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THE NON-CENTRAL x2- AND J F - D I S T R I B U T I O N S AND
THEIR APPLICATIONS!

B Y P. B. PATNAIK, University College, London

1. INTBODTTCTOBY

In the Neyman-Peareon theory of testing statistical hypotheses, the efficiency of a statistical
test is to be judged by its power of detecting departures from the null hypothesis. Thus
besides knowing the random sampling distribution of a given statistic T under this hypo-
thesis, say Ho, it is also necessary to know the distribution of T under admissible hypotheses
alternative to Hg. Henoe the power function of the test is obtained. In the case of the well-
known tests using )£, t and F, the evaluation of their power functions involves the use of what
have been called non-central distributions. For example, if we are applying the *-test to
examine if a sample has come from a normal population with mean fi = 0 (HQ), we know that
under HQ, t has a 5 % chance of exceeding the 5 % point of its distribution. But in order to
compute the power of the test we wish to know the chance that t exceeds this point when /* has
alternative values, not equal to zero. This chance is given by the non-central t-integral. This
distribution has been studied by Fisher (1931), Neyman (1935), Neyman & Tokarska (1936)
and Johnson & Weloh (1939). In a similar way, the non-central jp- and .F-distributions arise
in consideration of the power functions of the yf- and variance-ratio tests.

The power function may be used either to determine the extent of the departures from HQ
in a given direction, which will be detected as significant (at a prescribed level) with a given
probability, or it may be used to determine in advance the size of experiment neceasary to
ensure that a worth-while difference will be established as significant, if it exists. But apart
from its value in this connexion, the study of non-central distributions is of considerable
interest. The mathematical forms of these distributions of t, y? and F have been long known,
but their use without extensive tabling has not been easy. The present paper is therefore
concerned with two lines of investigation:

(a) The derivation of certain approximations to the probability integrals of (i) non-central
Xs, and (ii) the ratio of non-central %} to an independent central yf, whioh we have termed non-
central F. These approximations, depending on tabled functions, permit easy calculation.

(6) Discussion of the ways in whioh these distributions may be used in connexion with the
power functions of statistical tests.

2. THE NON-CENTBAL ̂ -DISTRIBUTION

2-1. Geometrical derivation

As is well known, the statistic #* is defined as the sum of squares of (say) n independent
random deviates, E,{, all drawn from a normal population with mean, 0, and standard
deviation, <r, viz.

x8 = 2 31°*-

f Part of a thesis approved for the degree of Ph.D. of the University of London.
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If, however, the mean £t is af and we write

203

then we have the non-central x* denned by

X"= h
The probability distribution of tf* has been obtained by Fisher (1928) as a particular case

of the distribution of the multiple correlation coefficient. A purely analytical proof was given
by Tang (1938). As ^ a is a generalized form of x* it m a y b® °f interest to compare its
geometrical representation with the familiar geometry of x*- We therefore give a direct
geometrical derivation of the x'1-distribution.

Without loss of generality we shall assume in what follows that <r = 1, so that the proba-
bility law of x is given by

Then '2 = E £?•
i\

In the n-dimensional space of the £'s, suppose O is the origin, P the point (gv ...,£»),
A the point (c^, ...,on), Z.POA = 6 and M the foot of the perpendicular from P on OA as
shown in Fig. 1. Then

OP2 = 2
i-i

a\ = A, say.
i

• A M

Fig. 1

From (1), the probability density at P is proportional to

1 »\ £ - a,)»] = exp [ - = exp[ - J(x'« + A - cos ( (2)

If we keep OP and 6 fixed, P describes an (n - 1)-dimensional sphere of radius PM = x' sin 8
with its surface area proportional to (x' sin 8)n~2. If x' is increased to x' + ̂ X' a n ( i ^ to ^ + d#,
then a disk of area x'dx'dd moves round this surface and hence covers a volume proportional
to

(X'Bind)"-1 x'dx'dd.

To obtain the distribution of x' alone, we integrate out 6. Thus
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which is equivalent to

p(X'1)dx't = ̂ e-*^+x>{x'i)in~ldX'2x {*"(e-vx*eoBe + e'/Wx"0)Bia.n-iddd. (3)
2 Jo

Expanding the integrand and integrating term by term, we find

+ (

If zero is substituted for A, this reduces to the ordinary ̂ -distribution which therefore gives
us the value of C.

Wethenhave M>) - « ^ - ^ ^ . ^ A . , . (4)

2-2. Derivation through a transformation ofvariates

Next we will show that it is possible to effect a variate transformation so as to transform x"%

into a sum of (n— 1) central squares and a single non-central square and then derive its
distribution. Make the following orthogonal transformation:

Vx =
(5)

n n
Then £ i\ =

I i
Generally, if ^{Vj) = cila1 + ci%ai+ ... + cinan = bt (j — 1 to n),

» !• (6)
we have 2 a\ = 2 63,

I I
• n

and £ <»,£< = 2 *y!0-

Now we can make
61̂  = 62 = ... = bn_1 = 0 and bn =

H n-1
Thus x'B = S ?̂ is distributed as 2 yf + y*, the sum of the squares of (n - 1) normal variates

1 1

with mean zero and the square of a single normal variate with mean ̂ /A, the S.D.'S being unity.
n-i

Writing x'a = w> 2 y? = u and y% = v,
1

we see that u has a ̂ -distribution with (n-1) degrees of freedom, that is,
e-h«ttl(n-3)

and that v follows the law

+ 2 ! + 4! + <

Hence, replacing v by (to — «) in the joint probability law p{u, v), we have
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Whence integrating with respect to u from 0 to to, we obtain

w A J n - 1 3 \5J

which is seen to be the same as (4).
In this distribution of x'2,» m»y be called the number of degrees of freedom and A, which is

n

equal to the sum of the squares 2 o\, the non-central parameter.
1

2-3. Conditional distribution of x's under linear constraints
Suppose the £'s are subject to k (< n) linear constraints. These can be transformed into an

orthogonal set represented, say, by the equations

S c«U = Pi (j = ! . - > * ) , (8)

* n

where S c } ( = l , 2 cu°n — 0 0 + ')-
i - l i - l

We make an orthogonal transformation of variates defined by the equations (5), so that
££3 transforms to Sy} and the k constraints of (8) become simply y± = plt..., yk = pk. To find
the distribution of Sy} subject to these conditions, we first see that, in virtue of the relations
in (6), the joint probability law of the £'s

transforms into p(yv ...,yn) = Cexpi--fl(yi-bj)
i .

When yi,---,yk take respectively the constant values pv...,pk, we have the conditional
probability law

p(yk+i>•••,yn\pv-,pk) = Qexp - - s ( y > - ^ n - (9)

It can be shown from (9), as in § 2-1, that the sum of the non-central squares (j/J+1 + . . .+ y%)
is distributed as a x"% with (n — ifc) degrees of freedom and parameter

From (6) we see that yi+1 + ... +y% = Sg | - (p !+ . . . +p%)

and Hfi +
» fc / n \t

(10)

In k \

Hence 12 £\ — Sp?) is distributed as a \'% with (n — k) degrees of freedom and parameter A,

given by the expression in (10).
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In particular, if there is only a single constraint on the £'s, given by

1 1

then 12 £3—Pa I follows a ^'-distribution with (n — 1) degrees of freedom and

(12)

3. APPROXIMATIONS TO THE ^^-DISTRIBUTION

3*1. The ^-approximation
Fisher (1928) has shown that the distribution function of x'2 given by (4) can be expressed in
terms of a Bessel function with imaginary argument. When n, the number of degrees of
freedom, is odd, this can be reduced to elementary functions. When n is even, we see that the
probability integral

can be expressed as a double Poisson sum. However, in both cases, the labour of calculating
the probability integral is considerable.

In his paper, Fisher has given a table of the upper 5 % significance points of the x'1-
distribution for n = 1 to 7 and J\ = 0 (0-2) 5-0. Garwoodf has an unpublished table of the
lower 5 % points for the same range of values of n and A. No tables of the probability integral
are available. It may therefore be useful to have an easy method of determining the prob-
ability integral and percentage points sufficiently accurately for any given values. For this
purpose we shall consider several approximations to the distribution of

The characteristic) function of this distribution is easily seen to be

Hence we have the following cumulants:

the general rth cumulant being
/cr = ^ - i ( r

In the filt f}% diagram, it was found that the point computed from the above /c's moved
close to and above the Type HI line, and this suggested that we might fit a Type HI distribu-
tion from the first two moments. This is given by

where y = y>%\p,
n + 2A , A (n + A)s A*

This means that we are representing the distribution of Wlp) by that of Xs with v degrees of
freedom, v being in general a fraction.

t I am grateful to Dr F. Qarwood for kindly making hie table available to me for referenoe.
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In what follows we shall write x for x'\ p(x) for the tme distribution of tf* with n degrees of
freedom and parameter A and/(x) for the approximation to p(x) obtained by assuming that
x/p = y is distributed as x* with v degrees of freedom.

Then the probability integral rx ry
p(x)dx = \ p(y)dy

Jo Jo

is approximately given by \Vf(y)dy.
Jo

This integral can be. expressed in the notation of the tables of the Incomplete T-function
(K. Pearson, 1922) as I(utp), where

« = = - —1 = -5
2 2(n + 2A)

- 1 , (16)

and could be evaluated by interpolation in these tables. For interpolation tt-wise the second
differences with Everett interpolation coefficients may be used, while linear interpolation
p-wise seems adequate.

The approximations to the probability integral so obtained for oertain values of n, A and x
are shown in Table 1 for comparison with the exact values. In some of these cases x is the
upper 5 % point (Fisher) or the lower 5 % point (Garwood), so that the exact values are
0-95 or 0-05. The others are directly computed. For many purposes, especially in connexion
with power funotions, the degree of accuracy given by this method may be considered quite
adequate.

rx
Table 1. Shouting exact and approximate values of the x'x-integral8, p(x) dx

Jo
n

4

7

12

16

24

A

4
4
4
4
10

1
1

16
16
16

6
18

8
8
32
32

24
24
24

X

1-765
10-000
17-309
24-000
10000

4-000
16004
10-257
24-000
38-970

24-000
24-000

30-000
40-000
30-000
60-000

36000
48-000
72-000

Approx.

0-0399
0-7191
0-9492
0-9913
0-3178

0-1621
0-9499
0-0430
0-6947
0-9482

0-8187
0-2936

0-7895
0-9626
0-0590
0-8329

01556
0-6333
0-9656

Exact

0-0500
0-7118
0-9500
0-9925
0-3148

0-1628
0-9500
00500
0-6898
0-9600

0-8174
0-2901

0-7880
0-9632
0-0609
0-8316

0-1567
0-5298
0-9667
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To find the percentage points of the x'% distribution, we first interpolate in the appropriate
percentage point tables of the x* (e.g. Thompson, 1941) for v degrees of freedom and then
multiply the interpolate by p. Four-point Lagrangian interpolation formulae may be used.
The approximate upper and lower 5 % points obtained by this method for certain values of
n and A are given in Table 2, along with the exact values. Clearly the accuracy is not as good
for the lower points as for the upper ones. Although the comparisons have had to be confined
only to small values of n, since Fisher and Garwood have only given exact percentage points
up to » = 7, from the closeness of the probability integral approximation (Table 1) we could
still expect that the approximation to the percentage points would be fairly close for higher n.

These approximations based on the x* fit will be referred in subsequent sections as the
first approximation.

Table 2. Showing exact and approximate values of the
percentage points of the ^-distribution

n

2

4

7

X

1
4

16
25

1
4

16
25

1
4

16
25

Upper 5 % point

Appro*.

8-63
14-72
33-35
45-66

11-72
17-38
35-69
47-94

1601
21-28
3916
51-34

Exact

8-64
14-64
3306
45-31

11-71
17-31
35-43
47-61

16-00
21-23
38-97
51-06

Lower 5 % point

Approx.

0-20
0-94
6-89

12-68

0-93
1-95
8-36

14-26

2-51
3-78

10-64
16-68

Exact

0-17
0-66
6-32

12-08

0-91
1-77
7-88

13-73

2-49
3-66

10-26
16-23

3-2. The normal approximation

I t is known that, for n > 30, Fisher's approximation, that *J(2)f) is distributed as a normal
variate NQ(2n— 1), l),t will give fairly close values to the probability integral and per-
centage points of the ̂ -distribution. It can be shown that a similar normal approximation is
available for the ^-distribution for large values of n or A.

First we shall show that x' approaches normality with greater rapidity than x'%-
If x is written for x'%> and xo i8 mean #» we have by Taylor's theorem

x* = x* + i(x - xQ) x£* - i(x - xoy xo"*+^x - x0)
3 a*"* + ...,

x* = 4+Hz - x0) 4 + f(x - x0)* xo-» - ^ x - xof Zo-« +. . . .

t Here and below the notation N(a, b) is used to indicate that a variable is normally distributed with
mean a and standard deviation 6
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By taking expectations on both sides and substituting from (13) the momenta of x = x'%> w e

get/^ and/^ °f tf-

Hence we derive the following moments:

l n + 3A 15(n + 2A)»

l n + 3A 9 (n + 2A)»

from which we obtain
n + 2A n + 2A

Comparing these with the corresponding coefficients of the ^^-distribution, viz.

8(n + 3A) 12(n + 4A)
(n + 2A)» + ' " ' y%~ (n + 2A)s '

we see that x' approaches normality faster than x'%-
From the above it follows that V(2X'2) Q*8 mean J{2(n + A) - (n + 2A)/(n + A)} to order

(n + A)-* and variance (n + 2A)/(» + A) to order (n + A)-1. We can therefore regard

n + 2A
as distributed normally with mean

- 1

and variance unity.
This result may also be derived by taking the ^-approximation to the ^-distribution and

then using the known result that for large v, V(2A?) i8 distributed as N[J(2v — 1), 1]. For,
substituting x^lP f° r X2 and ^n e expressions in (15) for p and v, we reach the same normal
approximation.

Since v > n from (15), it can be seen that the normal approximation to x' with n degrees of
freedom will be better than the normal approximation to x with the same degrees of freedom.
Thus, for example, if n = 25, we have

A= 0 10 20 30 40
v = 25 27-22 3115 35-59 40-24.

Hence for sufficiently large values of n and A, the probability integral and percentage points
may be obtained from the normal tables. Table 3 gives a comparison of some values of the
probability integral, thus calculated, with the exact values.

Biometrika 36 14
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Table 3. Valves of the ^-integral on the normal approximation

n

Id
1<>
24
24

A

32
32
21
24

V

28-8
28-8
320
320

X

30
60
36
72

From
X1

0-0590
0-8329
01556
0-1)656

From
normal

0-0838
0-8320
0-1515
0-0686

Exftcb

0-0609
0-8316
0-1567
0-9667

3-3. Closer approximations to the ^-distribution

The probability function of x'% can be represented in the form of a series with the fitted
probability function of (px2) as the leading term and, from these mathematical expansions,
closer approximations to the probability integral and percentage points may be obtained.
Two methods will be briefly considered.

First method
The cumulante of the distribution/(z), as defined on p. 207 above, are seen to be

- *? =
48(n + 2A)3 (17)

the rth cumulant being K* = 2r-1(r-l)!

Comparing these with the corresponding cumulants of p{x) in (13), we find *:* > KT for r > 2.
Let us write

**3 — ' 'S — C3> ^ 4 — Kt — C 4 , . . . . ^ 1 O 7

Then the corresponding differences of cumulants of p(y) and f(y) as defined on p. 207, will be

C3/P3. cjp*,....

By the application of the Edgeworth operator to/(y) we have

d*

'»- •••}••>

Hence the probability integral I p(y) dy is given by
Jo

Since the higher derivatives of f(y) become smaller in value for a given y, we retain only the
first term in the square brackets of (19) and get a second approximation to the probability
integral in the form
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C, (PI
which can be written as I(u,p) - _ j ^ _ . (20)

When using the expression (20) for the evaluation of the integral, the computation of the
first term I(u,p) will, in general, require interpolation in the tables of the Incomplete F-
function. We shall now show that by a suitable modification of the Everett interpolation
formula, the second term in (20) can be accounted for and the whole expression computed in
one calculation.

If «!, w2 are the tabulated values between which u lies and A[, AJ the tabulated second
differences, we have as an approximation

~(M- AD 103,

the interval for u being 0-1 in the tables. Suppose q is the fraction (u —U1)/(MI —1 )̂, E\, E\
c 10s

the second-order Everett interpolation coefficients corresponding to q and k = ' , 3 .

Then (20) becomes
k). (21)

If p is not a tabled value but lies between px and p%, then we evaluate the above expression
for px and for p% and then interpolate linearly for p.

Second method

It is well known that by using the Edgeworth form of the Gram-Charlier Type A series,
a frequency function can be normalized if it approaches normality asymptotically and if its
cumulants are in increasing order of some quantity, n-1.

Goldberg & Levine (1946) have shown that by the method of normalization the percentage
points of the x2-distribution could be obtained to a fairly good degree of accuracy. A similar
method might be applied usefully to the ^-distribution. However, a modified form of
expansion with the fitted ^-function as the first term will be found more suitable.

Let us standardize the variate x (written for x's) by introducing

Then, using the same notation as before, the cumulants of the distribution p(£) pre

0, 1, AT3/Ar|, KJK\, ....

Since/(a;) has the same mean and standard deviation asp(x), we get for the cumulants of /(£)

0, 1, K*JK\, **/**,....

These oumulants, from the third onwards, are of orders — | , — 1, — f, ... in both n and A. Now
let

CL = <z(£

and let £s, ^ , ... be the Hermite polynomials of orders 3,4 Then we have, arranging the
terms in order of magnitude of n (Kendall, I, 1945, §6-32),

There is a similar expansion for/(£) with *? in place of Kr (r > 2).
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Now we subtract formally this second series from the first, term by term, and transfer/(£)
to the right-hand side. We then obtain

where c3ct have the same meanings as in (18) and crW is written for (KrKhKj — kfic%Kf).
We know that the infinite series in (23) is not uniformly convergent. We can still integrate

it formally term by term and make use of the first few terms to get a better approximation
than that givto by the integral of/(£) alone. Thus retaining terms up to O(n~l), we derive an
approximation to the probability integral

in the form
I" 1 r_ / 1 /•.. 1 r. \ / 1 /•_ 1 /•_. 1 r. \T

(24)

The first term in (24) is our first approximation of § 3-1 and the rest give a correction to it
which is seen to result in a considerable improvement (see Table 4). For evaluating this
expression, the values of the Hermite polynomials may be taken from Jorgensen's tables
(1916)if£isan argument tabled there; otherwise they have to be directly calculated. a(£)
may be found (without need for interpolation) from Tables of the Probability Functions,
Vol. 2 (Federal Works Agency, New York, 1942).

The coefficients in (24) involve only differences of the cumulants and so are smaller than the
corresponding coefficients in (22). Thus a closer approximation is likely to result from (24)
than from the same order of terms in (22).

For the percentage points, we employ the inversion of the Gram-Charlier series obtained
by Cornish & Fisher (1937). If x, x' and £ are respectively the percentage points of the
distributions p(x),f(x) and a(£), then for a given probability level, we have

has a similar expansion with K* in place of K. (r > 2). By differencing as before we

obtain an expression for x in terms of x' and £. Retaining terms up to 0(n-*), we find

( 2 5 )

In this, x' is our first approximation, and the correction improves it considerably even at
the lower end of the distribution. The values of the expressions in £ in (25) are direotly avail-
able for several probability levels from the table in Cornish & Fisher's paper.

The approximate values of the probability integral of the ^'-distribution obtained by
these methods in a few cases are given in Table 4. Table 5 shows the approximate upper and
lower 5 % points evaluated by method II.

Comparing the two methods for the probability integral, the second one, employing,
terms of the Gram-Charlier series up to O(n~*), gives greater accuracy and is to be preferred,
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although from the point of view of labour and time involved, the first method is simpler and
easier to apply. With respect to the percentage points, the method using the Cornish-Fisher
inversion appears to be quite good, particularly at the upper points, but it does involve
a certain amount of labour.

Table 4. Closer approximations to the tf'-integral

n

4
4
7
7

16
16

A

4
4

16
16
8
8

X

10-00
24-00
24-00
38-97
20-00
40-00

1st
approx.

0-7191
0-9913
0-6947
0-9482
0-3380
0-9626

2nd approx. method

I

0-7209
0-9917
0-6938
0-9604
0-3346
0-9632

n

0-7119
0-9913
0-6869
0-9602
0-3368
0-9631

Exact

0-7118
0-9926
0-6898
0-9500
0-3369
0-9632

Table 5. Closer approximation to the ^'-percentage points, using method II

n

2
2
4
4
7
7

A

4
16
4

16
4

16

Upper 6 % point

1st
approx.

14-72
33-36
17-38
36-69
21-28
3916

2nd
approx.

14-67
33-06
17-33
36-42
21-27
38-97

Exact

14-64
3306
17-31
36-43
21-23
38-97

Lower 6 % point

1st
approx.

0-946
6-891
1-954
8-363
3-789

10-637

2nd
approx.

0-674
6-526
1-731
8-017
3-75Q

10-267

Exact

0-646
6-322
1-765
7-884
3-664

10-267

4. APPLICATIONS OF THE ^^-DISTRIBUTION

4-1. The power function of the pf-test

There are several possible applications of the non-central Ya-distribution in statistics. We
shall consider only a few of them. We will show here how this distribution arises in the study
of power functions of the ^-tests and how the approximations of § 3 are useful in this con-
nexion.

Suppose £lt £g,..., £„ are n independent observations in a sample. If we make the null
hypothesis HQ, that the ^ have been drawn from a normal population with mean zero and
s.D. unity, then if H^ is true, the statistic #* = 2£| will exceed ;\£, the a-significance point of
the ^-distribution, based on n degrees of freedom, in a proportion a of the cases.

The power of the ^-test is given by the probability that 2£* exceeds ^ under some alter-
native hypothesis. If as an alternative to H^, we suppose that the £< have been drawn from
normal populations having unit S.D. but different means ait then S£$ will follow the non-
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central ^-distribution with n degrees of freedom and parameter A = £of. Denoting this by
PrAx"11 )̂» the power function is given by

Thus the power is a function of the single parameter A and we may write the null hypothesis
as -So(A «= 0) and an alternative as H^A), where Hx is a composite hypothesis including the
family of alternatives for which SoJ = A.

It was shown in §3-1 that the ̂ -distribution is fairly well approximated by a Type III
distribution fitted from its first two moments. The power function /? could therefore be
evaluated quickly and fairly accurately by the method of the first approximation. When
greater accuracy is needed, one of the other methods described in § 3-3 may be used.

We give here a table (Table 6) of values of the power of the ̂ - test applied at the significance
level a = 005, obtained by the second method of §3-3. The accuracy of these values in
different parts of the table can be judged from the closeness between the approximate and
exact values of the probability integral shown in Tables 1 and 4. In some of the cases tabled
there, the limit x was chosen near to the 5 % point of the corresponding x*> so as to give a
value of rx

l-jQPn(x\A.)dx

in the neighbourhood of the power ft. It is believed that, in general, there is three-figure
accuracy in Table 6.

Table 6. The power function of the ^-test using a 5% significance level;
values of /?(n, A, a), where a = 0-05

V"\
2
3
4
5

6
7
8
9

10

12
14
16
18
20

2

0-234
0195
0171
0157

0146
0138
0131
0125
0121

0113
0-108
0103
0-099
0-096

4

0-416
0-357
0-320
0-292

0-270
0-251
0-238
0-225
0-215

0-198
0-185
0-174
0165
0-168

6

0-586
0-518
0-470
0-432

0-404
0-378
0-357
0-339
0-323

0-297
0-276
0-259
0-244
0-232

8

0-719
0-655
0-605
0-565

0-531
0-502
0-477
0-455
0-435

0-402
0-374
0-351
0-332
0-315

10

0-819
0-762
0-719
0-678

0-644
0-614
0-588
0-564
0-542

0-505
0-473
0-446
0-422
0-402

12

0-885
0-841
0-803
0-769

0-738
0-710
0-685
0-661
0-640

0-601
0-567
0-538
0-612
0-489

14

0-929
0-897
0-867
0-839

0-813
0-788
0-765
0-744
0-724

0-686
0-653
tD-623
0-596
0-572

1.6

0-956
0-935
0-913
0-891

0-870
0-849
0-330
0-811
0-793

0-759
0-728
0-699
0-673
0-648

18

0-973
0-958
0-943
0-927

0-911
0-895
0-879
0-863
0-848

0-818
0-791
0-764
0-740
0-716

20

0-983
0-974
0-963
0-952

0 940
0-928
0-916
0-903
0-891

0-866
0-842
0-819
0-796
0-775

When n or A is so large that v = n + As/(» + 2A) is over 30, we may use the normal approxi-
mation of § 3-2 for obtaining the power function more quickly than by the method of the
^-approximation.

The above table can be used in a variety of ways: (a) For given A and n, we may ask what is
the chance of establishing significance at the 5 % level ? (6) For given n, we may ask how large
A must be to have, say, a 90 % chance (fi = 0-90) of establishing significance at the 5 % level
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when a real difference in the a{ exists ? (c) For given A, we may ask how many observations are
necessary to have a chance fi of establishing significance?

An alternative graphical approach to the inverse problems (b) and (c) is indicated in § 7-3,
p. 228 below.

4-2. Application to the }f-test for the goodness of fit

The x*-test for goodness of fit is concerned with the comparison of observed frequencies
with those expected under a given hypothesis. The latter may be the theoretical frequencies
of a continuous distribution or may be obtained by taking integrals of a continuous frequency
distribution over a set of class intervals. Denote the observed frequencies by n< and the
expected frequencies by N^ (i = 1,2, ...,k), where ibis the number of groups aadN the total
number of observations in the sample. Then

k k

2 »< = S Nn{ = N. (27)
i - l < - l

As is well known, the distribution of

when the Nn{ are the true population expectations, may be related as an approximation to
that of the sum of squares of normal variables. To link up also with the non-central theory
disoussed in §§ 2-1-2-3, the following approach may be adopted, although it must be realized
that the conclusions reached are not exact. As in all problems concerning <j>%, it is generally
only possible to assess the degree of error involved, in samples of finite size, by specific
numerical comparisons.

As shown originally by K. Pearson (1900, 1916), the variances and co-variances of the k
frequencies nt, restricted by the condition (27), are precisely those holding in the section

X1 + Xt+...+Xk = 0 (29)

of the i-dimensioned normal probability distribution whose probability density at

(XvXa, ...,Xk)

is p(X1,Xt,...,Xn) = constantxexP [~tS^j-J- (30)

Thus, provided that the expectations Nnt are large enough to prevent serious inaccuracy
from discontinuity effects or boundary limitations, relationships between the n{ may be
treated as relationships, within the prime (29), between normal variables X{ which in the
Jt-dimensioned space are distributed independently with zero means and variances
With these limitations, we may write

The distribution of the 0 s defined in (28) can then be derived from the results given in § 2-3.
The condition 2T»4 = N may be written

corresponding to Yictxi = P = 0, where 2C? = 1- Hence <f>a will be approximately distributed
< i

as K* with k- 1 degrees of freedom.
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Having in mind the question of the power of the test, we may next ask what will be the
distribution of 0a if the frequencies Nnt inserted into the expression (28) are not the true
expectations? Suppose that Npt are the true expectations; both YiPi and Yini will De unity. -

{ i

In the notation of § 2 we now have

_ni-Nni _ nt-NPi _N{Pini)

'IW " ' " « ''^TWT' <S8)

whae ?^w-)=?c<^=0- (34)

I t follows that approximately

will be distributed as a non-central yf with k — 1 degrees of freedom and

A' = 2(a*) = tf2^^. (36)
i i Pi

The sum of squares we need is the <f>* of (28), not the tj>'% of (35). By introducing a further
approximation we may, however, conclude that <f>2 = £(n ( — NTT^/N^ is distributed as

i

non-central x* with k — 1 degrees of freedom, and

X=NX^£. (37)t

The approximation involved should not be serious if the differences it = Nni — Npt are
small compared to Nn^, for

-

Since the multipliers <J< in the second term may be positive or negative and E^ = 0, this term
will generally be small; the further terms, containing successive powers of S^Nnf), will also
be of HimiTn'HViing importance.

This result makes it possible to determine the power of the goodness of fit test of any
simple (completely specified) hypothesis H^ (specifying probabilities 7r4) with respect to a
simple alternative hypothesis Hx (specifying probabilities p{). Hence, for any given class of
alternatives H, we can determine the power function. In so far as the 5 % significance level
is used, the power may be determined from Table 6, p. 214, using the A of equation (37) and
degrees of freedom k — 1. Otherwise, we can use the ^-approximation to the ^-distribution
developed in § 3-1. Thus the power is

(38)

- fc^. -£££. M?fH-
| In making the approximation, we have associated the A of (37) with the distribution of <j>x rather

than the A' of (36), but this step perhaps needs fuller justification.
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For comparison of this approximate distribution with the exact one, we proceed now to
find the exact moments of <f>%. I t is known (e.g. Haldane, 1937) that under Hx the expectations
of the powers of the observed frequency nt are

(40)

£(n\n)) = Ni
etc.,

where Nr = N\l(N-r)\.

Writing <j>1 in (28) in the form <j>* = •= 2(n|/7r,) - N,

we have «r(0») = -^ 2 ^ ^ - N

N
Hence ^ = (tf- l)S(p|/ff,) + S(ft/»r,)-.flr. (41)

from which on substitution and simplication we obtain

)}. (42)
In a similar way the third moment has also' been obtained but the expression is so long and

so difficult to evaluate numerically that it may not be of much value for comparison purposes.
When p i = n{ the above expressions reduce to those derived by Haldane (1937) for the

exact moments of the distribution of (f>% under the null hypothesis.
The approximation to the distribution of (j>% obtained, using the simplification of § 3-1,

will have the following first two moments:
+ N[£(pi

ilni)-ll |

i - l ) + 4A = 2(fc-l) + 4ff[S(p|/ff ()-l]J
using the expression for A in (37).

A comparison of these approximate moments with the exact ones, (41) and (42), appears
to be only possible numerically. Some comparisons have been made, including a check-up
on the whole distribution by a random sampling experiment. In^the cases taken, the
approximation appeared satisfactory for practical purposes but some further investigation
is in hand. The results will be published in a subsequent paper.

4-3. Uses of the power function of the x* goodness of fittest

We have seen in § 4-2 that, to the approximation involved, the power of the x*-test for H^
with regard to an alternative H^ is a function of k — 1, A, a and can be written fi(k — 1, A, a),
where k is the number of groups, a the significance level at which the test is applied and
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This shows that A is a function of nt &ndp{, and can be regarded as a measure of' discrepancy'
between the two distribution functions specified by HQ and Hv

The power function can be used to answer several questions connected with the test of
goodness of fit: (a) For given sample size N and number of groups k, we may ask what is the
chance of establishing the inadequacy of the hypothesis J3J,, using a given significance level?
(6) For given k, we may ask how many observations are necessary to give a chance of, say,
90 % of establishing significance at the 5 % level? (c) For given k and N, we may ask how
large a departure of ̂  from HQ (measured by A(flp, Ht)) will be detected with a given chance ?

We shall illustrate these applications by an example from genetics. Consider the intercross

AB AB
ab * ab '

where A and B are two independent factors, the recessive genes of which are represented by
a and b. The offspring are of the four types [AB], [Ab], [aB], [ab] with frequencies in the
proportions 9,3,3,1. We test whether the experiment is to confirm this theory or to reject it
in favour of a definite Alternative giving frequencies proportional to 9, 3, 3r, r (r being less
than 1). This happens when the two classes of offspring containing the two recessive genes
(a, a) are less viable than those containing only one dominant gene, so that only a fraction of
the offspring survive.

Here, the expected frequencies are

7^:9/16, 3/16, 3/16, 1/16.

Pi:9/4(3 + r), 3/4(3+ r), 3r/4(3 + r), r/4(3 + r).

Hence A = ffl v
 r V ~ 1 ) ' ( 4 4 )

where N is the number of offspring studied. Then

1. (45)

Let us now consider the three situations where the power-function idea could be applied.
(a) Suppose we have 100 observations. Using the ^*-test at the 5% level to test the null

hypothesis (r= 1), the chance of establishing differential viability when r = J is obtained
by evaluating A from (37) and then entering Table 6 (p. 214) with this A and n = k— 1 = 3.
Here A = 300/49 and so the power fi = 0-52.

(6) Suppose we want a 90 % chance of detecting that r = \, using the 5 % significance
level. We find from Table 6 that A = 14-1 and hence, putting r = \ in (45), obtain A = 3/49.
Then from (44) we find that we shall need a sample of N = 230.

(c) Again, if N = 100, a — 0*05, we may ask how small r must be to give a 50: 50 chance for
establishing significance? We find A as before and solve(44)for r. Thus taking/? = 0-50, then
A = 5-8 and r = 0-51.

4-4. A closer approximation to the power function of the ^ goodness of fit test

In § 4-2, when deriving the ^'-approximation to the distribution of

* = 2 Nn{ '

we made the assumption that ni and^ , the proportions of the expected frequencies under the
hypotheses H^ and Hx do not differ very much, so that we could regard (n{ - Np^}{Nit^ as
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a normal deviate with zero mean and unit variance. We will now consider the distribution of
<f>% without making such an assumption and use it for obtaining a better approximation to the
power function.

We can write <f>% in the form
/ N Nj - Nnt\

a

the summation being from i = 1 to k. Now, under Hx the quantities {^ — Np^j^Np^ are
distributed approximately normally, as #(0,1), subject to the constraint Enj = N. Hence
<j>* in (46) can be regarded as the weighted sum of k normal deviates having different expecta-
tions and satisfying the condition Sn^ = N.

We have obtained in the Appendix (pp. 231-2 below) the characteristic function of the
distribution of such a statistic, viz. 2«y(*^ + o^)1 subject to the condition 2c (̂a^ + â ) = p.
Making the appropriate substitution in (6) of the Appendix, we have the characteristic
function of <j>%:

where the subscripts of p{ and nt are dropped. From this the expressions for the first three
moments are derived. Thus

<) - N,

( }

It will be seen that the only assumption made here, that (n( — NpJ/^Npt) is distributed
as N(0,1) under Hlf is parallel to the assumption on which the xa-test of goodness of fit is
based, namely, that (n4 - NnJf^Nni) is distributed as N(0,1) under HQ, which is justified
when Nnt are not too small. So, when Npt are not too small we can expect the moments in
(48) to agree well with the true moments (the first two of which are given in (41) and (42)).
Obviously the expressions for ji[ are identical. The values of fa in the cases examined in
the investigation referred to on p. 217 were found to be very close.

We may now obtain a representation of the distribution of ̂ * under Ht as a Type HI having
the first two moments of (48), that is, assume (j>%fp as distributed as x* with v degrees of
freedom, where p = ifalfi'i, v = 2/^*//^. Clearly this will be a better approximation than that
of the Type III fitted from the /4. IH given in (43), and the power function based on this will
be closer to the exact one than that based on (38) and (39). But, although there is gain in
accuracy, the simplicity of the approximate method is lost. We may similarly consider
fitting a Type III distribution, using the true /*i and /*2, but the labour of computation of •/*,,
given in (42), appears to be prohibitive.

5. CONDITIONAL POWBB FUNCTIONS

In § 4 we have considered the power function of the %* goodness of fit test when the null
hypothesis is fully specified, i.e. is a simple hypothesis. But often we are interested in testing
whether an observed sample has come from a certain type of population, BO that we are given
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only the form of the population law, not the values of its parameters, say dlt6a, ...,6r. B^ia
then a composite hypothesis. Sometimes, also, we have to test the hypothesis that several
samples are from the same population, without specifying anything about it. In these capes
we obtain estimates of the unspecified parameters, say Tv T%,..., Tr, from the sample and
hence calculate the expected cell frequencies fh^ Then, if the method of estimation is efficient!,

0« = S ( « i - ^ ) 8 M * (49)
i

is known still to follow approximately a ^-distribution with k — r — 1 degrees of freedom.
Suppose now that as alternative to the composite hypothesis B^, there is a simple hypo-

thesis Hv The question then arises: By estimating the mi on the assumption that B^ is true
and applying the p^-test, what chance have we of rejecting H^, when, in fact, Hx is true?

Some consideration has been given to this problem, and it seems possible to obtain a
solution by making use, as a first step, of what David (1947, p. 339) has termed the conditional
power function. This gives the chance of rejecting H^ when the test is confined to a restricted
set, S, of samples which provide the same values, say T£\ T^\ ..., T*f> for the estimated para-
meters. Thus, if the process of fitting involves estimating two parameters from the sample
mean and variance, samples of a set would be those having a common mean and variance.
Again, in testing for independence in a contingency table, the conditional power function
would be obtained for a set of samples giving the same marginal totals (see Patnaik, 1948).
The development of this method will be left for a later communication.

6. THE NON-CENTRAL .F-DISTRIBTJTION AND APPROXIMATIONS TO IT

Suppose two independent variates, Xia &n^i X%> follow respectively a non-central ^-distribu-
tion with degrees of freedom v1 and parameter A and a ̂ -distribution with degrees of freedom
vg. Then the ratio

F, _ x?K
%l

will have the following probability distribution:
n
J

(50)

which may be termed the distribution of non-central F or of F'. This corresponds to Fisher's
distribution C (1928). Wishart (1932) considered it in the form of the distribution of the
correlation ratio

Later, Tang (1938) derived the same from that of x'3-
If in (50) we put vr = I, then it reduces to the distribution of non-central t*. Denoting the

non-central t by t', we have
., _

> '
where z is a normal deviate with expected value zero and w is an unbiased estimate of its
variance. Neyman (1935), Neyman & Tokarska (1936) and Johnson & Welch (1939) have

t I. ©• gives a solution not very different from the maximum likelihood or minimum x* solutions,
which are nearly identical in large samples.
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dealt with this distribution in detail and studied its various applications. We will not there-
fore consider here in particular this special case of the ^'-distribution.

Taking the general form (50), we may, by analogy, call vlt vt the degrees of freedom and A
the non-central parameter. It can be seen that when v2 tends to infinity the distribution of F'
reduces to that oi Xilvv

The characteristic function is obtained as an infinite sum of confluent hypergeometric
functions

in which the function, H(a, b, x), is the sum of the series

a
1 +

Thence we derive the following expressions for the first four moments about the origin:

(51)

v1 + 2A)2 + 48(^ + 4A) - 32A2],,

of which the first two were obtained by Wishart by a different method.
Methods of evaluating the probability integral of the ^'-distribution have been worked out

by Wishart and Tang. They involve a considerable amount of labour. Following the pro-
cedure adopted in the case of x'3, it may be possible to obtain a quick, though approximate,
method by fitting an F-distribution with the exact first two moments of F'. If we regard
F'jk as following an F-distribution with v and v2 degrees of freedom, then, equating the
expressions for fi[ and /it, we have

if -L 9

which give the scale factor and the modified degrees of freedom, viz.

v = (52)

The same result will follow if we approximate the distribution of x'\ (the numerator in F')
by a Type III from the first two momenta as in § 3-1.

Using the above approximation, the probability integral
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rF-ik

is approximately equal to I prv(F)dF,
Jo ' '

where k and v are defined in (52). This can be expressed in the form of an Incomplete
B-funotion, viz. iv v\

Ix\2'~2)'

where x =
vF'jk

v%+vF'jle'
For given values of vlt vit A and F', we can therefore evaluate the integral from the Tables of
the Incomplete ^-function (K. Pearson, 1934). When vt is even or, if odd, is less than 22, we
need interpolate only for x and \v( = p). Four-point Lagrangian interpolation p-wiae and
linear interpolation *-wise will be necessary.

Tang's tables of Pn (the error of the second kind) (1938) give exact values of the integral
of the ^-distribution, which, put in the ^"-fonn, is

\F'p,u,t{F'\\)dF', (53)
J 0

Table 7. Approximate and exact values of the F'-integral, \ p,iPt(F'\A)dF'
J 0

3

3

6

6

8

8

10

20

10

20

10

30

A

4
4

16
16

4
4

16
16

6
6

24
24

6
6

24
24

0
9

36
36

9
9

36
36

X

3-708
6-662
3-708
6-652

3098
4-938
3-098
4-938

3-326
6-636
3-326
6-636

2-711
4103
2-711
4-103

3072
6-057
3-072
6067

2-266
3173
2-266
3173

Approx.

0-752
0-919
0-203
0-620

0-706
0-889
0-119
0-360

0-731
0-913
0-157
0-463

0-665
0-869
0064
0-244

0-715
0-909
0-117
0-409

0-681
0-815
0-014
0-085

Exact

0-745
0-918
0-206
0-617

0-700
0-887
0126
0-347

0-731
0-914
0-158
0-461

0-664
0-870
0-069
0-245

0-714
0-908
0-119
0-408

0-678
0-813
0-017
0-088
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Fa being the a-percentage point of the .F-distribution with vx, vt degrees of freedom. Two levels
of a were chosen for the tables, namely, 0-05 and 0-01, and the range of vx is 0 to 8. The tables
have to be entered with <f> = [̂A/(i>1 + !)]• Since <f> is at intervals of 0-5, the corresponding
intervals for A are very wide, which therefore makes interpolation unsatisfactory.

Table 7 gives the values of the integral (53) calculated by the approximate method indi-
cated above, for certain cases where Tang's exact values are available. The comparison shows
that, in general, we have two-figure accuracy, while the error in the third place appears to be
quite small near the tails.f

It is to be noted that the table compares the integral at only two points, the 5 and 1 %
points of the corresponding ^-distribution. Due to the lack of exact values it has not been
possible to judge the closeness at other points. However, some idea of the general accuracy
could be had by comparing the true and approximate figures for different A's with the same
vltvt*ndx(= Fa).

I t can be easily shown (see Hartley, 1948) that the maximum error in the F'-integral due to
our approximation will not exceed the maximum error in the corresponding ^'•-integral,
that is, in rx"

J o p,1(x'l

Table 1 on p. 207 gives an idea of the magnitude of the errors in the x'a-integral, and so we can
say that the errors in the F' -integral will not be of a higher order.

The percentage points of F' can be obtained by interpolation in the F-tables (Merrington
& Thompson, 1943), for the fractional v and vt and multiplying the interpolate by k in (52).

Closer approximations to the probability integral and percentage points may be derived
by the method based on the Gram-Charlier series, analogous to the second method of § 3-3.

7. THE POWER FUNCTION OF THE ANALYSIS OF VARIANCE TESTS

7-1. Evaluation of the power function

The test of a general linear hypothesis may be formulated as follows: Suppose xvxi,..., xN

be N normal variates with means £lt £„ ...,£n and the same S.D., <J . £f is a linear function of
8 < N parameters, Qx, d%,..., 6t. Thus

The linear hypothesis specifies, say, r of these parameters, i.e.

0i = 0?, 0, = 08, .... er = e°r. (54)

It is possible by a suitable transformation of variates (see Tang, 1938) of the form

yt = cnxx + cjaxt +...+ cjXxN

N

to transform T* = 2 (z,-^)2

i-l

into T*= S*2/J+ S+r (%-ty)*+ S tei-Vt)*,

where i}f in the second sum is a linear function of 0?, 0§,..., 0J and tjj in the third sum is a linear
function of all the 0's, while the a's and c's enter as coefficients.

f [Further exploration shows that the differences between the approximate and true values are
systematic, with regular fluctuations. Use is being made of this fact to prepare certain rather more
extensive tables of the power function. ED.]



224 The non-central y2- and F-distributions and their applications

To teat the hypothesis (54) we consider the criterion

( T* (ft0 ft0 ft ft \ \ N-a+r IN-a

1 mln .V ( 7 l> - - -» ( 7 r» t 7 r -H» •••>&*) A — V (v —V)2I Y V*

If the hypothesis specifies such values for 6lt 6%,..., 6r that T '̂B in (55) vanish, then the numer-
ator and denominator are the sums of r and N—a central squares respectively. So, the ratio of
the mean squares follows an ^-distribution. On the other hand, if the TJJ'S do not all vanish,
we have the ratio of a sum of r non-central squares to the sum of N — s central squares; hence,
the ratio of the mean squares is distributed as non-central F, the parameter A being ET/J whioh
can be expressed in terms of 0$,..., 6% (see Tang, p. 137). Thus we get the i^-test of the analysis
of variance and obtain the power function of this test with respect to an alternative hypo-
thesis as an ^'-integral.

We shall now consider the question of evaluating the power of the analysis of variance test
by taking as an illustration the simple case of k groups of observations

xH(i = 1 n; t = 1,...,£).

Suppose xH = A + Bt + Zff, (56)

where A is the general mean, B, the deviation of the mean of the rth group from the general
mean so that TiBt = 0 and z^'s are random residuals, distributed normally with mean zero and
s.D. = cr0. The expressions for the mean squares between groups and within groups follow
from the set-up (66):

1 * 1 *
^ 1

— 1 t-l

S

where the symbols have the usual meanings. Since (Zj. — z..) is a normal deviate with zero
mean and variance o%ln, we see that v is the sum of A non-central squares subject to the linear
constraint t

2 (z,.-z.. + B,) = 0.

Since further ~LBt = 0, we find from the result of § 2-3 that v is distributed as OoXi*/(*- l)>
where ^i1 has (k— 1) degrees of freedom and parameter

A = nLBfla%.

Writing S1 = (ZBf)lk (57)

for the variability between the groups, we have

A = knS*l<J%. (58)

Now v0 follows the distribution ofo%y\l[k(n— 1)], where ^J has k(n— 1) degrees of freedom.
Hence v/v0 is distributed as j

k-lM Ikin-l)**'

i.e. as F' with vx = k- 1, v% = k(n- 1) and A given by (58).
In this example we desire to test for any possible difference between the averages of the

groups, so that our null hypothesis is

B, = B, =.. . = Bh = 0. (59)
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Then, from (57), S* and therefore A is zero. Hence vjvQ follows an .F-distribution and we get an
F-test. Thus the test of the hypothesis in (59) is based on the critical region

— j> Fa, (60)

where a is the significance level at which we are testing.
Let us consider an alternative hypothesis that the B,'B are not all zero. Then it is known that

the power function, that is, the probability that (vlvo)^Fa, depends only on the single
parameter gp

Hsu (1941) has shown that amongst all critical regions of size a, whose power functions depend
on the single parameter (^/crg), the critical region of (60) is the most powerful.

Thus we specify the hypothesis alternative to the null hypothesis (59) by the single para-
meter /S /̂OQ in place of the individual parameters, the Bt'a. In certain situations, as, for
instance, in a manufacturing process, we are more interested in detecting the over-all
variability in a set of machines than in detecting the deviation of each particular machine
from the general machine average. Then the power function will be useful in measuring the
chance of detecting this over-all variability by means of the .F-test.

The power function of the analysis of variance tests has been considered by Tang (1938)
and Hsu (1941). The rather restricted scope of Tang's tables has already been mentioned in
§ 6. The labour involved in computing the exact values of the power is very heavy, and no
tabling on an extensive scale has so far been found possible. However, with the approxima-
tions to the F'-distribution derived in § 6, we may obtain easily a sufficiently accurate value
for the power funotion of the test of any linear hypothesis.

Returning to the case of k groups and kn observations, we have the power function given by

where Fa is the a percentage point of the .F-distribution with degrees of freedom vv v%.
Following the procedure of § 6, this integral approximately equals

I"" P,.4F)dF, (61)

where v = r- .
v1 + 2A

Therefore, to this approximation, we have

inwhioh x =

(62)

7-2. The difference between systematic and random effects

Next we shall consider two alternatives that arise in practical situatiorus—the random and
systematic set-ups (see Daniels, 1939) which may best be described in terms of two examples:

If the groups in the previous illustration correspond to villages and the observations are the
Biometiika 36 15
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yields of fields in a crop survey, then we can regard the k villages as a random sample from
a population of villages and the random set-up represented by

xfi = A+yt + Zu (63)

becomes relevant. Here, A is the general mean, yt's are the group means which are inde-
pendent random variables with expected value zero and S.D. = a, and Z^B the random resi-
duals having mean zero and S.D. = <r0.

On the other hand, if the groups correspond to k machines whioh, from the user's stand-
point, constitute the entire population of machines, we cannot regard them as a sample, and
so the systematic set-up, in (56), considered on p. 224, is relevant. The null hypothesis in the
random set-up is that the parameter tr8 = 0, and in the other that 8* = 0 (which is equivalent
to (59)). But it is easily seen that both lead to the same .F-test for the null hypothesis.

In applying the test, we are on the look out for the existence of alternative conditions,
where in one case cr* and in the other 8* is > 0. It will be noted that (<Sf*/oo) of the systematic
set-up corresponds to (o /̂crj) of tho random set-up. Both are measures of relative variability
between groups and may be termed 'relative group variability'.

It is possible to relate the power function under the random set-up to that under the
systematic set-up. If we regard the k groups as a sample from an infinite number of groups,
then liBfKk- 1), i.e. k&ftk- 1) will be the sample estimate of the population variance <r*.
Thus treating S1 as a random variable having a probability distribution denoted by
p(8tj<xi), we can obtain the average power over all the S1 's. Thus

gives the power when the random set-up applies.
This power /? for given (a31 of) is directly obtained (see Johnson, 1948) from the i'-integral:

(64)

where v1 = ib— 1, v% <= k{n- 1) and A =

This can be put in the form of the Incomplete B-functdon

where x =
(65)

It is interesting to note a result which we believe is true in general and whioh on intuitional
grounds might be expected to hold, namely, if the null hypothesis is not true, then for the
same numerical values of the ratios 8*1(7% and (T%la%, the power of the .F-test is greater in the
systematic case than in the random. Four particular cases have been examined numerically
as follows:

Number of groups, k
Number of observations
in each group, n

(a)

4
6

(b)

4
11

(c)

12
6

(d)

10
11
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Values of the power have been calculated, using equations (62) and (65), and are plotted in
Fig. 2 (a)-(d) as ordinates against <ralo% (= S*^). We find from these that the systematic
power curve lies above the other; further, we note that the curves are closer to one another
in (c) and (d) than in (a) and (6), a fact which agrees with theory that the two power functions
must tend to each other with increasing k. The errors of approximation in calculating the
power in the systematic case are likely to be small judged by the comparative Table 7 and
should not affect the relative positions of the power curves.

(d) k—10. n - 1 1 .

Fig. 2. Power curves for the random and systematic set-ups for k groups with n observations in each:
random, systematic.

This relation may be interpreted in a different way. Taking case (a) above, it will be seen
from Fig. 2 (a) that we can detect, for instance, a 'systematic' relative group variability of
0-45 with a 70% chance, while we cannot, with the same chance, detect a variability of
magnitude less than 0-9 in the random case. The difference is of course to be expected. For the
random set-up, our appreciation of <r* is obscured by random variations in both y and z of
equation (63); for the systematic set-up, our appreciation of S* is only obscured by random
fluctuations in the z of equation (56).
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7*3. Applications of the power-function

We will be oonoerned here mainly with the systematic set-up and will illustrate the
application of our results, taking the simple case of k groups and n observations. The treat-
ment is, however, quite general and could be applied to any designed experiment as outlined
in the general statement given at the beginning of § 7-1.

Two types of question may be asked in connexion with the test for differences between
groups:

(o) What is the extent of departure from the null hypothesis, measured by (S'/of), that
could be detected with a given chance?

(6) How many observations are we to take in each group so that we could detect a given
ratio of between group to within group variability (jS*/crg) with a prescribed chance?

To answer these questions we have to examine the function ^((S^/trJ) which may be written
in the form

P(Vi, v%, A, a) = e~>A S ., R a • 1 w x**»-1+'(l —z)*1^-1^, from (50),

and consider its inverse, i.e-. A = A(v1,v,,a,/?). Generally, A has to be obtained by inverse
interpolation from tables of ft such as Tang's. The interval of tabulation of 0-5 for

in Tang's tables is not fine enough for interpolation to be satisfactory. Still, they give a trial
value of <f> for which /? is calculated and then corrected with the help of the derivative 3/5/3$.
Following this rather laborious method, Emma Lehmer (1044) has tabled <f> for a = 0-01,
0-05 and ft = 0-7, 0-8 and for a wide range of vx and v%. For these two values of the power we
may use her tables to obtain our A. It would clearly be of value for these tables to be extended.

We may, however, for any set of values of vlt va, a and /?, get A approximately with the help
of the approximate form of/? given in (61). Taking a trial value of A we can find two consecu-
tive integera Alf Aj between which A lies by the following method. From the expression (61)
for /? we see that A must satisfy the relation

XT / j . _, \ 1 TCI / ^ \ f(KfK\

where the arguments v, vt and vlt vt are the degrees of freedom. Henoe the two integers Xx

and A, would make the right-hand side of (66) just greater and just less than the left-hand
side. These can be got by trial and error, taking the a and /? percentage points from the
F-tables and comparing the two sides. (It is to be noted that v in (66) involves A.) For these
values of Xx and Aa, fi is then evaluated using (62) and by backward interpolation A is de-
termined.

To deal with inverse problems, such as (b) mentioned above, a graphical representation of
the relation between vv v% and A for fixed a and/? will be most useful. Following the procedure
described above for finding A, charts have been constructed for a = 0-05 and for two levels of
power, P = 0-5 and 0-9, which are likely to be of practical interest (see Figs. 3 (a), (b)). The
charts give, to the approximation involved in (61), contours of equal power and could be used
for determining any one of the three quantities, vlt vt and A, given the other two. When
vt = oo, the F' reduces to x'l/';i» an<^ henoe these charts could also be used for answering the
inverse questions connected with the power function of the ^-test (see p. 215).

We give here two illustrations of the use of these charts.
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Illustration 1. To study the seasonal variation in the frequency of occurrence of a particular
dominant alga in a pond, ten samples of 15 c.c. of water are taken from the pond on the first
day of each of the five months, April to August. Fifteen drops are taken on elides from each
sample after shaking it thoroughly, and the number of algae of the particular form are
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Fig. 3a. Contours of equal power for the analysis of variance test with the systematic set-up:
a. = 0-05, and a power fi(vlt vt. A) = 0-5

counted under the microscope and the total for the fifteen slides is taken as the density for
each sample.

To test whether there is significant variation in the density of this form of algae from month
to month, the analysis of variance test is applied, say, at 5 % level. It will be of interest to
know how large should the ratio of the seasonal variability to the variability in the pond be,
so that we could detect it with a 90 % chance.
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samples from time to time and testing for differences between the machines. From previous
observations we have some idea of the order of variability in the product of a single machine;
suppose we do not regard the variability between machines as serious if it does not exceed
0-25 of the within-machine variability. How many samples of wire must we take from each
machine to have a 90 % chance of detecting, at the 5 % level for F, a between-machine
variability of this magnitude, if it exists?

Since — = j in virtue of (58), we have now to find n satisfying the relation
v, n-l<rg

A * xO-25.
vt n — 1

Following the contour in chart 3 (6) for vx = 6, we find by inspection a point on it at which the
ratio of the co-ordinates is nearly 0-25. This point gives vt = 75 from which we obtain the
number of samples required, n = vilk+ 1 = 75/7 + 1 = 12, approximately. On the other
hand, from 3 (a) we find that we would have a 50 % chance of detection, if n = 6.

In conclusion, I should like to acknowledge gratefully the help and guidance I have
received from Prof. E. S. Pearson and Dr H. 0. Hartley in the course of my investigations.

APPENDIX

Distribution of the sum of squares of independent normal
variates with different means and variances

Let f x, £s,..., £„ be n independent normal variates with expectations bv bt,..., bn and variances
t>j, vt vn respectively. The characteristic function of the statistic

^ = £3 (1)
is easily obtained. Introducing xt = ( ^ — bfij^Vj,

we note that each xt follows the probability law

and that rjr* in (1) can be written as
^» = Zt;,(x, + a,)», (2)

where Oy stands for bj/Jvj. (All summations are from j = 1 to n.)
The characteristic function of rjr% is given by

The integral in (3) is equal to

<j>(t) = ft (1 - «««,)-* exp ffi^ffHence

from which all the moments of the required distribution can be derived. We may represent
this approximately by a ^-distribution fitted from the first two moments, fi^
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Next we consider the conditional distribution of xjr* in (2) subject to a single linear con-
straint on the z/s, viz. 3 ^ + aj = p

The characterististic function of the joint distribution of \jr* and p is given by

On performing the integrations in (5) we find

The conditional characteristic function of i/r*, for fixed p (Bartlett, 1938), is

The moments of the conditional distribution of rjr2 can then be obtained from (6).
Again, we may fit a Type III to the conditional distribution of r/r2 by using the first two

moments.
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