The 2^k Factorial Design

- Montgomery, chap 6; BHH (2nd ed), chap 5
- **Special case** of the general factorial design; *k* factors, all at two levels
- Require relatively few runs per factor studied
- Very widely used in industrial experimentation
- Interpretation of data can proceed largely by common sense, elementary arithmetic, and graphics
- For quantitative factors, can't explore a wide region of factor space, but determine promising directions
- Designs can be suitably augmented---sequential assembly
- Basis for 2-level fractional fractorial designs, especially useful for screening.

The Simplest Case: The 2²

"-" and "+" denote the low and high levels of a factor, respectively.

Note names of treatment combinations: (1), a, b, ab

Low and high are arbitrary terms

Geometrically, the four runs form the corners of a square

Factors: quantitative or qualitative; interpretation in the final model will be different

Chemical Process Example

Fa	ctor	Treatment		Replicate		
Α	В	Combination	Ι	II	III	Total
_	_	A low, B low	28	25	27	80
+	_	A high, B low	36	32	32	100
_	+	A low, B high	18	19	23	60
+	+	A high, B high	31	30	29	90

A = reactant concentration, B = catalyst amount, y = recovery

Analysis Procedure for a Factorial Design

- Estimate factor effects
- Formulate model
 - With replication, use full model
 - With an unreplicated design, use normal probability plots
- Statistical **testing** (ANOVA)
- **Refine** the model
- Analyze **residuals** (graphical)
- Interpret results

Estimation of Factor Effects

$$A = \overline{y}_{A^{+}} - \overline{y}_{A^{-}}$$

$$= \frac{ab+a}{2n} - \frac{b+(1)}{2n}$$

$$= \frac{1}{2n} [ab+a-b-(1)]$$

$$B = \overline{y}_{B^{+}} - \overline{y}_{B^{-}}$$

$$= \frac{ab+b}{2n} - \frac{a+(1)}{2n}$$

$$= \frac{1}{2n} [ab+b-a-(1)]$$

$$AB = \frac{ab+(1)}{2n} - \frac{a+b}{2n}$$

$$= \frac{1}{2n} [ab+(1)-a-b]$$

Computation: difference between averages of "+" and "-" sign observations

The effect estimates are:

A = 8.33, B = -5.00, AB = 1.67

Practical interpretation?

- Increasing reactant concentration increases yield
- Catalyst effect is negative
- Interaction effect is relatively smaller

Statistical Testing - ANOVA

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
A	208.33	1	208.33	53.15	0.0001
В	75.00	1	75.00	19.13	0.0024
AB	8.33	1	8.33	2.13	0.1826
Error	31.34	8	3.92		
Total	323.00	11			

Table 6-1 Analysis of Variance for the Experiment in Figure 6-1

Figure 6-2 Residual plots for the chemical process experiment.

The Response Surface (for the additive model)

Figure 6-3 Response surface plot and contour plot of yield from the chemical process experiment.

The 2³ Factorial Design

(b) The design matrix

Effects in The 2³ Factorial Design

(a) Main effects

(b) Two-factor interaction

BC

(c) Three-factor interaction

Interaction effects are also differences between averages of 4 runs.

An Example of a 2³ Factorial Design

	Cod	led Fac	tors	Etch	Rate		Factor Levels			
Run	Α	В	С	Replicate 1	Replicate 2	Total	Low (-1)		High (+1)	
1	-1	-1	-1	550	604	(1) = 1154	A (Gap, cm)	0.80	1.20	
2	1	-1	-1	669	650	a = 1319	$B(C_2F_6 \text{ flow}, \text{SCCM})$	125	200	
3	-1	1	-1	633	601	b = 1234	C (Power, W)	275	325	
4	1	1	-1	642	635	ab = 1277				
5	-1	-1	1	1037	1052	c = 2089				
6	1	-1	1	749	868	ac = 1617				
7	-1	1	1	1075	1063	bc = 2178				
8	1	1	1	729	860	abc = 1589				

Tal	bl	e 6-4	The l	Plasma	Etch	Exp	eriment,	Exampl	le (5-1
-----	----	-------	-------	--------	------	-----	----------	--------	------	-----

A = gap, B = Flow, C = Power, y = Etch Rate

Table of – and + Signs for the 2³ Factorial Design (pg. 214)

Treatment	Factorial Effect								
Combination	1	Α	В	AB	С	AC	BC	ABC	
(1)	+	_	_	+	_	+	+	_	
a	+	+	_	_	_	_	+	+	
b	+	_	+	_	_	+	_	+	
ab	+	+	+	+	_	_	_	_	
С	+	_	_	+	+	_	_	+	
ac	+	+	_	_	+	+	_	_	
bc	+	_	+	_	+	_	+	_	
abc	+	+	+	+	+	+	+	+	

Table 6-3Algebraic Signs for Calculating Effects in the 2³ Design

Properties of the Table

- Except for column *I*, every column has an equal number of + and signs
- The sum of the product of signs in any two columns is zero: orthogonal design
- Multiplying any column by *I* leaves that column unchanged (identity element)
- The product of any two columns yields a column in the table: $A \times B = AB$

$$AB \times BC = AB^2C = AC$$

• Orthogonality is an important property shared by all factorial designs

R computation

```
> etch.rate <- matrix(c(550,604,669,650,633,601,642,635,</pre>
+ 1037,1052,749,868,1075,1063,729,860),byrow=T,ncol=2)
> dimnames(etch.rate) <- list(</pre>
+ c("(1)","a","b","ab","c","ac","bc","abc"),c("Rep1","Rep2"))
>
> A <- rep(c(-1,1),4)
> B <- rep(c(-1,-1,1,1),2)
> C <- c(rep(-1,4), rep(1,4))
>
> Total <- apply(etch.rate,1,sum)</pre>
>
> cbind(A,B,C,etch.rate,Total)
    A B C Rep1 Rep2 Total
(1) -1 -1 -1 550 604 1154
a 1 -1 -1 669 650 1319
b -1 1 -1 633 601 1234
ab 1 1 -1 642 635 1277
c -1 -1 1 1037 1052 2089
ac 1 -1 1 749 868 1617
bc -1 1 1 1075 1063 2138
abc 1 1 1 729 860 1589
```

R computation (cont)

```
> # #reps: n=2
> n < -2
> # Effect estimates are differences of averages of 4 means ("runs")
> # Effect estimates:
> Aeff <- (Total %*% A)/(4*n)
> Beff <- (Total %*% B)/(4*n)
> Ceff <- (Total %*% C)/(4*n)
>
> # Interaction effects
> AB <- A*B
> AC <- A*C
> BC <- B*C
> ABC <- A*B*C
> cbind(A,B,C,AB,AC,BC,ABC,Total)
    A B C AB AC BC ABC Total
(1) -1 -1 -1 1 1 1 -1 1154
a 1 -1 -1 -1 -1 1 1 1319
b -1 1 -1 -1 1 -1 1 1234
ab 1 1 -1 1 -1 -1 -1 1277
c -1 -1 1 1 -1 -1 1 2089
ac 1 -1 1 -1 1 -1 -1 1617
bc -1 1 1 -1 -1 1 -1 2138
abc 1 1 1 1 1 1
                    1
                         1589
>
> ABeff <- (Total %*% AB)/(4*n)
> ACeff <- (Total %*% AC)/(4*n)
> BCeff <- (Total %*% BC)/(4*n)
> ABCeff <- (Total %*% ABC)/(4*n)
```

R computation (cont)

> # Summary

> Effects <- t(Total) %*% cbind(A,B,C,AB,AC,BC,ABC)/(4*n)

> Summary <- rbind(cbind(A,B,C,AB,AC,BC,ABC),Effects)</pre>

> dimnames(Summary)[[1]] <- c(dimnames(etch.rate)[[1]],"Effect")</pre>

> Summary

	A	В	C	AB	AC	BC	ABC				
(1)	-1.000	-1.000	-1.000	1.000	1.000	1.000	-1.000				
a	1.000	-1.000	-1.000	-1.000	-1.000	1.000	1.000				
b	-1.000	1.000	-1.000	-1.000	1.000	-1.000	1.000				
ab	1.000	1.000	-1.000	1.000	-1.000	-1.000	-1.000				
с	-1.000	-1.000	1.000	1.000	-1.000	-1.000	1.000				
ac	1.000	-1.000	1.000	-1.000	1.000	-1.000	-1.000				
bc	-1.000	1.000	1.000	-1.000	-1.000	1.000	-1.000				
abc	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
Effect	-101.625	7.375	306.125	-24.875	-153.625	-2.125	5.625				
>											
> # Fit	as an Al	NOVA mod	del								
> etch.	vec <- c	(t (etch	.rate))								
> Af <-	> Af <- rep(as.factor(A),rep(2,8))										
> Bf <-	rep(as.f	factor (I	3), rep(2,	,8))							

```
> Cf <- rep(as.factor(C),rep(2,8))</pre>
```

```
> options(contrasts=c("contr.sum","contr.poly"))
```

```
> etch.lm <- lm(etch.vec ~ Af*Bf*Cf)</pre>
```

Estimation of Factor Effects

Factor	Effect Estimate	Sum of Squares	Percent Contribution
A	-101.625	41,310.5625	7.7736
В	7.375	217.5625	0.0409
С	306.125	374,850.0625	70.5373
AB	-24.875	2475.0625	0.4657
AC	-153.625	94,402.5625	17.7642
BC	-2.125	18.0625	0.0034
ABC	5.625	126.5625	0.0238

Table 6-5 Effect Estimate Summary for Example 6-1

Model Coefficients – Full Model

Factor Intercept	Coefficient Estimated 776.06	DF 1	Standard Error 11.87	95% Cl Low 748.70	95% Cl High 803.42	VIF
A-Gap	-50.81	1	11.87	-78.17	-23.45	1.00
B-Gas flow	3.69	1	11.87	-23.67	31.05	1.00
C-Power	153.06	1	11.87	125.70	180.42	1.00
AB	-12.44	1	11.87	-39.80	14.92	1.00
AC	-76.81	1	11.87	-104.17	-49.45	1.00
BC	-1.06	1	11.87	-28.42	26.30	1.00
ABC	2.81	1	11.87	-24.55	30.17	1.00

R computation (cont)

```
> options(contrasts=c("contr.sum","contr.poly"))
> etch.lm <- lm(etch.vec ~ Af*Bf*Cf)</pre>
> summary(etch.lm)
Call:
lm(formula = etch.vec ~ Af * Bf * Cf)
Residuals:
                         Median
      Min
                  10
                                        30
                                                  Max
-6.550e+01 -1.113e+01 8.882e-16 1.113e+01 6.550e+01
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                       Review question:
            776.062
                        11.865 65.406 3.32e-12 ***
(Intercept)
Af1
           50.813
                        11.865 4.282 0.002679 **
                                                      Why are the anova
                        11.865 -0.311 0.763911
Bf1
           -3.687
Cf1
          -153.062
                        11.865 -12.900 1.23e-06 ***
                                                       model coefficients \frac{1}{2}
            -12.437
                        11.865 - 1.048 0.325168
Af1:Bf1
                                                       the "effect estimates"?
Af1:Cf1
            -76.812
                        11.865 -6.474 0.000193 ***
Bf1:Cf1
         -1.063
                        11.865 - 0.090 0.930849
Af1:Bf1:Cf1 -2.812
                        11.865 - 0.237 0.818586
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 47.46 on 8 degrees of freedom Multiple R-Squared: 0.9661, Adjusted R-squared: 0.9364 F-statistic: 32.56 on 7 and 8 DF, p-value: 2.896e-05

ANOVA Summary – Full Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Gap (A)	41,310.5625	1	41,310.5625	18.34	0.0027
Gas flow (B)	217.5625	1	217.5625	0.10	0.7639
Power (C)	374,850.0625	1	374,850.0625	166.41	0.0001
AB	2475.0625	1	2475.0625	1.10	0.3252
AC	94,402.5625	1	94,402.5625	41.91	0.0002
BC	18.0625	1	18.0625	0.01	0.9308
ABC	126.5625	1	126.5625	0.06	0.8186
Error	18,020.5000	8	2252.5625		
Total	531,420.9375	15			

 Table 6-6
 Analysis of Variance for the Plasma Etching Experiment

R computation (cont)

> anova(etch.lm)

Analysis of Variance Table

Response:	eto	ch.vec					
	\mathtt{Df}	Sum Sq	Mean Sq	F value	e Pr(>F)		
Af	1	41311	41311	18.3394	0.0026786	**	
Bf	1	218	218	0.0966	0.7639107		
Cf	1	374850	374850	166.4105	1.233e-06	***	
Af:Bf	1	2475	2475	1.0988	0.3251679		
Af:Cf	1	94403	94403	41.9090	0.0001934	***	
Bf:Cf	1	18	18	0.0080	0.9308486		
Af:Bf:Cf	1	127	127	0.0562	0.8185861		
Residuals	8	18020	2253				
Signif. co	odes	s: 0'	***' 0.0	01 '**' 0	.01 '*' 0.	05 '.	' 0.1 ' ' 1
> model.ma	atri	x (etch	.lm)				
(Interd	cept	:) Af1	Bf1 Cf1	Af1:Bf1 A	f1:Cf1 Bf1	:Cf1	Af1:Bf1:Cf1
1		1 1	1 1	1	1	1	1
2		1 1	1 1	1	1	1	1
3		1 -1	1 1	-1	-1	1	-1
4		1 -1	1 1	-1	-1	1	-1
5		1 1	-1 1	-1	1	-1	-1
6		1 1	-1 1	-1	1	-1	-1
7		1 -1	-1 1	1	-1	-1	1
8		1 -1	-1 1	1	-1	-1	1
9		1 1	1 -1	1	-1	-1	-1
10		1 1	1 -1	1	-1	-1	-1

BHH sect 5.10: "Misuse of the ANOVA for 2^k Factorial Experiments"

- For 2^k designs, the use of the ANOVA is confusing and makes little sense. N=n×2^k observations. 2^k-1 d.f. partitioned into individual "SS" for effects, each equal to N(effect)²/4, divided by df=1, and turned into an F-ratio. Experimenter wants magnitude of effect, y
 ₊ − y
 ₋, and t ratio = effect/se(effect).
- P-values should not be used mechanically for yes-or-no decisions on what effects are real. Information about the size of an effect and its possible error must be allowed to interact with experimenter's subject matter knowledge. Graphical methods (coming) provide a valuable means of allowing information in the data and in the mind of the experimenter to interact properly.

Refine Model – Remove Nonsignificant Factors

Table 6-7 (continued)

Response: Etch rate ANOVA for Selected Factorial Model Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > <i>F</i>
Model	5.106E+005	3	1.702E+005	97.91	< 0.0001
A	41310.56	1	41310.56	23.77	0.0004
С	3.749E+005	1	3.749E+005	215.66	<0.0001
AC	94402.56	1	94402.56	54.31	<0.0001
Residual	20857.75	12	1738.15		
Lack of Fit	2837.25	4	709.31	0.31	0.8604
Pure Error	18020.50	8	2252.56		
Cor Total	5.314E+005	15			
Std. Dev.	41.69			R-Squared	0.9608
Mean	776.06		A	dj R-Squared	0.9509
C.V.	5.37		Pre	ed R-Squared	0.9302
PRESS	37080.44		A	deq Precision	22.055

Note that Sums of Squares for A, C, AC did not change.

Model Coefficients – Reduced Model

Factor	Coefficient Estimate	DF	Standard Error	95% Cl Low	95% Cl High	VIF
Intercept	776.06	1	10.42	753.35	798.77	
A-Gap	-50.81	1	10.42	-73.52	28.10	1.00
C-Power	153.06	1	10.42	130.35	175.77	1.00
AC	-76.81	1	10.42	-99.52	-54.10	1.00

What has changed from the previous larger table of coefficient estimates?

Model Summary Statistics for Reduced Model (pg. 222)

• R^2 and adjusted R^2

$$R^{2} = \frac{SS_{Model}}{SS_{T}} = \frac{5.106 \times 10^{5}}{5.314 \times 10^{5}} = 0.9608$$
$$R^{2}_{Adj} = 1 - \frac{SS_{E} / df_{E}}{SS_{T} / df_{T}} = 1 - \frac{20857.75 / 12}{5.314 \times 10^{5} / 15} = 0.9509$$

• R^2 for prediction (based on PRESS)

$$R_{\text{Pred}}^2 = 1 - \frac{PRESS}{SS_T} = 1 - \frac{37080.44}{5.314 \times 10^5} = 0.9302$$

Model Summary Statistics (pg. 222)

• **Standard error** of model coefficients (full model)

$$se(\hat{\beta}) = \sqrt{V(\hat{\beta})} = \sqrt{\frac{\sigma^2}{n2^k}} = \sqrt{\frac{MS_E}{n2^k}} = \sqrt{\frac{2252.56}{2(8)}} = 11.87$$

• Confidence interval on model coefficients

$$\hat{\beta} - t_{\alpha/2, df_E} se(\hat{\beta}) \le \beta \le \hat{\beta} + t_{\alpha/2, df_E} se(\hat{\beta})$$

Exercise: derive the above expression for $se(\hat{\beta})$

Model Interpretation

Cube plots are often useful visual displays of experimental results

Figure 6-8 Ranges of etch rates for Example 6-1.

Assessing "error" or residual variation

Often there are more factors to be investigated that can conveniently be accommodated with the time and budget available. Rather than make 16 runs for a replicated 2^3 factorial, it might be preferable to introduce a 4th factor and run an *un*-replicated 2^4 design.

Options:

1.With replication, use the usual pooled variance computed from the replicates.

2.Assume that higher order interaction effects are noise and construct and internal reference set.

3.Assess meaningful effects, including possibly meaningful higher order interactions, using Normal and "Lenth" plots.

Example: Process development experiment.

Factor	Level 1	Level 2
Catalyst charge (lb)	10	15
Temperature ©	220	240
Pressure (psi)	50	80
Reactant concentration (%)	10	12

Response: "percent conversion"

```
> # Read in process development data of BHH2 Table 5.10a
> tab5.10.dat <- read.table(file.choose(),header=T)</pre>
> dimnames(tab5.10.dat)[[2]][2:5] <- c("A","B","C","D")</pre>
> tab5.10.dat
   yatesOrd A B C D conversion randomOrd
          1 -1 -1 -1 -1
                                 70
                                            8
1
2
          2 1 -1 -1 -1
                                 60
                                            2
3
          3 -1 1 -1 -1
                                 89
                                           10
4
            1 1 -1 -1
                                 81
                                            4
          4
          5 -1 -1 1 -1
                                 69
5
                                           15
6
          6 1 -1 1 -1
                                 62
                                            9
7
          7 -1 1 1 -1
                                 88
                                            1
          8 1 1 1 -1
8
                                 81
                                           13
          9 -1 -1 -1 1
9
                                 60
                                           16
         10 1 -1 -1 1
10
                                 49
                                            5
11
         11 -1 1 -1 1
                                 88
                                           11
12
         12 1 1 -1 1
                                 82
                                           14
13
         13 -1 -1 1 1
                                 60
                                            3
                                           12
14
         14 1 -1 1 1
                                 52
                                 86
15
         15 -1 1 1 1
                                            6
         16
            1 \ 1 \ 1
                                 79
                                            7
16
                      1
```

> # Full design matrix with interactions

```
> des4 <- ffFullMatrix(X,x=c(1,2,3,4),maxInt=4)</pre>
```

> des4

\$<u>Xa</u>

	one	x1	x 2	х3	x 4	x1*x2	x1*x3	x1*x4	x2*x3	x2*x4	x3*x4	x1*x2*x3	x1*x2*x4
1	1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
2	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1
3	1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1
4	1	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1
5	1	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
6	1	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1
7	1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1
8	1	1	1	1	-1	1	1	-1	1	-1	-1	1	-1
9	1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1
10	1	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1
11	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1
12	1	1	1	-1	1	1	-1	1	-1	1	-1	-1	1
13	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1
14	1	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1
15	1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1
16	1	1	1	1	1	1	1	1	1	1	1	1	1
[.	• •	ado	diti	iona	al d	columns	s of 1	's and	-1′ s	•••]		

1

\$<u>x</u> [1] 1 2 3 4 \$maxInt [1] 4 \$nTerms blk main int.2 int.3 int.4 4 6 0 4

30

```
> # Use the higher order interaction effects as the reference set of
> # (independent) effects that represent noise. The standard
> # deviation of these (about zero) provides a relevant se for
> # the rest of the effects.
>
> Xeffects <- matrix(tab5.10.dat$conversion,nrow=1) %*% des4$Xa[,-1]/8
> dotPlot(Xeffects[1:10])
> dots(Xeffects[11:15],y=0.1,stacked=T,pch=19)  # add the higher order effects
> SEeffect <- sqrt(sum(Xeffects[11:15]^2)/5)</pre>
> SEeffect
[1] 0.5477226
> lines(SEeffect*seq(-10,10,.11),dt(seq(-10,10,.11),df=5))  # add t(df=5)
reference density
> t.ratios <- Xeffects[11:15]/SEeffect</pre>
> round(t.ratios,2)
[1]
                    8000
                              0
     0
                                                                     0
                               5
                                        10
                                                  15
                                                            20
                                                                      25
           -5
                     0
                                Xeffects[1:10]
```

> # The "significant" design effects relative to the higher
> # order interactions as a reference set are clear are clear. 31

```
> # Two problems arise in the assessment of effects from unreplicated
```

```
> # factorials:
```

- > # (a) occasionally meaningful high-order interactions do occur,
- > # (b) it is necessary to allow for selection.
- > # Daniel (1959) suggested "normal probability" (or, effectively, QQ) plots.
- > # Idea: if none of the effects are "real", the estimated effects, which all
- > # have the same std error, should look like a sample from a normal distr.
- > # There will always be a largest computed effect, so the question is:
- > # Are the largest (smallest) effects bigger (smaller) than expected for a
- > # normal distribution?
- > temp <- qqnorm(Xeffects)</pre>
- > identify(temp\$x,temp\$y,dimnames(Xeffects)[[2]])

```
[1] 1 2 4 9
```

>

Normal Q-Q Plot

> # If we were correct in assessing the standard error of the effects from the
> # higher order interactions, as above, then the a line with slop SEeffect
> # should characterize the appropriate std dev (slope of the qqplot)
> # for the majority of the effects.
> abline(0,.55)

Normal Q-Q Plot

```
> # Or try the DanielPlot function in the BHH2 library
> # Ref: C. Daniel (1976). Application of Statistics to
> # Industrial Experimentation. Wiley.
```

```
> attach(tab5.10.dat)
> options(contrasts=c("contr.sum","contr.poly"))
> A <- as.factor(-X[,1])
> B <- as.factor(-X[,2])
> C <- as.factor(-X[,2])
> D <- as.factor(-X[,3])
> D <- as.factor(-X[,4])
> lm.conversion <- lm( conversion ~ A*B*C*D )
> DanielPlot(lm.conversion)
```

```
>
```


Lenth plots

- Lenth (1989) defined an alternative ("robust") procedure that identifies "significant" effects.
- *m* is median of *k* effects.
- *pseudo s.e* is $s_0 = 1.5m$. Exclude effects exceeding $2.5s_0$ and recompute *m* and s_0 .
- *Margin of error*, ME = $t_{0.975,d} \times s_0$, d = k/3 (approx 95% CI).
- Simultaneous margin of error, SME= $t_{\gamma,d} \times s_0$, $\gamma = (1+0.95^{1/k})/2$.

> # Diagnostic plotting of residuals

> # Fit without identified "significant" effects

- > par(mfrow=c(1,2))
- > plot(fitted(lm.sub.conversion),resid(lm.sub.conversion))
- > abline(h=0,lty=2)
- > qqnorm(resid(lm.sub.conversion))
- > qqline(resid(lm.sub.conversion))

Normal Q-Q Plot

36

Blocking the 2^k factorial design

- May be interested in a 2³ design, but batches of raw material (or periods of time) only large enough to make 4 runs.
- Define blocks so that all runs in which 3-factor interaction "123" is minus are in one block and all other runs in the other block.
- <u>Note</u>: due if all observations in 2nd block were increased by some value d, this would affect only the 123 interaction; because of orthogonality it would *sum out* in the calculation of the main and 2-way effects: 1, 2, 3, 12, 13, 23. *Systematic differences* between blocks are eliminated from main effects and 2-factor interactions.
- Think of block as a 4th factor. We are considering a half fraction of a 2⁴ design for all 4 factors.

5 FACTORIAL DESIGNS AT TWO LEVELS

Figure 5.16. Arranging a 2^3 factorial design in two blocks of size 4.

Blocks of size 2

- Want to conduct experiment in blocks of size 2 so as to do no damage to estimates of main effects.
- Define 4 blocks of size 2 by the combinations of two blocking factors, which we may call 4 and 5.
- For example, we might start with "4" = "123", as before, and confound some other expendible 2factor interaction with the other, say "5" = "23"

Variable 4

Run Number	Experimental Variable				Block Variable				Experiment Arranged in Four Blocks					
	1	2	3	4 = 123	5 = 23	45 = 1	Block	1	2	3	Run			
9.00 9.00					(a)									
1		11 1-11 1	-		+	_	I	÷	+		4			
2	+); <u></u> ;	—	+	+	+		+	—	+	6			
3	_	+	_	+	1									
4 5	+	+			·	+	Π	0.000	+		3			
6	 _	_	+	+		·				+	5			
7	•	+	+	_	+	T -	ш				1			
8	+	+	+	+	+	+		_	+	+	7			
							IV				2			
								+	+	+	8			
		<i>(b)</i>	Run	\$										
		+ [1.7	28										
Variable	5		-,,	2,0										
		-	4,6	3,5										
				+										

Table 5.14. (a) An Undesirable Arrangement: A 2^3 Design in Blocks of Size 2(b) Allocation to Blocks (Variables 4 & 5)

213

Generators and defining relations

- We write I for the vector of 1's, and the product of any design column with itself is I=11=22=33=44=55
- Take the two specifications for the blocking variables, 4=123 and 5=23. Multiply 1st expression by 4 and 2nd by 5: I=1234 and I=235. These are called the *generators* of the blocking arrangements.
- Multiply these two together and to get 1223345=145 to complete the *defining relation* I=1234=235=145.
- The third generator shows that the main effect 1 is confounded with the 45 block effect, which we don't want.
- Better: confound the two block variables 4 and 5 with any two of the 2-factor interactions, say 4=12, 5=13

Run Number	Experimental Variable			Ble Vari	Experiment Arranged in Four Blocks					
	1	2	3	4 = 12	5 = 13	Block	1	2	3	Run
1				+	÷	I	+		_	2
2	+				<u> </u>	_		+	+	7
3		+		_	+					'
4	+	+	1	+		Π		+		3
5			+	+	_		+	<u> </u>	4	6
6	+		-		+					Ŭ
7		+	+	_		III	+:	+	_	4
8	+	+	+	+			_	_	+	5
						IV				1
							+	+	+	8

Table 5.15. A 2³ Design in Blocks of Size 2, a Good Arrangement

5.17. LEARNING BY DOING

Fractional Factorial Designs

- Chapter 6 of BHH (2nd ed) discusses fractional factorial designs.
- Example: full 2⁵ factorial would require 32 runs. An experiment with only 8 runs is a $1/4^{\text{th}}$ (quarter) fraction. Because $1/4 = (1/2)^2 = 2^{-2}$, this is referred to as a 2^{5-2} design.
- In general, 2^{k-p} design is a (¹/₂)^p fraction of a 2^k design using 2^{k-p} runs.
- Note that the first blocked design we considered was a half fraction: 2⁴⁻¹ defined by the generating relation I=1234, which provides all the confounded ("aliased") relationships. E.g. 1=1I=11234=234.