
1

The 2k Factorial Design
• Montgomery, chap 6; BHH (2nd ed), chap 5
• Special case of the general factorial design; k factors, all at two levels
• Require relatively few runs per factor studied
• Very widely used in industrial experimentation
• Interpretation of data can proceed largely by common sense, elementary 

arithmetic, and graphics
• For quantitative factors, can’t explore a wide region of factor space, but 

determine promising directions
• Designs can be suitably augmented---sequential assembly
• Basis for 2-level fractional fractorial designs, especially useful for 

screening.
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The Simplest Case: The 22

“-” and “+” denote the low 
and high levels of a factor, 
respectively.

Note names of treatment 
combinations:  (1), a, b, ab

Low and high are arbitrary 
terms

Geometrically, the four 
runs form the corners of a 
square

Factors: quantitative or 
qualitative; interpretation in 
the final model will be 
different  
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Chemical Process Example

A = reactant concentration, B = catalyst amount, 
y = recovery
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Analysis Procedure for a 
Factorial Design

• Estimate factor effects
• Formulate model

– With replication, use full model
– With an unreplicated design, use normal probability 

plots
• Statistical testing (ANOVA)
• Refine the model
• Analyze residuals (graphical)
• Interpret results
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Estimation of Factor Effects
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Computation: difference between 
averages of “+” and “-” sign 
observations

The effect estimates are:     

A = 8.33,  B = -5.00,  AB = 1.67

Practical interpretation?

- Increasing reactant concentration 
increases yield

- Catalyst effect is negative

- Interaction effect is relatively 
smaller
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Statistical Testing - ANOVA
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Residuals and Diagnostic Checking
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The Response Surface
(for the additive model)
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The 23 Factorial Design
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Effects in The 23 Factorial Design

etc, etc, ...
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Interaction 
effects are also 
differences 
between averages 
of 4 runs.
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An Example of a 23 Factorial Design

A = gap, B = Flow, C = Power, y = Etch Rate
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Table of – and + Signs for the 23 Factorial Design (pg. 214)
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Properties of the Table 
• Except for column I, every column has an equal number of + and –

signs
• The sum of the product of signs in any two columns is zero: 

orthogonal design
• Multiplying any column by I leaves that column unchanged (identity 

element)
• The product of any two columns yields a column in the table:

• Orthogonality is an important property shared by all factorial designs

2

A B AB
AB BC AB C AC
× =

× = =
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R computation
> etch.rate <- matrix(c(550,604,669,650,633,601,642,635,
+ 1037,1052,749,868,1075,1063,729,860),byrow=T,ncol=2)
> dimnames(etch.rate) <- list(
+ c("(1)","a","b","ab","c","ac","bc","abc"),c("Rep1","Rep2"))
> 
> A <- rep(c(-1,1),4)
> B <- rep(c(-1,-1,1,1),2)
> C <- c(rep(-1,4),rep(1,4))
> 
> Total <- apply(etch.rate,1,sum)
> 
> cbind(A,B,C,etch.rate,Total)

A  B  C Rep1 Rep2 Total
(1) -1 -1 -1 550  604  1154
a    1 -1 -1 669  650  1319
b   -1  1 -1  633  601  1234
ab 1  1 -1  642  635  1277
c   -1 -1 1 1037 1052  2089
ac   1 -1  1  749  868  1617
bc -1  1  1 1075 1063  2138
abc 1  1  1  729  860  1589
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R computation (cont)
> # #reps: n=2
> n <- 2
> # Effect estimates are differences of averages of 4 means ("runs")
> # Effect estimates:
> Aeff <- (Total %*% A)/(4*n)
> Beff <- (Total %*% B)/(4*n)
> Ceff <- (Total %*% C)/(4*n)
> 
> # Interaction effects
> AB <- A*B
> AC <- A*C
> BC <- B*C
> ABC <- A*B*C
> cbind(A,B,C,AB,AC,BC,ABC,Total)

A  B  C AB AC BC ABC Total
(1) -1 -1 -1 1  1  1  -1  1154
a    1 -1 -1 -1 -1 1   1  1319
b   -1  1 -1 -1 1 -1   1  1234
ab 1  1 -1  1 -1 -1 -1 1277
c   -1 -1 1  1 -1 -1 1  2089
ac   1 -1  1 -1  1 -1  -1 1617
bc -1  1  1 -1 -1 1  -1  2138
abc 1  1  1  1  1  1   1  1589
> 
> ABeff <- (Total %*% AB)/(4*n)
> ACeff <- (Total %*% AC)/(4*n)
> BCeff <- (Total %*% BC)/(4*n)
> ABCeff <- (Total %*% ABC)/(4*n)



16

R computation (cont)
> # Summary
> Effects <- t(Total) %*% cbind(A,B,C,AB,AC,BC,ABC)/(4*n)
> Summary <- rbind( cbind(A,B,C,AB,AC,BC,ABC),Effects )
> dimnames(Summary)[[1]] <- c(dimnames(etch.rate)[[1]],"Effect")
> Summary

A      B       C      AB       AC     BC    ABC
(1)      -1.000 -1.000 -1.000 1.000    1.000 1.000 -1.000
a         1.000 -1.000  -1.000 -1.000 -1.000 1.000  1.000
b        -1.000  1.000  -1.000  -1.000 1.000 -1.000  1.000
ab 1.000  1.000 -1.000   1.000   -1.000 -1.000 -1.000
c        -1.000 -1.000 1.000   1.000 -1.000 -1.000 1.000
ac        1.000 -1.000   1.000  -1.000    1.000 -1.000 -1.000
bc -1.000  1.000   1.000 -1.000   -1.000 1.000 -1.000
abc 1.000  1.000 1.000 1.000 1.000 1.000 1.000
Effect -101.625  7.375 306.125 -24.875 -153.625 -2.125  5.625
> 
> # Fit as an ANOVA model
> etch.vec <- c(t(etch.rate))
> Af <- rep(as.factor(A),rep(2,8))
> Bf <- rep(as.factor(B),rep(2,8))
> Cf <- rep(as.factor(C),rep(2,8))
> options(contrasts=c("contr.sum","contr.poly"))
> etch.lm <- lm(etch.vec ~ Af*Bf*Cf)
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Estimation of Factor Effects
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Model Coefficients – Full Model
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R computation (cont)
> options(contrasts=c("contr.sum","contr.poly"))
> etch.lm <- lm(etch.vec ~ Af*Bf*Cf)
> summary(etch.lm)

Call:
lm(formula = etch.vec ~ Af * Bf * Cf)

Residuals:
Min         1Q     Median         3Q        Max 

-6.550e+01 -1.113e+01  8.882e-16  1.113e+01  6.550e+01 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  776.062     11.865  65.406 3.32e-12 ***
Af1           50.813     11.865   4.282 0.002679 ** 
Bf1           -3.687     11.865  -0.311 0.763911    
Cf1         -153.062     11.865 -12.900 1.23e-06 ***
Af1:Bf1      -12.437     11.865  -1.048 0.325168    
Af1:Cf1      -76.812     11.865  -6.474 0.000193 ***
Bf1:Cf1       -1.063     11.865  -0.090 0.930849    
Af1:Bf1:Cf1   -2.812     11.865  -0.237 0.818586    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 47.46 on 8 degrees of freedom
Multiple R-Squared: 0.9661,     Adjusted R-squared: 0.9364 
F-statistic: 32.56 on 7 and 8 DF,  p-value: 2.896e-05 

Review question:

Why are the anova
model coefficients ½
the “effect estimates”?
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ANOVA Summary – Full Model
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R computation (cont)
> anova(etch.lm)
Analysis of Variance Table

Response: etch.vec
Df Sum Sq Mean Sq  F value    Pr(>F)    

Af 1  41311   41311 18.3394 0.0026786 ** 
Bf         1    218     218 0.0966 0.7639107    
Cf 1 374850  374850 166.4105 1.233e-06 ***
Af:Bf 1   2475    2475 1.0988 0.3251679    
Af:Cf 1  94403   94403 41.9090 0.0001934 ***
Bf:Cf 1     18      18 0.0080 0.9308486    
Af:Bf:Cf 1    127     127 0.0562 0.8185861    
Residuals  8  18020    2253                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
> model.matrix(etch.lm)

(Intercept) Af1 Bf1 Cf1 Af1:Bf1 Af1:Cf1 Bf1:Cf1 Af1:Bf1:Cf1
1            1   1   1   1       1       1       1           1
2            1   1   1   1       1       1       1           1
3            1  -1   1   1      -1      -1 1          -1
4            1  -1   1   1      -1      -1 1          -1
5            1   1  -1   1      -1       1      -1          -1
6            1   1  -1   1      -1       1      -1          -1
7            1  -1  -1 1       1      -1      -1 1
8            1  -1  -1 1       1      -1      -1 1
9            1   1   1  -1       1      -1      -1 -1
10 1   1   1  -1       1      -1      -1 -1
11 . . .
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BHH sect 5.10:  “Misuse of the ANOVA for 2k

Factorial Experiments”

• For 2k designs, the use of the ANOVA is confusing and 
makes little sense.  N=n×2k observations. 2k -1 d.f. 
partitioned into individual “SS” for effects, each equal to 
N(effect)2/4, divided by df=1, and turned into an F-ratio.  
Experimenter wants magnitude of effect,            , and t 
ratio = effect/se(effect).

• P-values should not be used mechanically for yes-or-no 
decisions on what effects are real.  Information about the 
size of an effect and its possible error must be allowed to 
interact with experimenter’s subject matter knowledge.  
Graphical methods (coming) provide a valuable means of 
allowing information in the data and in the mind of the 
experimenter to interact properly.

y y+ −−
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Refine Model – Remove Nonsignificant Factors

Note that Sums of Squares for A, C, AC did not change.
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Model Coefficients – Reduced Model

What has changed from the previous larger table of coefficient estimates?
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Model Summary Statistics for Reduced Model (pg. 222)

• R2 and adjusted R2

• R2 for prediction (based on PRESS)
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Model Summary Statistics (pg. 222)

• Standard error of model coefficients (full 
model)

• Confidence interval on model coefficients
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Model Interpretation

Cube plots are 
often useful visual 
displays of 
experimental 
results
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Assessing “error” or residual variation

Often there are more factors to be investigated that can 
conveniently be accommodated with the time and budget 
available.  Rather than make 16 runs for a replicated 23

factorial, it might be preferable to introduce a 4th factor and 
run an un-replicated 24 design. 

Options:
1.With replication, use the usual pooled variance computed 
from the replicates.
2.Assume that higher order interaction effects are noise and 
construct and internal reference set.
3.Assess meaningful effects, including possibly meaningful 
higher order interactions, using Normal and “Lenth” plots.
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Example:  Process development experiment.

Response: “percent conversion”

Factor Level 1 Level 2
Catalyst charge (lb) 10 15
Temperature © 220 240
Pressure (psi) 50 80
Reactant concentration (%) 10 12

> # Read in process development data of BHH2 Table 5.10a
> tab5.10.dat <- read.table(file.choose(),header=T)
> dimnames(tab5.10.dat)[[2]][2:5] <- c("A","B","C","D")
> tab5.10.dat

yatesOrd A  B  C  D conversion randomOrd
1         1 -1 -1 -1 -1 70         8
2         2  1 -1 -1 -1 60         2
3         3 -1  1 -1 -1 89        10
4         4  1  1 -1 -1 81         4
5         5 -1 -1 1 -1         69        15
6         6  1 -1  1 -1         62         9
7         7 -1  1  1 -1         88         1
8         8  1  1  1 -1         81        13
9         9 -1 -1 -1 1         60        16
10       10 1 -1 -1 1         49         5
11       11 -1  1 -1  1         88        11
12       12 1  1 -1  1         82        14
13       13 -1 -1 1  1         60         3
14       14 1 -1  1  1         52        12
15       15 -1  1  1  1         86         6
16       16 1  1  1  1         79         7
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> # Full design matrix with interactions
> des4 <- ffFullMatrix(X,x=c(1,2,3,4),maxInt=4)
> des4
$Xa

one x1 x2 x3 x4 x1*x2 x1*x3 x1*x4 x2*x3 x2*x4 x3*x4 x1*x2*x3 x1*x2*x4
1    1 -1 -1 -1 -1     1     1     1     1     1     1       -1       -1
2    1  1 -1 -1 -1    -1    -1    -1     1     1     1        1        1
3    1 -1  1 -1 -1    -1     1     1    -1    -1     1        1        1
4    1  1  1 -1 -1     1    -1    -1    -1    -1     1       -1       -1
5    1 -1 -1  1 -1     1    -1     1    -1     1    -1        1       -1
6    1  1 -1  1 -1    -1     1    -1    -1     1    -1       -1        1
7    1 -1  1  1 -1    -1    -1     1     1    -1    -1       -1        1
8    1  1  1  1 -1     1     1    -1     1    -1    -1        1       -1
9    1 -1 -1 -1  1     1     1    -1     1    -1    -1       -1        1
10   1  1 -1 -1  1    -1    -1     1     1    -1    -1        1       -1
11   1 -1  1 -1  1    -1     1    -1    -1     1    -1        1       -1
12   1  1  1 -1  1     1    -1     1    -1     1    -1       -1        1
13   1 -1 -1  1  1     1    -1    -1    -1    -1     1        1        1
14   1  1 -1  1  1    -1     1     1    -1    -1     1       -1       -1
15   1 -1  1  1  1    -1    -1    -1     1     1     1       -1       -1
16 1  1  1  1  1     1     1     1     1     1     1        1     1
[. . . additional columns of 1’s and -1’s . . . ]

$x
[1] 1 2 3 4
$maxInt
[1] 4
$nTerms

blk main int.2 int.3 int.4 
0     4     6     4     1 
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> # Use the higher order interaction effects as the reference set of
> # (independent) effects that represent noise.  The standard 
> # deviation of these (about zero) provides a relevant se for 
> # the rest of the effects.
> 
> Xeffects <- matrix(tab5.10.dat$conversion,nrow=1) %*% des4$Xa[,-1]/8
> dotPlot(Xeffects[1:10])
> dots(Xeffects[11:15],y=0.1,stacked=T,pch=19)   # add the higher order effects
> SEeffect <- sqrt(sum(Xeffects[11:15]^2)/5)
> SEeffect
[1] 0.5477226
> lines(SEeffect*seq(-10,10,.11),dt(seq(-10,10,.11),df=5))  # add t(df=5) 
reference density
> t.ratios <- Xeffects[11:15]/SEeffect
> round(t.ratios,2)
[1] -1.37  0.91 -0.46 -1.37 -0.46

> # The "significant" design effects relative to the higher
> # order interactions as a reference set are clear are clear.
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> # Two problems arise in the assessment of effects from unreplicated
> # factorials:
> # (a) occasionally meaningful high-order interactions do occur,
> # (b) it is necessary to allow for selection.
> # Daniel (1959) suggested "normal probability" (or, effectively, QQ) plots.
> # Idea:  if none of the effects are "real", the estimated effects, which all
> # have the same std error, should look like a sample from a normal distr.
> # There will always be a largest computed effect, so the question is: 
> # Are the largest (smallest) effects bigger (smaller) than expected for a
> # normal distribution?
> temp <- qqnorm(Xeffects)
> identify(temp$x,temp$y,dimnames(Xeffects)[[2]])
[1] 1 2 4 9
> 
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> # If we were correct in assessing the standard error of the effects from the
> # higher order interactions, as above, then the a line with slop SEeffect
> # should characterize the appropriate std dev (slope of the qqplot)
> # for the majority of the effects.
> abline(0,.55)
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> # Or try the DanielPlot function in the BHH2 library
> # Ref: C. Daniel (1976).  Application of Statistics to
> # Industrial Experimentation.  Wiley.

> attach(tab5.10.dat)
> options(contrasts=c("contr.sum","contr.poly"))
> A <- as.factor(-X[,1])
> B <- as.factor(-X[,2])
> C <- as.factor(-X[,3])
> D <- as.factor(-X[,4])
> lm.conversion <- lm( conversion ~ A*B*C*D )
> DanielPlot(lm.conversion)
> 
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Lenth plots
• Lenth (1989) defined an alternative (“robust”) procedure that identifies 

“significant” effects.
• m is median of k effects.  
• pseudo s.e is  s0 = 1.5m.  Exclude effects exceeding 2.5s0 and 

recompute m and s0.

• Margin of error, ME = t0.975,d× s0, d=k/3 (approx 95% CI).
• Simultaneous margin of error, SME= tγ,d× s0, γ=(1+0.951/k)/2.
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> # Diagnostic plotting of residuals
> # Fit without identified "significant" effects

> lm.sub.conversion <- lm(conversion ~ 
des4$Xa[,c("x1","x2","x4","x2*x4")])

> par(mfrow=c(1,2))
> plot(fitted(lm.sub.conversion),resid(lm.sub.conversion))
> abline(h=0,lty=2)
> qqnorm(resid(lm.sub.conversion))
> qqline(resid(lm.sub.conversion))
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Blocking the 2k factorial design

• May be interested in a 23 design, but batches of raw 
material (or periods of time) only large enough to make 4 
runs.

• Define blocks so that all runs in which 3-factor interaction 
“123” is minus are in one block and all other runs in the 
other block.

• Note: due if all observations in 2nd block were increased by 
some value d, this would affect only the 123 interaction; 
because of orthogonality it would sum out in the 
calculation of the main and 2-way effects: 1, 2, 3, 12, 13, 
23.  Systematic differences between blocks are eliminated 
from main effects and 2-factor interactions.

• Think of block as a 4th factor.  We are considering a half 
fraction of a 24 design for all 4 factors.
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Blocks of size 2

• Want to conduct experiment in blocks of size 2 so 
as to do no damage to estimates of main effects.

• Define 4 blocks of size 2 by the combinations of 
two blocking factors, which we may call 4 and 5.

• For example, we might start with “4” = “123”, as 
before, and confound some other expendible 2-
factor interaction with the other, say “5” = “23”
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Generators and defining relations

• We write I for the vector of 1’s, and the product of any 
design column with itself is I=11=22=33=44=55

• Take the two specifications for the blocking variables, 
4=123 and 5=23.  Multiply 1st expresion by 4 and 2nd by 5:  
I=1234 and I=235.  These are called the generators of the 
blocking arrangements.

• Multiply these two together and to get 1223345=145 to 
complete the defining relation I=1234=235=145. 

• The third generator shows that the main effect 1 is 
confounded with the 45 block effect, which we don’t want.

• Better: confound the two block variables 4 and 5 with any 
two of the 2-factor interactions, say 4=12, 5=13
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Fractional Factorial Designs
• Chapter 6 of BHH (2nd ed) discusses fractional factorial 

designs.
• Example: full 25 factorial would require 32 runs.  An 

experiment with only 8 runs is a 1/4th (quarter) fraction.  
Because ¼=(½)2=2-2, this is referred to as a 25-2 design.

• In general, 2k-p design is a (½)p fraction of a 2k design 
using 2k-p runs.

• Note that the first blocked design we considered was a 
half fraction: 24-1 defined by the generating relation 
I=1234, which provides all the confounded (“aliased”) 
relationships.  E.g. 1=1I=11234=234.


