S). Therefore b € p*S and thus zb € zp™S, as desired.
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(3) For otherwise let I be an ideal of S maximal for the condition that it does
not contain a product of prime elements. Clearly / is a prime ideal. Since by
assumption S is a UF-monoid, [ contains a prime element, a contradiction.

(4) Set I = (22, p"S and suppose [ # B. Obviously [ = p/. From (3), [
contains a product p;---p, € [ for some prime elements p,,--- ,p, of S. Since
p1---pn € pS, we get that p; € pS for some i:. Write p; = pt for some t € .
Hence p;S = pS (indeed, for if p;S C pS, then pt € p;S implies that ¢ = sp; for
some s € S. Therefore ps = 1, a contradiction). Thus [ = pI = p;[ for some 1.
So py---p, € [ = p;I. Because S is cancellative and p; are normal we obtain that
I contains a product of n — 1 prime elements. Repeating this argument several
times, we get that / contains an invertible element, a contradiction.

(5) Indeed, if n € C(S)(N(S) then, by (3), there exists £ € S and prime
elements p; € S such that zn =p; - - - p,. Since each p; is normal and n € C(S), it
follows that = € Sp;, for every 7. Since S is cancellative this implies n € U(S).

(6) Let = be a non-invertible element of S, then by (3) there are prime elements
P1,° - ,pn of S such that p;ps---p, € SzS. Let p be a prime element of S such
that z € pS. Then pyp; ---p. € pS and therefore p; € pS for some 7. Thus (as in
the proof of (4)) p;S = pS. So there are only finitely-many possibilities for pS.

(7) Let = be a non-invertible normal element of S. Because of (4), for each
prime element p of S there is a positive integer n such that z & p™S. By (6) there
only finitely-many non-associated prime elements p of S such that z € pS. From

these two statements it follows that there are prime elements p,,- - - ,p, of S such
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that z = p; -- - poy, where y is an element of S such that there is no prime element
pof S with y € pS. Since z, p; are normal, we have y € N(S). Moreover, y € C(S)
and thus y is a unit by (5). Therefore z is a product of prime elements py,--- , pay.

a

PROPOSITION 5.11 (Proposition 2.2 in [39]). Let S be a submonoid of a group.
Then the following conditions are equivalent.
1. S is a UF-monoid.
2. Every ideal of S contains a normal element and every non-invertible normal
element of S can be written as a product of prime elements.
3. Every ideal of S contains a normal element and every irreducible element
in N(S) is prime in S and S satisfies the ascending chain condition on

principal ideals generated by a normal element.

Proof. (1) implies (2). This follows from (3) and (7) in Lemma 5.10.

(2) implies (3). It is obvious that every irreducible element of N (S) is prime
in S. To show that S satisfies the ascending chain condition on principal ideals
generated by a normal element, it is sufficient to show that there are only finitely
many principal ideals of S which contain z for any non-invertible normal element
z€E€S.

Let y be a normal element of S such that z5 C yS. Because of (2) and (7) in
Lemma 5.10, there are non-associated prime elements Pis " +PnsqQis " sGm Of S

and non-negative integers a(1),--- ,a(n),b(1),--- ,b(m) such that zS5 = p'f(l)S N
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c-npMg = p‘f(l) - p2™M G and yS = qf(l)S N---Nnggmg = qll’(l) g™ S Tt s
routine to show that for each 1 < 7 < m there exists an 7, 1 < < n, such that
q;S = p:S and that b(5) < a(2). Hence (3) follows.

(3) implies (1). Let P be a prime ideal of S. Then P contains a non-invertible
normal element of S, say n. First we show that n is a product of irreducible
elements of NV(S). Note that, by assumption, S satisfies the ascending chain con-
dition on principal ideals generated by a normal element. Hence N (S) satisfies
ACC), and thus each element of N(S) is either a unit or a product of irreducible
elements. Therefore n is a product of irreducible elements of N(S), and thus by
the assumption, n is a product of prime elements of S. Consequently, P contains

a prime element. O

Note that if S is a normalizing cancellative monoid, then the description of
UF-monoid obtained in Proposition 5.11 corresponds with the one obtained by

Cohn in Lemma 5.9.

5.4. Monoid Krull orders

In Chapter 4 we recalled several notions concerning rings that are maximal
orders. Wauters in [59] introduced non-commutative monoids that are maximal
orders in a group of quotients. Although the definitions are similar to in the ring

case we state them here for completeness’ sake.
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A cancellative monoid S which has a left and right group of quotients G is
called an order. A fractional left S-ideal I is a subset of G such that ST C I and
Sa C I C SB for some o, € G. Similarly one defines fractional right S-ideal.
A (two-sided) fractional S-ideal is a subset of G that is both a fractional left and
right S-ideal. If A and B are subsets of G, we put (A ; B) = {z € G | zB C A}
and (A: B) = {z € G| Bz C A}. Anorder S is a maximal order if ({4 1)=8=
(I :+ I) for each fractional S-ideal. It follows in this case that, for any fractional
S-ideal I, (S u I) = (S :+ I). This fractional ideal we simply denote as (S :I).
Note that being a maximal order is equivalent with the condition that there does
not exist a submonoid S’ of G properly containing S and such that aS’6 C S for
some a,b € 5. A fractional S-ideal [ is said to be divisorial if [ = (S : (S :1)).
One says that S is a Krull order if S a maximal order satisfying the ascending
chain condition on divisorial ideals contained in S. The following result can be

found in [59].

LEMMA 5.12. Let S be a mazimal order, then the set of divisorial ideals D(S)
is @ commutative group, where [ x J = (S : (S : IJ)) and [,J € D(S). Further-

more, if S is a Krull order, then D(S) is a free abelian group.

Let 5 be a Krull order, then D(S) = Z* for a certain index set A, and this
isomorphism is order-preserving. Of course, the order relation on Z* is defined by
(ax)aea < (br)ren if and only if @y < by for all A € A. Let ¢ : D(S) — Z* be

an order preserving isomorphism. Put e; = (;)xea, and let P; = ¢~ '(e;). Here
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dix =1 when ¢ = X and 0 otherwise. Thus any element A of D(S) can be written

as A = Pl #---x Pl*( n; € Z). It is obvious that P; is a prime ideal of S.

Indeed, let z,y € S such that zSy € P.. Then SzS5% SyS = SzS5yS C P, = P.
where B = (S : (S : B)) denotes the divisorial closure of an ideal B. Furthermore
#(SzS) = Tnje; and ¢(Sy5) = Emje; with n;,m; > 0. In particular, ¢(SzS5) +
#(SyS) = Z(n; +m;)e; > $(P;) = e;. Therefore n; > 1 or m; > 1 yield that either

€SS C P orye SySCP,.

THEOREM 5.13. Let S be a Krull order. If every ideal of S contains a normal

element, then D(S) is generated by the minimal prime ideals of S.

Proof. First we claim that every prime ideal P of S contains P: for some 7 € A.
Indeed, let n be a non-invertible normal element contained in P. Then Sn C P.
Since Sn € D(S), we may write P D Sn = P *---% P7* D P ... P™ where all
n; > 0. Therefore P O P; for some :.

Suppose P is minimal prime ideal. By the above claim, P = P: for some 3.
Conversely, let P be a prime generator of D(S). If P is not a minimal prime, then
@ C P for some prime ideal @ of 5. Again, by the claim, P; € Q C P for some

1 € A. Therefore ¢(P) < ¢(P;) = e;, a contradiction because ¢(P)>0. 0O

5.5. Submonoids of polycyclic-by-finite groups

Let S be a submonoid of a polycyclic-by-finite group G. In [36] (Corollary

3.3) it has been described when K[S] is left and right Noetherian. Because of its
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importance for our investigations we state this result. The equivalence of the first
two conditions is an immediate consequence of Quinn’s result (see for example

[56]). That S is finitely generated in this case follows from Corollary 3.5 in [36].

PROPOSITION 5.14. Let S be a submonoid of a polycyclic-by-finite group. The

following conditions are equivalent:

1. S satisfies the ascending chain condition on right and left ideals,

2. K[S] is left and right Noetherian,

3. S has a group of quotients G = SS~! which contains a normal subgroup H
of finite indez and a normal subgroup F C H such that SN H is finitely

generated, ' C U(S) and H/F is abelian.

Moreover, in this case, S and N(S) are finitely generated monoids, and every ideal

of S intersects N(S); in particular G = SN(S)™".

5.5.1. We will characterize UF-submonoids S of polycyclic-by-finite groups
that satisfy the ascending chain condition on left and right ideals. For this we first
need the following fundamental property of Jespers and Oknirski [36]. For a field
K, by X;(K[S]) we denote the set of height one prime ideals of K[S] intersecting
S. The set of all prime ideals is denoted by Spec(K[S]). The last part of the
statement is the real hard part. This is proved in [36] making use of the structure
theorem of Oknidski on linear semigroups. We only include a proof of (2) and (3)

which are not stated in [36].
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PROPOSITION 5.15 ([36], see also Proposition 2.2 in [38]). Let K be a field and
S a submonoid of polycyclic-by-finite group. If S satisfies the ascending chain con-
dition on left and right ideals, then the following properties hold.

1. The set X (K[S]) is finite.

2. Forany P € Spec(S), there ezists Ip € X}(K[S]) such that® # Ip (1S C P.

3. Every P € Spec(S) contains a minimal prime in S.

Moreover, if G is torsion free, then X}(K[S]) = {K[Q] | Q € X(S)} and K[Pn
S] € Spec(K([S]) provided P € Spec(K[S]) and PN S # 0.

Proof. (2) Let P € Spec(S). Because of Proposition 5.14, let n € N(S)n P.
Note K[P] is an ideal of K[S] such that K[P]( S = P. Let I be an ideal of K[S]
maximal for the condition that /(S = P. Since P is prime, [ € Spec(K[S]).
By the Principal Ideal Theorem there exists Ip € Spec(K[S ]) minimal over K[Sn]
and [p C I. Moreover, Ip has height 0 or 1. Since Ip(S # O the height has
to be one (see [36, comments after Proposition 4.2]). So Ip € Xi(K[S]) and
IrNSCINS=P.

(3) Let P € Spec(S), by (2), there exists Ip € X}(K[S]) such that P D I Nns.
IfIpS & X'(S), then [p(\S 2 P, with P, € Spec(S). So as before, we have
Py 2 Ip (S # 0 with Ip, € X}(K[S]). Note that [p # Ip, because, otherwise
Py 2 Ip (1S = Ip[1S 2 Py, a contradiction. Repeating this argument we get a

descending chain

P2IpNSD2P. 2IpNS2D---
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Since X;(K|[S]) is finite, this chain must stop after finitely many steps, i.e. there

exists ¢ such that Ip, N S € X'(S). O

5.5.2. We now give a description of when a submonoid of a polycyclic-by-

finite group is 2 UF-monoid.

THEOREM 5.16 (Theorem 2.3 in [38]). Let S be a submonoid of a polycyclic-
by-finite group G. If S satisfies the ascending chain condition on right and left

ideals, then the following conditions are equivalent:

1. S is a UF-monoid.

2. Every non-invertible normal element of S can be written as a product of
prime elements of S.

3. Every irreducible element in N(S) is prime in S.

4. Every minimal prime ideal of S is generated by a prime element.

Proof. Proposition 5.14 and Proposition 5.11 yield that (1) implies (2) and (2)
implies (3).

To prove (3) implies (4), let P be a minimal prime ideal of S. By Proposi-
tion 5.14, P contains a normal element n. Since S satisfies the ascending chain
condition on left and right ideals, so does N(S). Hence every element of N (S)
is a product of irreducible normal elements. Thus, because of condition (3), n is
a product of prime elements of S. Since n belongs to the prime ideal P we get

therefore that P contains a prime element p. Hence (4) follows.
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By Proposition 5.15 every prime ideal of S contains a minimal prime ideal.

Hence, (4) implies (1) is clear. O

5.5.3. As in the ring case, we find that a UF-monoid S is a maximal order

provided S satisfies the ascending chain condition on left and right ideals.

PROPOSITION 5.17 (Proposition 2.4 in [38]). Let S be a submonoid of a poly-
cyclic - by - finite group. Assume S satisfies the ascending chain conditions on left

and right ideals. If S is a UF-monoid, then S is a mazimal order.

Proof. Let G be the group of quotients of S. Suppose g/ C I for some geG\S
and [ an ideal of S. Because S satisfies the ascending chain condition on left and
right ideals, we can choose [ maximal with respect to the property that such ¢
exists. Write ¢ = z7'c for z € N(S) and ¢ € S. Because of Theorem 5.16, there
exist prime elements p,--- ,p, of S such that z = p,; ---p,. Of course we may
assume that z and ¢ have no common factor that is a normal element. In other
words, we may assume c & p;S for every i.

Now ¢l C zI C p;S. Because p;S is prime and ¢ & p:S we get that I C p;S.
Thus p; '] C S and hence p;'[ is an ideal of S and it contains /. Since pi € N(5)

there exist ¢ € S and 2’ € N(S) so that ¢/p;! = p;'c and 2'p;! = p;lz. Then

qg=z"lc=(2p7")7 Pt = piz' " lep;

and thus z'~'¢' € S. However, as p7'cl C p7lzl, we get

27N (pr ) C (prH).
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The maximality of [ therefore implies that [ = ptI. Thus

ﬁp:‘[: ﬁ [ =1.
n=l n=1

However this contradicts with (2) of Lemma 5.10. Therefore S is a maximal order.

a

For a Krull order S, the normalizing class group CI(S) is defined by CI(S) =
D(S)/P(S), where P(S) is the set of principal ideals generated by normal elements
of S.

COROLLARY 5.18. Let S be a submonoid of a polycyclic-by-finite group. As-
sume S satisfies the ascending chain conditions on left and right ideals. Then S is
a UF-monoid if and only if S is a Krull order and the normalizing class group is

trivial.

Proof. Assume S is a UF-monoid. Because S satisfies ascending chain condi-
tion on left and right ideals, Proposition 5.17 yields that S is also Krull order.
Moreover, by Proposition 5.14 every ideal of S contains a normal element. Hence
Theorem 5.13 implies that D(S) is generated by the minimal prime ideals and thus
the normalizing class group is trivial. Conversely, assume that S is a Krull order
with trivial normalizing class group. Proposition 5.14 implies that every ideal of
S contains a normal element, and thus Theorem 5.13 implies that D(S) is gener-
ated by minimal prime ideals. Since CI(S) is trivial, all minimal prime ideals are

principal. Hence Theorem 5.16 yields that S is a UF-monoid. O
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5.5.4. We now show that our UF-monoids are (as in the ring case) the inter-
section of local UF-monoids. These proofs are standard, but again for complete-

ness’ sake they are included.

PROPOSITION 5.19. Let S be a UF-submonoid of a polycyclic-by-finite group
G and assume S satisfies ascending chain condition on left and right ideals. Let
P = pS be a minimal prime ideal of S and W = {product of such q’s | q are
prime elements of S but not associated with p}. Denote by Sy the localized monoid

SW-L. Then

1. Sw is a UF-monoid satisfying ascending chain condition on left and right
ideals and X'(Sw) = {Swp}.

2. C(P) is an Ore set in S, and the localized monoid Sc(p) equals S(N(S) \
P)™! = Sy.

3. S = npexl(s)SC(p).

Proof. (1). As a localization of S, it is clear that T = Sy also satisfies the
ascending chain condition on left and right ideals.

Now we show that p is also a prime element of 7. First we show that pT is
an ideal. Let w € W. Then by Lemma 5.10 pwS = wS N pS = wpS. Note
pT = pwT = pwST = wpST = wpT, and thus w='pT = pT. So TpT = pT.
For symmetry reasons, Tp = TpT = pT is an ideal of T. Next we show that
pT'NS =pS. Take ptw™ =s € pT NS, then pt = sw € pS. Since w € C(pS), we

have s € pS. Thus we have proved pT' NS C pS. The converse is obvious. Now
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we can show that pT is also a prime ideal. Since ideals of 7" are generated by their
intersection with S, the equality p7 N S = pS clearly implies that indeed pT is a
prime ideal.

To show that T is a UF-monoid, let P be a prime ideal of 7. Thus SN P is an
ideal of S. Since S is 2 UF-monoid, there exists an element n € N(S) such that
n€ PNSand n=gq---q for prime elements g; of S with 1 <: < k. If none of
the g; are associated with p, then n € W and thus » is a unit in 7" and therefore
P =T, a contradiction. Then there exists a @i, such that g;, is associated with
p. Therefore p € P and thus T is a UF-monoid. Actually the previous shows also
that every prime element of T is associated with p. Thus X'(Sw) = {Swp}.

(2) The equality pT NS = pS clearly implies that C(pS) € C(pT). Next we
show that any element ¢ of C(pT) is a unit in T. Because T C G =8NS,
there exist y € S and n € N(S) such that cyn~! =1 and thus cy = n. Since S is
a UF-monoid, then n is a product of prime elements g of S where 1 <1 < k. If
none of the ¢; is associated with p, then n € W and thus is a unit in T. Otherwise,
n = up' for some u € W and some i. Since c € C(pT'), we obtain that y € pT.
Therefore cy’p = up* for some y' € T and thus cy’ = up’~!. Continuing this
procedure, we get c is a unit in 7.

From the above we know every element of C(pS) is a unit in T. Thus C (pS)
is an Ore set of S. Indeed, for any ¢ € C(pS) and s € S, we have cys = s for some

y € T. Write y = y’w™! and then cy’s'w™! = s for some y,s € Sand w € W.
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Therefore cy’s’ = sw where y’s’ € $ and w € C(pS). Moreover, Sy C Sc(ps)
implies that Sy = Scps)-

(3) Obviously S C Npexi(s)Sc(p)- We will show that Npexi(s)Scpy € S.
Note that every P € X'(S) is generated by a prime element of S since S is
a UF-monoid. Let ¢ € Npexi(s)Scp)- Since Npexi(5)Scpy € G = SN(S)71,
we get ¢ = r(py---p,)”! where p; are prime elements of S. Furthermore, we
write also ¢ = r(p;---p,)™! = s;c7! where s; € S and ¢; € C(p:S). Because
¢n € C(psS) and because of (2), we know c,s = p; ---pnt for some s € S and
t € C(paS). However ¢, € C(p,S) implies that s = vp, for some v € S. Hence
Tt = gp1-*-Pat = qc,S = qc,up,. Note that ¢t € C(p,S), we obtain r € p,S.
Therefore ¢ € S(p1---pn-1)™'. Repeating this process, we get ¢ € S. Thus

npexl(s)SC(P) = S a

5.6. Noetherian Unique Factorization Semigroup rings

Now let us turn back to semigroup algebras K[S]. Recall that X'(K[S]) denotes
the set of height one prime ideals of K[S] and X}(K[S]) denotes the set of height
one prime ideals of K'[S] intersecting S. The set of all prime ideals is denoted by
Spec(K[S]). For any ideal I of K[S] we denote by C(I) the set of elements of K[S]
which are regular modulo /. Set C(K[S]) = (| C(P), where P ranges over all the
height one prime ideals of K[S5].

In this section we investigate when a semigroup algebra of a submonoid of a

torsion-free polycyclic-by-finite group is a Noetherian UFR.
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5.6.1. First we need two propositions. For an element f = > ses kss € K[9],

we write supp(f) = {s € S |0 # k, € K}, the support of f.

LEMMA 5.20 (Lemma 3.1, [38]). Let K be a field, S be a submonoid of a tor-
sion free polycyclic-by-finite group and suppose S satisfies the ascending chain con-

dition on left and right ideals. Then the following conditions hold.

(1) C(pK[S]) S C(p*K[S]) for any prime element p € S and any positive inte-
ger k.

(2) If p is a prime element of S and z is a normal element of S with z ¢
pK([S], then zK[S]p™K[S] = zp™K[S] for any positive integer m. So,
if p1,- -+, Pn are non-associate prime elements of S, then p'' - -pinK[S] =
prE[SIN--- NPl K[S]-

(3) Suppose S is a UF-monoid, then each nonzero element f of K[S] can be
written in the form f = hn for some h € K[S] and n € N(S), where
h & pK|[S] for any prime element p of S. Furthermore, n is unigque up to

inverses.

Proof. (1). This is a special case of the elementary result that if z is a regular
normal element of an arbitrary ring R then C(zR) C C(z*R) for every positive
integer k.

Since S is a submonoid of torsion free polycyclic-by-finite group, then every

prime element of S is also a prime element of K[S]. Thus (1) is obvious.
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(2) Suppose za = p™b for some a,b € K[S]. Because z is a normal element
and z ¢ pK([S], z € C(pK[S]). Hence by (1), z € C(p™K][S]). It follows that
a € p" K[S]. Hence za € zp™K[S]. Hence (2) follows.

(3) Let 0 # f € K[S]. Because K[S] is right Noetherian there exists & € K[S]
so that AK[S] is maximal with respect to the condition f = An, for some n € N(S).
By the maximality condition on AK[S], the element ~ does not have any prime
element of S as a factor. So the first part of (3) follows.

For the last part, assume An = A'n/, with n,n’ € N(S) and h,h' € KI[S],
and h,h’ do not belong to any pK[S], with p a prime element in S (that is,
supp(h) € pS and supp(h’) € pS). Since S is cancellative, supp(h)n = supp(h’)n’,
and thus supp(h)Sn = supp(h')Sn’. Hence, for any primep € S, n € pS if and
only if n’ € pS. Since n and n’ are products of prime elements in S and because

S is cancellative it follows that n = n’u for some u in the unit group of S. O

As for commutative semigroup algebras (with notations as in (3)) the element
n € N(S) is called a homogeneous content of f € K[S]. If n is a unit, then we
say that f is homogeneous primitive (h-primitive). It is easily verified that this
definition is left-right symmetric. Note that, if § = N(S), then n is a greatest

common divisor of the elements in supp(f).

LEMMA 5.21 (Lemma 3.2 in [38]). Let K be a field and S be a torsion free
submonoid of a polycyclic-by-finite group. Suppose S satisfies the ascending chain

condition on left and right ideals. If S is a UF-monoid and h is a homogeneously
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primitive element in N(K([S]), then h € C(wK([S]) for any non-invertible element

w € N(S).

Proof. Let w € (N(S)\ U(S)). Write w = qf'---g', with each ¢; a prime
element in S and each ¢; a positive integer. By Lemma 5.20, wK[S] = ¢ K[S] N

--N g K[S]. Since h ¢ ¢;K[S] and because k is normal, A € C(g;K[S]). Then,
again by Lemma 5.20, & € C(q; K[S]) and thus h € C(wK[S]). O

5.6.2. We also need the following Lemma due to Menal [49, Lemma 2].

LEMMA 5.22. Let R be a ring and M a nontrivial monoid so that R[M] is a
domain. Let a € M such that a = af8 for some o, 8 € R[M]. If supp(a) contains

a unit then o is a unit.

Proof. Denote by a ~ b if a = ub for some u € U(S). Then ~ is an equivalence
relation. Let
a=of=U+X)Ya+Z,+---+ Z,). (%)

where U is such that supp(U) C U(M) and X is such that supp(X) N U(M) =0,
Ya denotes the sum of terms in § that have a as a right factor, and Z,,--- ,Z,
denote the sum of equivalent terms in 3 that do no t have a as a right factor.

Note that by assumption U # 0. We want to show that n = 0. Suppose n > 0.
Since R[M] is a domain, for any k we have UZ; # 0 and its support can not
contain left multiples of a. So, there exists u € supp(U) such that uz; = z'z; for

some z and z; in Z; and Z; respectively where z’ is a non-unit. From this we see
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that for each z; € Zj there is an index j with z, = z”z, for some zj € Z; and some
non-unit z”.

Re-indexing, we obtain:

21 =Ty1292,
22 = TIapz3,
2y = T2y,

where ¢ > 1 and the z;’s are non-units. But then
Z] = T1Tg -T2
implies z, is a unit, a contradiction. Hence n = 0 and thus 8 = Ya. Therefore o

is a unit. O

5.6.3. Let S be a submonoid of a torsion free polycyclic-by-finite group G.
We now determine when K[S] is a left and right Noetherian UFR with trivial
central class group (or equivalently, all height one prime ideals are generated by
a central element). Actually, we show a more general result. For this we re-
call that Brown in [2, 4] showed that A[G] is a Noetherian maximal order with
class group isomorphic with the first cohomology group H(G/Cg(A(GR)), K= x
A(G)) (here C(A(G)) denotes the centraliser of A(G) in G). In particular, if
K[G] is a UFR, then all height one primes are generated by a central element
if and only if H'(G/Ce(A(G)), K= x A(G)) = {1}. More generally, Wauters
in [60] showed that if K[G] is a UFR (and K has characterisitc zero) with all
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HYG/Cc(A(G)), A(G)) = {1} then every height one prime ideal is generated by
a semi-invariant. Recall that 0 # r € K|[G] is called a semi-invariant if there exists
A € Hom(G, K~) so that grg=' = A(g)r for each g € G () is called the weight of
r). Note that a semi-invariant element is normal in K[G]. In [60], Theorem 5.3,
it is described when H'(G/Ce(A(G)), A(G)) is trivial.

Also recall that it still is an open problem when a group algebra K[G] of a
torsion free polycyclic-by-finite group only has trivial units, that is, all units in
K[G] are of the form kg with 0 # k € K and g € G. It is conjectured that this
is always the case. In case G is a right ordered group (for example a poly-infinite

cyclic group) then it is well known and easy to show that the conjecture holds.

THEOREM 5.23 (Theorem 3.3 in [38]). Let S be a monoid with a torsion free
polycyclic-by-finite group of quotients G. Assume S satisfies the ascending chain
condition on left and right ideals. Suppose that K[S] is a (Noetherian) UFR, then
K[G] is a UFR, and if furthermore all units in K[G] are trivial, then S is a UF-
monoid. Conversely, suppose that K[G] is a UFR such that every height one prime
ideal of K[G] is generated by a semi-invariant and S is a UF-monoid, then K[S]

is a (Noetherian) UFR.

Proof. Note that since G is torsion free, the group algebra K[G], and thus also
K[S], is a domain (see for example [56, Theorem 37.5]).
Assume that K[S] is a Noetherian UFR. Since K[G] is a Noetherian localization

of K[S] it is easily shown that K[G] is a UFR.
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Because of Theorem 5.16, to prove that S is a UF-monoid, it is sufficient to
show that if s € N(S) is an irreducible element in N(S), then s is prime in S.
Actually we will show that s is prime in K[S]. Because of Lemma 5.2, we only need
to show that s is irreducible in N(K[S]). So, assume s = af with o, 8 € N(K[S]).
Then 1 = (s7')af € K[G]. So @ and B are units in K[G]. Because of the
assumption that units are trivial in K[G], we get that supp(ea) = {z} and hence
z € §N N(KI[S]) = N(S). Similarly supp(8) = {y} and y € N(S); and also
s = zy. The irreducibility of s in N(S) therefore gives t hat z or y, and thus « or
B is a unit in K[S] (Lemma 5.22), as required.

For the converse we assume S is a UF-monoid, K[G] is a UFR, and every height
one prime ideal of K[G] is generated by a semi-invariant. We prove K[S] is a UFR.
Take any prime ideal P of K[S]. We need to prove that P contains a principal
prime ideal of K'[S]. If P S # 0 then, by Proposition 5.15, K[P N S] is a prime
ideal of A'[S]. Hence PN S is a prime ideal in S. So by assumption (2), PN S
contains a prime ideal Sp = pS € X!(S), p € S. Because of Proposition 5.15,
K[Sp] € X'(KI[S]), as required.

Next assume P(\S = 0, or equivalently, P N N(S) = 0. It follows that
PK[G]N K[S] = P and PK|[G] = K[G|P is a prime ideal of K[G]. Since K[G] is
a UFR, the prime ideal PK[G] contains a prime element of K[G]. By assumption,
K[G]z C K[[G]P for some semi-invariant z (with weight X) of K[G]. Then gzg~! =
A(g)z for any g € G and thus K([G]z = zK[G] and K[S]z = zK[S]. Write

z = hst™! for a homogeneous primitive element ~ € K[$] and s,t € N(S). Then
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we have K[S]h = K[S]zts™! = zK[S|ts™! = 2¢s7'K[S] = AK[S] and thus & €
N(KIS]). Note also that, if z € AK[G]( K[S], then z = hyf~" with y € KI[S]
and f € N(S). So zf = hy. Since h € N(K[S]), Lemma 5.21 implies that y = ¢/ f
for some y’ € K[S] and thus z = hy’ € hK[S]. So indeed AK[G]( K[S] = hK][S].
Since AK[G] is a prime ideal and because K[G] is Noetherian localization of K [S],
we get that (see for example Lemma 7.15 in [52]) AK[S] = K[S]A is a prime ideal
of K[S] and thus A is prime element of K[S]. Obviously AK[S] C P. This proves
that K[S] is a UFR. O

COROLLARY 5.24 (Corollary 3.4, [38]). Let S be a monoid satisfying the as-
cending chain condition on left and right ideals. Assume S has a torsion free
polycyclic-by-finite group of quotients. Then, K([S] is a UFR with all height one
prime ideals generated by a central element if and only if S is a UF-monoid with
all minimal prime ideals generated by a central element and K[G] is a UFR with

all height one prime ideals generated by a central element.

Proof. Because of Theorem 5.23 (and its proof) we only need to show that if K[S]
is a UFR with all height one prime ideals generated by a central element then S is
a UF-monoid with all minimal primes generated by a central element. Again, as
in the proof of Theorem 5.23, it is sufficient to show that every irreducible element
s € N(S) is irreducible in N(K[S]) and central in K[S]. Since s is a normal
element and K[S] is a UFR with all height one prime ideals generated by central

element, write s = p"* - - - p¢* for some central prime elements p; of K[S]. Clearly



108 5. NOETHERIAN UNIQUE FACTORIZATION SEMIGROUP RINGS

K[G] = K|[G]s and thus each p; is a central unit in K[G]. Obviously, p; € K[A(G)].
Since AG is a torsion free abelian group (and thus ordered), each p; is a trivial
unit. Hence p; = k;z; for some k; € K and z; € Z(S). Thus s = z7*-- -zp* and
each z; € Z(S). The irreducibility of s in N(S) implies that s = z;. So indeed, s

is central in K[S] and is irreducible in N(K[S]). O.

5.6.4. Let S be a UF-monoid such that every minimal prime is completely
prime, it is easy to show that S = N(S) (a similar argument can be found later in
Theorem 5.27). For the normalizing semigroups, we have a stronger result. First

we need the following lemma (this is Gauss Lemma in case S is abelian).

LEMMA 5.25 (Lemma 3.5 in [38]). Assume S is a normalizing UF-monoid and
K a field and K[S] a domain. Assume that f,g are h-primitive. Then fg is h-

primitive.

Proof. The proof is similar to that of the commutative situation (see for
example Theorem 14.4 in [23]). However, for completness’ sake we include a proof.
Since § is a normalizing UF-monoid, S/U(S) = T is a free abelian semigroup. Let
< be a linear order on T and let 5 denote the natural image of s € S in T. So we
can consider K[S] as a ring graded by the ordered monoid T'.

Write f = X7, a;s; and g = £, b;t;, where a;,b; € K[U] and s;,¢; € S so that
51<S2<---<3p,andt <tz <---<1t, Since Sis a normalizing U F-monoid,
to prove that fg is h-primitive, it suffices to show that each prime element w € S

does not divide all elements in the support of fg.
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Now, ged(supp(a;s;)) = s; and ged(supp(b;t;)) = t;. Because, by assumption,
f is h-primitive, there exists an index i so that s; & Sw and s; € Sw for all
1 < £ < 4. Similarly, there exists an index j so that t; € Sw and t; € Sw for all
1 <k < j. Now, for the T-gradation on K [S], the s;f;-component of fg has the

form

a;8;b;t; + (a sum of terms azSzbyt,, where either z <iory <j).

N

Clearly w then divides each such az5;b,t,. On the other hand supp(a;s;b;t;)
U(S)sit; and s;,t; & Sw. Thus supp(a;sib;s;) € Sw. Since supp(a;s;b;t;) C

supp(fg), the result follows. O

THEOREM 5.26 (Theorem 3.6 in [38]). Let S be a normalizing monoid with
a torsion free polycyclic-by-finite group of quotients G. Assume S satisfies the
ascending chain condition on left and right ideals. Then K[S] is a (Noetherian)

UFR if and only if K[G) is a UFR and S is a UF-monoid.

Proof. The proof follows the line of that of Theorem 5.23. Hence we only prove
those claims in the proof that require a different argument. First assume that
K[S] is a U.F.R.. To show that S is a UF-monoid it is sufficient to show that
each irreducible element p € S is prime in S. Again by Proposition 5.16 it is
sufficient to show that p is irreducible in K [S]. For this, suppose that p = o8 with

a,B € K[S]. Hence p = ab for some a € supp(a) and b € supp(f). Because of
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the irreducibility of p in S we get that a € U(S) or b € U(S). It then follows from
Lemma 2 in [49] that « or f is a unit in K[S], as desired.

Conversely, assume K[G] is 2 U.F.R. and S is a UF-monoid. With the same
notation as in the proof of Theorem 5.23, let P be a prime ideal of K[S] so that
PNS =0 Let z=hst™" be a prime element in PK[G], with A a homogeneous
primitive element and s,¢ € N(S) = S. Then K[G]h = K[G]z = hK[G]. Suppose
now that z € AK[G] N K[S]. Then z = hyf~! with y € K[S] and f € N(S). So
zf = hy. Write y = y'c, with ¢ € N(S) and y’ an h-primitive element in K[S].
Hence zf = hy'c. By Lemma 5.25, we know Ay’ is h-primitive. It thus follows that
¢ € §5f and so there exists ¢ € S so that z = hy'c’ € hK[S]. Hence we have shown
that AK[G]( K[S] = AK([S]. Similarly K[S]h = K[G]h( K[S]. Consequently,

K[S]h = hK[S] is a prime ideal contained in P. The result therefore follows. O

5.6.5. Moreover, we can determine when K[S] is a UFD.

THEOREM 5.27 (Theorem 3.7 in [38]). Let S be a submonoid of a torsion free
polycyclic-by-finite group of quotients G. Then, K[S] is a Noetherian UFD if and
only if the following conditions are satisfied:

1. K[G] is a UFD,

2. § satisfies the ascending chain condition on right and left ideals,

3. S = N(S) is a UF-monoid.

Proof. Assume the three conditions are satisfied. By Theorem 5.26, K[S] is a

Noetherian UFR. Now we need to prove that every height-1 prime ideal P of K [S]
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is completely prime. If PN S = @, then K[G]P € X'(K[G]) and K[S]/P C
K[G]/K[G]P. So K[S]/P is a domain. On the other hand, if PN S # 0, then
P = K[p] with p = SN P a minimal prime in S. It follows that K[S]/P = Ko[S/p],
a contracted semigroup algebra. Since, by assumption, S \ p is a subsemigroup of
S, we get that K[S]/P = K[S \ p]. As a subring of K[G], the latter is therefore a
domain as well.

Conversely, assume K[S] is a UFD. As a Noetherian localization of a UFD,
the group algebra K[G] is a UFD. Clearly condition (2) is satisfied as K[S] is
Noetherian.

To obtain condition (3), by Theorem 5.26, we only need to show S = N(S).
So let s € S\ U(S). Because SN(S)~! is a group, there exist ¢ € S and n € N(S)
so that stn™' =1 and thus st = n. As n is a normal element in the UFD K9],
M = p1 - - - Pk, a product of prime elements p; in K[S]. Since each ideal p;K[S] is
completely prime and because K'[S] is a domain it follows that s = ac and t = 8¢
for some ¢,c’ € N(K[S]), a,8 € K[S], and cc’ € Sn. Hence n = afB’cc’, for some
B’ € K[S]. It follows that «, 8 € U(K[S]) € N(K[S]). Hence s,t € N(K[S])NS =

N(S), as required. O

5.6.6. Let S be a submonoid of a nilpotent group. In [35] it is shown that
K[S] is left Noetherian if and only if K[S] is right Noetherian, in other words, the
ascending chain condition on left ideals of S is equivalent with the ascending chain

condition on right ideals of S.
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COROLLARY 5.28 (Corollary 3.8 in [38]). Let S be a submonoid of a lorsion
free finitely generated nilpotent group of quotients G. Assume S satisfies the as-

cending chain condition on left ideals. Then the following conditions are equivalent.

1. K[S] is a UFR.
2. K[S] is a UFD.
3. S = N(S) is ¢ UF-monoid

Proof. Note that G is a poly-infinite cyclic group and thus all units in K[G]
are trivial. Since G is a torsion free finitely generated nilpotent group, Corol-
lary 5.7 yields that K[G] is a UFD. So, by Theorem 5.27, conditions (2) and (3)
are equivalent.

It remains to show that (1) implies (3). Now, if K[S] is a (Noetherian) UFR,
and thus a maximal order, th;:n we know from [34] that § = N(S). From Theo-

rem 5.23 we get that S is a UF-monoid. O

5.7. Examples

5.7.1. Consider submonoids of G = (z,y | y~'zy = z7!). Note G isnot a
nilpotent group. In the following we always use the equivalent group condition
zyz = y. Obviously A(G) = (z,y* | zy> = y?z) is a torsion free abelian group.
First K[G] is not a UFD by Lemma 5.5. However, because K[G] is a prime PI-
algebra, it follows from Lemma 5.3 and Lemma 5.4 that K [G] is a UFR.

Now let us look at the submonoids of G.
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1. Let S; be a submonoid generated by 1,z,y%. Because zy? = y2z, this
submonoid is abelian. Obviously S, = Z, @ Z, is factorial, where Z; is
isomorphic to the additive monoid of nonnegative integers. Hence K[S,] is

a UFD.

S}

. Let S; be the normalizing submonoid generated by z,z~!,y. Since U(S,) =
(z,z7') and S,/U(S,) is free abelian, S, is a UF-monoid. By Theorem 5.23,
K[S,] is a Noetherian UFR.

3. Let S35 be the submonoid generated by 1,z,y. Then the set of normal el-

ements is generated by 1,y? yzy,yz?y, - ,yz'y, --. Note in this monoid,

y>Ss C yzyS; C yz?ySs C -+~ (yz*t'y & yz'yS; ). Hence we have a strictly
ascending chain on principal ideals of S. Hence K[S3] is not a Noetherian

UFR. In fact K[S] is not even a UFR.

5.7.2. Consider submonoids of G = (z,,z3,a | 22, = z,Za,a is central).
Obviously G is a torsion free nilpotent group. So by Corollary 5.7, K[G] is a UFD.

Let us look at the submonoids of G.

1. Let S; be a submonoid generated by 1,a,z;,z,. Then S, does not satisfy
the ascending chain condition on right ideals as z,2,5; C z,z25) Uz3z,8 C

- C 212251 U---Uztz,S; C ---. Thus K[S,] is not a Noetherian UFR.

N

Let S be the submonoid generated by z,,z; ", z2,a. Then we have a strictly
ascending ideal chain z;'2,S, C z3%z,5, C z;°2,5, C ---. Thus K[S,] is

not a Noetherian UFR.
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3. Let S3 be the submonoid generated by a,a™!,zy, z,. Obviously S; is a
normalizing submonoid. It follows that K[Ss] is a Noetherian UFR (UFD)

since S3 is a UF-monoid and satisfies the ascending chain condition on left

and right ideals.



CHAPTER 6

Unique Factorization Semigroup Rings with a Polynomial

Identity

In this chapter we investigate when a semigroup algebra K [S] of a cancellative
monoid S is a PI domain which is a unique factorization ring. We do not require
that K[S] is Noetherian. In other words, our monoids are submonoids of torsion
free abelian-by-finite groups. In order to tackle this problem we have to inves-
tigate prime ideals of A'[S]. More specifically, we have to prove an analogue of
Proposition 5.15 in the setting of PI semigroup rings. Since a prime PI ring is
embedded in a matrix algebra we are again in a position to apply the theory of
linear semigroups, and hence we are able to prove such an analogue. This is done
in Section 2 while certain properties on unique factorization rings with a PI are
recalled in Section 1. Then we investigate the unique factorization semigroup rings
with a Pl in Section 3. Finally examples are given in Section 4. The results proved

in this chapter will appear in [39].

6.1. PI algebras and unique factorization rings

6.1.1. Let A be a commutative ring. For any integer m > 1, we denote by

A(z,,- - ,zm,) free A-algebra in m free generators z,--- ,z,. A A-algebra R is
115
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sald to satisfy a polynomial identity (shortly, R is a Pl-algebra) if there exists
an integer n and a nonzero element f = f(z,,--- ,z,) € A(zy,--- ,z,) such that
flar,--- ,a2) = 0 for every a;,---,a, € R and one of the monomials of f of
highest (total) degree has coefficient 1. Also R is called a Pl-ring if R satisfies a
polynomial identity with A = Z. Commutative rings, nilpotent rings, and matrix
algebras are basic examples of P/-rings.

We are interested in prime PI rings R. In this case, the well-known Posner

Theorem yields that R is an order in its classical ring of quotient Qu(R) and

Qu(R) = R(Z(R)\ {0})~".

6.1.2. Group algebras satisfying a polynomial identity have been completely
characterized. The following result is due to Isaacs and Passman if cA(K) = 0,
and to Passman if ch(K) > 0. Let G be a group. Then K[G] is a Pl-algebra if and
only if G is abelian-by-finite or G is a p-abelian-by-finite group if ch(K) = p > 0.
A p-abelian group A is a group such that the commutator subgroup A’ is a finite
p-group. If K[G] is a prime PI algebra, then G is a (torsion-free abelian)-by -finite
group. In case of domain, G is torsion free.

Suppose now that S is a cancellative semigroup. Because of Theorem 1.16 one

obtains the following result.

LEMMA 6.1 ( Theorem 20.1 in [52] ). Let S be a cancellative semigroup. If
K{[S] is a polynomial identity ring, then S has a group of fractions G and KI[G] s

a Pl-algebra satisfying the same multilinear identities as K[S].
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6.1.3. In [10, Corollary 4.8], Chatters, Gilchrist, and Wilson showed that a
UFR with a PI is also a maximal order. Let [ be a right ideal of a prime Goldie
ring R which has a classical quotient ring Q. We call [ closedif [ = {r € R:zK C
[ for some right ideal K of R with (R ;; K) = R}. Theorem 4.19 in [10] also yields
that if Ris a UFR with PI then R satisfies the ascending chain condition for closed
right ideals. Note that if R is a maximal order then divisorial ideals are closed.
To justify this claim, it is sufficient to show that if / = (R : (R : I)) is an integral
divisorial ideal of R then [ = {z € R: z(R: [)I C [} and (R 4 (R: I)I) = R.
Indeed, for any =z € I, z(R : ) € R and then z(R : I)I C I. Conversely, let
z(R:I)[ C Iand z € R. Since R is a maximal order, z(R : [) C Rand thus z € [.
Since R is a maximal order we also have (R: (R: [)[) = ((R:[): (R:I)) =R as
required. Therefore, R is a maximal order that satisfies ascending chain condition

on integral divisorial ideals, that is, R is a Krull order.

Abbasi, Kobayashi, Marubayashi, and Ueda in [1] give a different definition of
UFR: an order R is called 2 UFR if R is a Krull order so that all its divisorial ideals
are principal, i.e., a Krull order with the trivial normalizing class group. Also in
[1] ( page 195, Remark (2)) they give an example of group algebra K[G] which
is a UFR in their sense but not a UFR in our sense (i.e., as defined by Chatters

and Jordan). The construction of G is given as follows: let H = (z) be an infinite

e f
cyclic group, where z = € SLy(Z), the 2 x 2 special linear group over

g h
Z. Assume that the eigenvalues of z are of the form a = a + b\/c, 8 = a — b\/c,
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where a,b € Q,2a € Z,c € Z and c is not square ( for example, e = 2 and
f=g=h=1). Let A= (y) x (z) be a direct product of infinite cyclic groups (y)
and (z). Define an action of H on A as follows; y* = y®2z9 and 2% = yf/z%. With
this action, we can construct a semi-direct product G = A x H of A by H. Since
no proper pure subgroup of A is G-orbital, A is a plinth of G. Since A has rank
two, we get that A is eccentric. Brown’s result (Lemma 5.3) implies that G is not
a UFR in our sense. But by Theorem 4.3 in [1], K[G] is a UFR in their sense,
which means every divisorial prime ideal is principal. Also this example tells us

that there exists a height one prime ideal of K[G] that is not divisorial.

6.1.4. However, if R is a PI Krull order then it is well known (see for example
[5], [6], or [29] ) that the divisorial prime ideals are precisely height one prime

ideals. Hence one gets the following result.

THEOREM 6.2. Let R be a prime Pl ring. Then R is a UFR if and only if R

is a Krull order with the trivial normalizing class group.

In [8, Theorem 2.1] Chatters describes when a prime PI group ring is 2 UFR.

LEMMA 6.3. Suppose R[G] is a prime PI ring. Then R[G] is a UFR if and
only if R is a UFR and G is a dihedral-free group satisfying the ascending chain

condition on cyclic subgroups.
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6.2. Prime ideals

Let S be a cancellative monoid. In this section we investigate prime ideals in
prime semigroup algebras K[S] that satisfy a polynomial identity. By Lemma 6.1,
such a monoid S has a group of quotients G = S~'S = §S~! and K[G] is also a
prime ring satisfying a polynomial identity. Hence G is a (torsion-free abelian)-

by-finite group.

LEMMA 6.4 (Lemma 1.1 in [39]). Let S be a submonoid of a torsion-free abelian-

by-finite group. Let G be the group of quotients of S. Then G = SZ(S)~!.

Proof. Because of the assumption G is torsion-free abelian-by-finite. Hence for
a field K, the group algebra K[G] and thus also the semigroup algebra K[S] is a
prime Pl ring. Hence K[S] and K[G] have the same classical ring of quotients Q =
Qua(K[S]), and Q is obtained from K[S] by inverting the nonzero elements in the
centre Z (K [S]) of K[S]. So, for any element g € G, there exists a central element
a € Z(K[S]) such that ga € K[S]. Hence we have g(supp(a)) C S. Now, for any
h € G, hah™ = a. Hence h supp(a) A™! = supp(a) C S. Therefore ghzth~' € S
for any A € G, z € supp(a) and positive integer t. Since G is abelian-by-finite,
there exists a power n so that z* € SN A(G). Since z" has only finitely many
conjugates in G, say ¢1z"g; ", " ,gmT gL, then z = (qrzgr )™ -+ (gmzgit)™ €

Z(S). Since gz = g(g1zg7")™ - - - (gmzgn!)" € S, we obtain that g € SZ(S8) . O
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Let now S be a submonoid of a torsion-free abelian-by-finite group and let K
be a field. Of course the semigroup algebra K[S] has a natural S (and SZ(S)™hH
gradation. We now prove that the homogeneous part of a prime ideal in & [S]
is again a prime ideal. This result is well known for rings graded by torsion-free
abelian groups and, more generally, for rings graded by unique product groups
[30]. As stated in Proposition 5.14 it is also valid for the semigroup algebra of a
submonoid of a torsion-free polycyclic-by-finite group which satisfies the ascending
chain condition on right and left ideals.

Since the classical ring of quotients of a prime PI algebra K[S] is 2 matrix ring
M, (D) over a skew field D, we consider S as a skew linear semigroup. The latter
have been extensively studied by Okninski. For definitions and needed results on

this topic we refer the reader to [53].

THEOREM 6.5 (Theorem 1.2 in [39]). Let S be a submonoid of a torsion free
abelian-by-finite group and let K be a field. The following properties hold.
1. If P is a prime ideal of K[S] with PNS # 0, then K[SN P] is a prime ideal
in K[S].
2. If Q be a prime of S, then K|[Q] is also a prime ideal in K[S].
3. The height one prime ideals of K[S] intersecting S are of the form K[Q]

where ) is a minimal prime ideal of S.

Proof. (1) Let P be a prime ideal of K[S] with PN S # 0. We will show

K[S]/K[S N P] is a prime ring, i.e. the contracted semigroup algebra K,[S/(S N
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P)] =2 K[S]/K[S N0 P] of the Rees factor monoid S’ = S/(S N P) is a prime
ring. Since A'[S]/P is a prime PI ring, Q. (K[S]/P) = M, (D), with D a division
algebra.

Let ¢ : " — M, (D) be the natural monoid homomorphism and S" = &(S).
It follows from the structure theorem of skew linear semigroups ([53]) that the
monoid S” has an ideal U contained in a completely 0-simple subsemigroup U of
M, (D) such that U is uniform in /, the completely O-simple closure of U (see 4-5.1).
Furthermore, the nonzero elements of U are the elements of minimal nonzero rank
of S”. Let A be an abelian subgroup of G of finite index in the group of quot ients
of S. Let A" be the natural image of SN A in S”.

Now we claim that U is an inverse semigroup. Since U is a completely 0-
simple, we can write [/ = M(G; I, A; P), where G is a maximal subgroup of U,
P is the sandwich matrix with | A | rows and | [ | columns. We only need to
show that each row and column of P does not contain more than one non—zero
element. Suppose p;; # 0 and p; # 0. Since U is uniform, the 0-cancellative
parts Uj; = U'j; NU and Ui = Ui; N U of U are nonzero. Let 0 # uj; € Uj;; and
0 # uk; € Uk, then uZug; # 0 and ul;, ug; € A”. By the commutativity of A", we
have uf;uf; = ufu; # 0. Therefore j = k. This shows that each row of P cont ains
exactly one nonzero entry. Similarly, one shows that each column contains exa.ctly
one nonzero entry. So U is an inverse semigroup. Since the K-algebra generated

by U is contained in M.(D) and M,(D) does not have an infinite set of orthogonal
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idempotents, it follows that | / |=| A |= ¢ < co. If necessary, rearranging the
entries of P, we get U= M(G;t,t; E), where E is the identity matrix.

Let I' C S’ be the inverse image of U under ¢. Then
Ko[l'l = S Kol¢™" (H) U {6}],

where H runs through the set of intersections of U with the different H-classes
of . Note that each ¢~ Y(H) U {6} is a semigroup with zero element 6 and thus
Kol¢~'(H) U {0}] is a contracted semigroup algebra contained in A,[S’]. The sum
is direct as K-vector spaces and we thus get a Munn algebra pattern. Since U is

an inverse semigroup we thus get
R=Ko[l'] = £1cijce Rij,
with each R;; = Ko[¢~'(H) U {8}] for some H. Furthermore,
S(RijRu) = {0} (for j # k)
and thus, as R;; Ry is S-homogeneous,
RijRu={0}ifj #k
and, in general,

Ri; R C Ry.



6.2. PRIME IDEALS 123

We now show that Ko[/'] is an essential ideal of Ap[S'] and also that Ko[I'] is
a prime ring. It then follows that Ky[S'] is prime, i.e., K[S N P] is a prime ideal
of K[S].

To show that Ko[I'] is an essential ideal of Ko[S'], it is sufficient to show that the
right (respectively left) annihilator of K[/'] in K[S'] is zero. Suppose Ko[/']z’ =0
for some z’ € Ko[S']. Let I be the inverse image of I’ in S, and z an inverse image
of z' in K[S]. So Iz € K[SN P] and thus / supp(z) € (SN P). Since [ is an ideal
of Sand [ £ SN P, we have supp(z) C (SN P). Therefore ' = 0 as required.

Finally we show that Ko[I'] is prime. Now, note that for each 1 < i < ¢ there
exists an H-class H of U so that

Ri = Kol¢™' (H) U {6}] = K[s~'(H)]
and ¢~'(H) is a subsemigroup of S. The torsion free assumption on the group of
quotients of S implies that A’[S] is a domain (see for example [56, Theorem 37.5]).
Hence each diagonal component R;; is domain. Therefore, to prove that Ky[l'] is
prime, it is sufficient to show that R;;JR;, # {0} for every nonzero ideal J of
Ko[I']. First we show that JRy; # {0}. Suppose the contrary, ie., JR; = {0}.

Then for any (a;;) € J, we get (a;;)RR;; = {0}. Hence
(ai;) I'(I")11 = {0}

Note that {0} # I'(I")11 © S’. Now take a, [, [, as inverse images of (aij) € Ko[I']

in K[S] and [', I}, in S, then we get

oIl € K[SN PJ.
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So
sll;; CSNP for any s € supp(a).

Since [1;;, £ SNP,weget s€ SNP forany s € supp(a). Therefore a € K[SN P]
and thus (a;;) = 0. This proves that indeed JRy; # {0}. Similarly, if Ry R(aij) =0
for (a;;) € JR1y , then (a;;) = 0. Thus Ry, JR;; # {0}, as required.

(2) Let @ be a prime ideal of S. Then there exists an ideal P of K [S] maximal
with respect to the condition P NS = Q. Clearly P is a prime ideal of K[S]. By
(1), K[Q] = K[P N S] is a prime ideal of K[S].

(3) Let P be a height one prime ideal of K[S] with PN S # (0. Then, by (1),
K[P N S] is also a prime ideal. Since P has height one, we get P = K[PNJG].
If PN S is not minimal, then there exists a prime ideal P, € PN S. By (2)
K[P] C K[P N S]is a prime ideal, in contradiction with P € X'(K[S]). Hence

P NS is a minimal prime ideal of S. O

COROLLARY 6.6 (Corollary 1.3 in [39]). Let S be a submonoid of torsion free
abelian-by-finite group and let K be a field. If K([S] is Noetherian or if K[S] is a
Krull order then every prime ideal of K[S] which intersects S non trivially contains
a height one prime ideal. In particular, the height one prime ideals of K[S] that
intersect S non trivially are precisely the ideals of the form K[P] with P a minimal

prime ideal in S.

Proof. Because of the assumptions and Lemma 6.4 every ideal of S contains a

central element of S, and thus also a central element of K[S]. If K [S] is Noetherian,
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then Theorem 6.5 and the Principal Ideal Theorem imply that for every prime ideal
Q of S, the ideal K[Q] of K[S] contains a height one prime ideal P with PN S # §.
Again by Theorem 6.5, it then follows that P = K[P N S] with PN S a minimal
prime in S. This proves the result in the Noetherian situation. On the other
hand, if K[S] is a PI Krull order then we know that every prime ideal contains a
divisorial prime ideal and hence contains a height one prime ideal. So again the

result follows from Theorem 6.5. O

6.3. Unique factorization semigroup rings with PI

In this section, we discuss when semigroup rings of submonoids of torsion-free

abelian-by-finite groups are unique factorization semigroup rings with PI.

6.3.1. For a submonoid S of a torsion-free abelian-by-finite group, the de-

scriptions of UF-monoid can be obtained from Lemma 6.4 and Proposition 5.11.

COROLLARY 6.7 (Corollary 2.3 in [39]). Let S be a submonoid of a torsion

Jree abelian-by-finite group. Then the following conditions are equivalent.

1. S is a UF-monoid.

2. Lvery non-invertible normal element of S can be written as a product of
prime elements.

3. Every irreducible element in N(S) is prime in S and S satisfies the ascending

chain condition on principal ideals generated by a normal element.
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LEMMA 6.8 (Lemma 2.4 in [39]). Let S be a submonoid of a torsion-free abelian-
by-finite group and let K be a field. If S is a UF-monoid then for any f € K[S]
there exist n € N(S) and f, € K[S] so that f = fin and f, & pK[S] for any prime

element p € N(S).

Proof. Let f € K[S]. If supp(f) C Sny, for n; € N(S), then f = fin, for some
f1 € K[S]. The same argument applied to f; yields f; = fon, with n, € N(S) so
that supp(fi) € Sn,. Repeating this argument we get normal elements n; € N(S)

and f; € K[S] so that

fi = firinigr
If for some i the ideal generated by supp(f;) is not contained in any Sn with
n € N(S)\ U(S), then

f=fnieomy

and f; € K[S]p for any prime element p € N(S), as desired. So assume that the
previous does not hold for any i, i.e., for any 7 the normal element n; is not a unit.

Now the ideal of S generated by supp(f) contains a central element z. So
z € Sngng_y---n,

for any positive integer k. Because of Corollary 6.7 the element z can be written
uniquely (modulo inverses) as a product of prime elements. But since also each n;

is a product of prime elements this yields a contradiction. O
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As in the previous chapter, an element f; € K [S] that does not belong to any
K[S]p, with p a prime element of S, is called an homogeneously primitive element

(or simply, an h-primitive element).

6.3.2. For a submonoid S of a torsion-free abelian-by-finite group we know
from Theorem 6.5 that any prime element p € S is also a prime element in K [S]-

So we obtain from Lemma 5.10 the following facts.

1. C(pK|[S]) € C(p*K[S]) for any prime element p € S and any positive integer
k.

2. If p is a prime of S and z is a normal element of § with z ¢ pK[S], then
zK[S]Np™ K[S] = zp™ K[S] for any positive integer m. So, if py,--- ,p, are
non-associated prime elements of S, then pj' ---pin K[S] = p K[S]N--- N
prK[S].

3. If, furthermore, S is UF-monoid and A is a h-primitive element in N(K[S]),
then A € C(wK([S]) for any non-invertible w € N(S), where C(wK]|S])

denotes the set of regular elements of A[S] modulo wK[S].

Let S be a submonoid of a torsion-free abelian-by-finite group G. We now
determine when K[S] is a (PI) UFR with trivial central class group, that is a UFR
with all height one prime ideals generated by a central element. We actually prove

a more general theorem.
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THEOREM 6.9 (Theorem 2.5 in [39]). Let S be a submonoid of torsion-free
abelian-by-finite group. Let G be the group of quotients of S. Assume that S
s a UF-monoid. Then KI[S] is a UFR implies that K[G] is a UFR. Conversely,
if K[G] is a UFR such that every height one prime ideal is generated by a semi-

invariant, then K[S] is a UFR.

Proof. Because of Lemma 6.4, the group algebra K[G] is the localization of K[S]
with respect to the central Ore set Z(S). Hence, for any prime ideal Q of K [G],
the intersection QN K[S] is a prime ideal in K[S]. It then easily follows that A" [G]
is a UFR if K[S] is 2 UFR.

Conversely, assume K[G] is a UFR. We show that K[S] is a UFR. Let P be a
prime ideal of K[S]. We have to prove that P contains a principal prime ideal. In
case PN S # () then, by Theorem 6.5, K[P N S] is also a prime ideal of K[S]. By
assumption, S is a UF-monoid. Hence the prime ideal PN S of S contains a prime
element p € S. Again by Theorem 6.5, K[Sp] is a prime ideal of K[S] contained
in P.

So we now consider the case that PN S = 0, and thus PK[G] = K[G]P is a
prime ideal of K[S] so that PK[G] N K[S] = P. Since K[G] is a UFR, the prime
ideal PK[G] contains a prime element ¢ of K[G]. By assumption, choose q as a
semi-invariant. then ggg~' = A(g)q for any g € G and some A € Hom(G, K~).
Moreover, ¢K[S] = K[S]q. Because S is a UF-monoid, we obtain from Lemma 6.8

that ¢ = hst™! for an homogeneous primitive element A € K[S] and s,t € N(S).
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Then we have K[G]h = K[Glqts™' = qK|[Glts™! = ¢K[G] = hK[G] and K[S]h =
K[Slgts™" = qts~'K[S] = hK[S]. Now we show that AK[G]( K[S] = hKTS].
Hence it follows that AK[S] = K[S]hA is a prime ideal contained in P, as required.
So let z € hK[G]( K[S], then z = hyn~! with y € K[S] and n € N(S). So zn =
hy. Since By the earlier remarks, if n & U(S), then & € C(nK[S]). Hence y = y'n
for some y' € K[S]. So = = hy' € hK[S]. So indeed AK[G]() K[S] = hK[S]. O

If in the above theorem G also is finitely generated, then by Brown’s result K[G]
is always a UFR. If, furthermore, the first cohomology group H'(G/Cc(A(G)), A(G))
is trivial, then Wauters showed in [60] that every height one prime of K[G] is gen-
erated by a semi-invariant. So, in this case it follows that K[S] is a UFR provided

that S is a UF-monoid. The converse holds if all units in K[G] are trivial.

COROLLARY 6.10 (Corollary 2.6 in [39]). Let S be a submonoid of a torsion-
free abelian-by-finite group and K a field. Let G be the group of quotients of S and

assume that all units of K[G] are trivial. If K[S] is a UFR, then the following

conditions are satisfied:

1. S is UF-monoid.

2. G satisfies the ascending chain condition on cyclic subgroups.

Proof. From Chatters’ result (Lemma 6.3) we know that K[G]isa UFR if and only
if G satisfies the ascending chain condition on cyclic subgroups. Hence, because of

Theorem 6.9 it is sufficient to prove that if K[S]is a UFR, then S is a UF-monoid.
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Now from Theorem 6.2 we know that K[S] satisfies the ascending chain condition
on principal ideals generated by normal elements. Hence S satisfies the ascending
chain condition on principal ideals generated by normal elements. So, because of
Proposition 5.11 it remains to show that if n is an irreducible element in N(S),
then n is prime in K[S]. Since K[S] is a UFR and because of Lemma 5.1, it is
actually sufficient to show that n is irreducible in N(K[S]). This is proved as
in the last part of the proof of Theorem 5.23. If n = a8 with o, 8 € N(K[S])
then a,B are units in K[G]. Therefore | supp(a) |=| supp(8) |= 1 and thus
a,B € SN N(K[S]) = N(S). The irreducibility of n in N(S) implies that a or B

is a unit in S and thus in K[S]. O.

In general it remains an open problem whether the the two conditions listed
in Corollary 6.10 are necessary and sufficient for A[S] to be a UFR. However, we
now state a solution to the problem under the extra assumption that the central

class group is trivial.

COROLLARY 6.11 (Corollary 2.7 in [39]). Let S be a submonoid of a torsion
free abelian-by-finite group. Let G be the group quotients of S. Then, K[S] is a
UFR with all height one prime ideals generated by a central element if and only
if S is a UF-monoid with all minimal prime ideals generated by a central element

and K[G] is a UFR with all height one prime ideals generated by a central element.

Proof. Because of Theorem 6.9 (and its proof) we only need to show that if K[S]

is a UFR with all height one prime ideals generated by a central element then S is
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a UF-monoid with all minimal primes generated by a central element. Again, as
in the proof of Theorem 6.9, it is sufficient to show that every irreducible element
s € N(5) is irreducible in N(K[S]) and central in K[S]. Since s is a normal
element and K[S] is a UFR with all height one prime ideals generated by central
element, write s = p[* -- - pi* for some central prime elements p; of K [S]. Clearly
K[G] = K[G]s and thus each p; is a central unit in K[G]. Obviously, pi € K[A(G)].
Since AG is a torsion free abelian group (and thus ordered), each p; is a trivial
unit. Hence p; = k;z; for some k; € K and z; € Z(S). Thus s = z7* - -zg* and
each z; € Z(S). The irreducibility of s in N(S) implies that s = z;. So indeed, s

is central in K'[S] and is irreducible in N(K[S]). O.

6.3.3. In case S is a normalizing monoid, that is S = N(S), then we have a

complete solution to the UFR problem.

PROPOSITION 6.12 (Proposition 2.8 in [39]). Let S be a normalizing monoid
(i.e. S = N(S)) with a torsion free abelian-by-finite group of quotients G. Then
the following conditions are equivalent:

(1) K[S] is a UFR,
(2) K[G] is a UFR and S is a UF-monoid,
(3) U(S) satisfies the ascending chain condition on cyclic and S/U(S) is an

abelian UF-monoid.

Proof. That (1) and (2) are equivalent is proved similarly as in the proof of

Theorem 5.26.
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We now prove that (2) and (3) are equivalent. Since § = N(S) we know from
Section 5.3.2 and Propos ition 5.11 that S is a UF-monoid if and only if SJU(S) is
abelian UF-monoid, that is, S/U(S) is a free abelian monoid. Since a free abelian
group satisfies the ascending chain condition on cyclic subgroups, G satisfies the
ascending chain condition on cyclic subgroups if and only if U(S) satisfies the

ascending chain condition on cyclic subgroups. Hence the result follows. O

The above results relate the unique factorization property of a prime ring R to
its cancellative submonoid N(R)* of nonzero normalizing elements. Also in [44]
Jordan investigated this relationship. It is shown that this relationship is not as
strong as one might hope for. For example, an example is given of a Noetherian
prime ring R so that all nonzero ideals contain a nonzero normal element (that is,

R is conformal) and N(R)* is a UF-monoid, however, R is not a UFR.

6.4. Examples

6.4.1. In [24] Gateva-Ivanova and Van den Bergh introduced the class of type
I monoids. A special subclass is that of the binomial monoids. These are studied
in [33] and are defined as monoids generated by a finite set X = {z,,--- T}

subject to precisely n(n — 1)/2 quadratic relations (one for each n > j > i > 1)
ZT;L; = TypZje,

satisfying the following conditions:

Bl. 7 < j and ¢ < j;
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B2. as we vary (z,7), every pair (#/, j') occurs exactly once;
B3. the overlaps z,z;z; = (zrzj)zi = z(z;z;) do not give rise to new relations

in S.

In {24, 33] it is shown that the semigroup algebra A [S] shares several proper-
ties with commutative polynomial algebras. In particular they are Noetherian PI
domains that are a maximal order, and S is UF-monoid. Also G is a finitely gen-
erated torsion-free abelian-by-finite group and thus Theorem 6.9 implies at once

the following result.

COROLLARY 6.13 (Corollary 3.1 in [39]). Let S be a binomial semigroup and
K a field. Let G be the group of quotients of S. Then K'[S] is a unique factorization

ring provided that H'(G/Cq(A(G)), A(G)) = 1.

If G/Cc(A(G)) is a cyclic group of order n with generator g, then it is well
known that (see for example [20]) H'(G/Ce(A(G)), A(G)) = A(G)r/I[A(G) where
A(G)r consists of all elements a of A(G) such that a-a?-a ---a9""" = 1 and
IA(G) consists of all elements of form a~! - a? for any a € A(G). With this
description it is then easily verified that the following three examples of binomial
semigroups satisfy the triviality of the mentioned first cohomology group and hence

yield examples of PI unique factorisation algebras.

EXAMPLE 6.14. The monoid algebra of each of the following binomial monoids

is a Pl Noetherian UFR:
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L. §1 =< z1,z2,z3 > subject to the relations r,z, = TyT), T3T, = T2T3, and
T3Z2 = z123; A(G) =< 71, 74,22 >.

2. So=<1z,T0,T3,T4 > subject to the relations T,z = Tz, 237, = ToZ3, T4Ty =
T2T4,T3T2 = T1T3, T4T2 = T1T4, T4T3 = T3T4; A(G) =< zy, -’52,17:2;,-1’3?;7 T3T4 >.

3. 53 =< 1,22, z3, T4 > subject to the relations ToT| = T|T2,T3T| = T9Ty4,Tal) =

_ — _ . e 2 2 2 2
T223,T3T2 = T1T4, T4Ty = T1T3, T4T3 = T3Z4; A(G) =< 22,23, 2,25, 22,22, 2314 >.

6.4.2. Finally we show that via semi-direct products one easily can construct
non-Noetherian examples of unique factorization semigroup algebras that are PI.
Indeed, let A be a torsion-free abelian group such that K [H] is a UFR but non-

Noetherian. Let ¢ be an automorphism of A of finite order and define the monoid
S=Hx,{z"|n >0},

that is, as a set S is the direct product of the group H and an infinite cyclic

monoid, and the product is defined as follows:
(h12")(ha="™) = hy(p(ha))"2™™.

It follows that S is a normalizing monoid with a group of quotients G that is
torsion-free abelian-by-finite. As S/H is infinite cyclic, it follows that S is a UF-

monoid. Since K[G] is a UFR we again get from Theorem 6.9 that K[S] is UFR.
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