Fields and Coding Theory, MATH4109/6101 Prof. Steven Wang Fall 2013 Carleton University

Homework Assignment #2 Due: Thursday, Nov. 14, 2013 Total marks: 100/120. Term work: 10%

Instruction: Undergraduate students should only do 8 questions including questions 1, 2, 8, 9 and any other four questions of your choices. Graduate student should do all 10 questions.

1. (15 Marks) Consider the field \mathbb{F}_{47} .

- (i) Compute ord(2) and ord(3) in the multiplicative group \mathbb{F}_{47}^* .
- (ii) Use Gauss algorithm to find a primitive element of \mathbb{F}_{47} .
- (iii) Find the least primitive element g of \mathbb{F}_{47} , i.e., g is a primitive element, 0 < g < 46, and $g \leq h$ for any primitive element h with 0 < h < 46.

2. (15 Marks)

- (i) Prove that $x^3 + 2x^2 + 1$ is irreducible over \mathbb{F}_3 .
- (ii) Determine a primitive element γ of $\mathbb{F}_{27} = \mathbb{F}_3[x]/(x^3 + 2x^2 + 1)$.
- (iii) Express all nonzero elements of \mathbb{F}_{27} as powers of the primitive element.
- (iv) Find the smallest positive integer k such that $\gamma^3 + \gamma^7 = \gamma^k$.

3. (10 Marks) Let q be a prime power and r be a prime divisor of q-1. Let $a \in \mathbb{F}_q^*$ and ord(a) = m > 1 in \mathbb{F}_q^* . Prove that $r \mid (q-1)/m$ if and only if $a \in \mathbb{F}_q^{*r}$.

4. (10 Marks) Prove that for any positive integer m,

$$\sum_{a \in \mathbb{F}_q} a^m = \begin{cases} -1, & \text{if } (q-1) \mid m \\ 0, & \text{otherwise.} \end{cases}$$

5. (10 Marks) Let a(n) and b(n) be functions defined on the set of positive integers with values in a multiplicative group G, and assume that G is abelian. Prove that

$$b(n) = \prod_{d|n} a(d)$$

if and only if

$$a(n) = \prod_{d|n} b(d)^{\mu(\frac{n}{d})}.$$

This is the multiplicative version of Möbius inversion formula.

6. (10 Marks) From Question 5 and the following formula that we covered in the class

$$x^{q^n} - x = \prod_{d|n} \Phi_{q,d}(x),$$

deduce the following formula

$$\Phi_{q,n}(x) = \prod_{d|n} (x^{q^d} - x)^{\mu(\frac{n}{d})},$$
(1)

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ be the prime factorization of n. Using (1), prove that

$$n\Phi_{q,n} = q^n - \sum_{i=1}^{r} q^{n/p_i} + \sum_{1 \le i < j \le r} q^{n/p_i p_j} + \dots + (-1)^r q^{n/p_1 \cdots p_r}$$

7. (10 Marks) Let q be a power of an odd prime. Prove that an element $\alpha \in \mathbb{F}_q^*$ is a square element of \mathbb{F}_q^* if and only if $\alpha^{(q-1)/2} = 1$. In particular, $-1 \in \mathbb{F}_q^{*2}$ if and only if $q \equiv 1 \pmod{4}$.

8. (20 Marks) Consider $\mathbb{F}_{16} = \mathbb{F}_2[x]/(x^4 + x + 1)$.

- (i) Compute all characteristic polynomials over \mathbb{F}_2 of elements of \mathbb{F}_{16} .
- (ii) Compute all minimal polynomials over \mathbb{F}_2 of elements of \mathbb{F}_{16} and point out the primitive ones.

9. (10 Marks) Factor $x^{64} - x^4$ into irreducible factors:

- (i) over \mathbb{F}_{16} .
- (ii) over \mathbb{F}_4 .
- (iii) over \mathbb{F}_2 .

10. (10 Marks) Let q be a power of an odd prime. Prove that

$$x^{(q-1)/2} - 1 = \prod_{\alpha \in \mathbb{F}_q^{*2}} (x - \alpha), \quad x^{(q-1)/2} + 1 = \prod_{\alpha \in \mathbb{F}_q^* \setminus \mathbb{F}_q^{*2}} (x - \alpha)$$

Then deduce that for any $f(x) \in \mathbb{F}_q[x]$ which can be completely factored into distinct linear factors and $f(0) \neq 0$, let

$$g(x) = gcd(f(x), x^{(q-1)/2} - 1)$$

then g(x) is a proper divisor of f(x) if and only if f(x) has at least one root in \mathbb{F}_q^{*2} and at least one root in $\mathbb{F}_q^* \setminus \mathbb{F}_q^{*2}$.