Homework Assignment \#2
Due: Thursday, Nov. 14, 2013
Total marks: $100 / 120$. Term work: 10%
Instruction: Undergraduate students should only do 8 questions including questions 1, 2, 8, 9 and any other four questions of your choices. Graduate student should do all 10 questions.

1. (15 Marks) Consider the field \mathbb{F}_{47}.
(i) Compute $\operatorname{ord}(2)$ and $\operatorname{ord}(3)$ in the multiplicative group \mathbb{F}_{47}^{*}.
(ii) Use Gauss algorithm to find a primitive element of \mathbb{F}_{47}.
(iii) Find the least primitive element g of \mathbb{F}_{47}, i.e., g is a primitive element, $0<g<46$, and $g \leq h$ for any primitive element h with $0<h<46$.

2. (15 Marks)

(i) Prove that $x^{3}+2 x^{2}+1$ is irreducible over \mathbb{F}_{3}.
(ii) Determine a primitive element γ of $\mathbb{F}_{27}=\mathbb{F}_{3}[x] /\left(x^{3}+2 x^{2}+1\right)$.
(iii) Express all nonzero elements of \mathbb{F}_{27} as powers of the primitive element.
(iv) Find the smallest positive integer k such that $\gamma^{3}+\gamma^{7}=\gamma^{k}$.
3. (10 Marks) Let q be a prime power and r be a prime divisor of $q-1$. Let $a \in \mathbb{F}_{q}^{*}$ and $\operatorname{ord}(a)=m>1$ in \mathbb{F}_{q}^{*}. Prove that $r \mid(q-1) / m$ if and only if $a \in \mathbb{F}_{q}^{* r}$.
4. (10 Marks) Prove that for any positive integer m,

$$
\sum_{a \in \mathbb{F}_{q}} a^{m}= \begin{cases}-1, & \text { if }(q-1) \mid m \\ 0, & \text { otherwise }\end{cases}
$$

5. (10 Marks) Let $a(n)$ and $b(n)$ be functions defined on the set of positive integers with values in a multiplicative group G, and assume that G is abelian. Prove that

$$
b(n)=\prod_{d \mid n} a(d)
$$

if and only if

$$
a(n)=\prod_{d \mid n} b(d)^{\mu\left(\frac{n}{d}\right)} .
$$

This is the multiplicative version of Möbius inversion formula.
6. (10 Marks) From Question 5 and the following formula that we covered in the class

$$
x^{q^{n}}-x=\prod_{d \mid n} \Phi_{q, d}(x),
$$

deduce the following formula

$$
\begin{equation*}
\Phi_{q, n}(x)=\prod_{d \mid n}\left(x^{q^{d}}-x\right)^{\mu\left(\frac{n}{d}\right)}, \tag{1}
\end{equation*}
$$

Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ be the prime factorization of n. Using (1), prove that

$$
n \Phi_{q, n}=q^{n}-\sum_{i=1}^{r} q^{n / p_{i}}+\sum_{1 \leq i<j \leq r} q^{n / p_{i} p_{j}}+\cdots+(-1)^{r} q^{n / p_{1} \cdots p_{r}} .
$$

7. (10 Marks) Let q be a power of an odd prime. Prove that an element $\alpha \in \mathbb{F}_{q}^{*}$ is a square element of \mathbb{F}_{q}^{*} if and only if $\alpha^{(q-1) / 2}=1$. In particular, $-1 \in \mathbb{F}_{q}^{* 2}$ if and only if $q \equiv 1(\bmod 4)$.
8. (20 Marks) Consider $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$.
(i) Compute all characteristic polynomials over \mathbb{F}_{2} of elements of \mathbb{F}_{16}.
(ii) Compute all minimal polynomials over \mathbb{F}_{2} of elements of \mathbb{F}_{16} and point out the primitive ones.
9. (10 Marks) Factor $x^{64}-x^{4}$ into irreducible factors:
(i) over \mathbb{F}_{16}.
(ii) over \mathbb{F}_{4}.
(iii) over \mathbb{F}_{2}.
10. (10 Marks) Let q be a power of an odd prime. Prove that

$$
x^{(q-1) / 2}-1=\prod_{\alpha \in \mathbb{F}_{q}^{* 2}}(x-\alpha), \quad x^{(q-1) / 2}+1=\prod_{\alpha \in \mathbb{F}_{q}^{*} \backslash \mathbb{F}_{q}^{* 2}}(x-\alpha) .
$$

Then deduce that for any $f(x) \in \mathbb{F}_{q}[x]$ which can be completely factored into distinct linear factors and $f(0) \neq 0$, let

$$
g(x)=\operatorname{gcd}\left(f(x), x^{(q-1) / 2}-1\right),
$$

then $g(x)$ is a proper divisor of $f(x)$ if and only if $f(x)$ has at least one root in $\mathbb{F}_{q}^{* 2}$ and at least one root in $\mathbb{F}_{q}^{*} \backslash \mathbb{F}_{q}^{* 2}$.

