Distance enumerators

- Suppose we have an error-correcting code C, with the usual Hamming distance d_H.

...
Distance enumerators

- Suppose we have an error-correcting code C, with the usual Hamming distance d_H.
- To help us analyse C, we can define the following polynomial, for a fixed word $w \in C$:

$$\Delta_{C,w}(x) = \sum_{c \in C} x^{d_H(c,w)}$$
Distance enumerators

- Suppose we have an error-correcting code C, with the usual Hamming distance d_H.
- To help us analyse C, we can define the following polynomial, for a fixed word $w \in C$:

$$\Delta_{C,w}(x) = \sum_{c \in C} x^{d_H(c,w)}$$

- This is the distance enumerator of C (at w).
Distance enumerators, continued

▶ Usual setting: a *linear code* is a k-dimensional subspace of \mathbb{F}_q^n.
Distance enumerators, continued

- Usual setting: a *linear code* is a k-dimensional subspace of \mathbb{F}_q^n.
- In this case, the vector space structure tells us that we'll get the same polynomial for any $w \in C$, so we might as well take $w = 0$.
Distance enumerators, continued

- Usual setting: a *linear code* is a k-dimensional subspace of \mathbb{F}_q^n.
- In this case, the vector space structure tells us that we'll get the same polynomial for any $w \in C$, so we might as well take $w = 0$.
- So we get the *weight enumerator* of C,

$$W_C(x, y) = \sum_{c \in C} x^{\text{wt}(c)} y^{n-\text{wt}(c)}$$

where $\text{wt}(c) = d_H(c, 0)$.
Coding with permutation groups

Let G be a permutation group acting on a set Ω, where $|\Omega| = n$.

We can write elements of G as ordered n-tuples of distinct symbols from Ω, e.g. $2 3 1 7 9 4 6 8 5 \in S_9$.

Idea: use G as a code, with permutations in this form as codewords.

Can define Hamming distance as before: for example, $d_H(1 5 4 3 2, 2 5 4 1 3) = 3$.
Coding with permutation groups

- Let G be a permutation group acting on a set Ω, where $|\Omega| = n$.
- We can write elements of G as ordered n-tuples of distinct symbols from Ω,

 e.g. $231794685 \in S_9$.
Coding with permutation groups

- Let G be a permutation group acting on a set Ω, where $|\Omega| = n$.
- We can write elements of G as ordered n-tuples of distinct symbols from Ω,

 e.g. $2 3 1 7 9 4 6 8 5 \in S_9$.

- Idea: use G as a code, with permutations in this form as codewords.
Coding with permutation groups

- Let G be a permutation group acting on a set Ω, where $|\Omega| = n$.
- We can write elements of G as ordered n-tuples of distinct symbols from Ω,

 e.g. $231794685 \in S_9$.
- Idea: use G as a code, with permutations in this form as codewords.
- Can define Hamming distance as before: for example,

 $$d_H(1 5 4 3 2, 2 5 4 1 3) = 3.$$
Distance enumerators for permutation groups

- We notice that

\[d_H(g, h) = \# \times \text{where } x^g \neq x^h \]
\[= n - \pi(gh^{-1}). \]
Distance enumerators for permutation groups

- We notice that

\[d_H(g, h) = \# \times \text{ where } x^g \neq x^h \]
\[= n - \pi(gh^{-1}). \]

- \(\pi(g) \) is the number of fixed points of \(g \in G \), which is the permutation character of \(G \).
Distance enumerators for permutation groups

- We notice that

\[d_H(g, h) = \# \times \text{ where } x^g \neq x^h \]

\[= n - \pi(gh^{-1}). \]

- \(\pi(g) \) is the number of fixed points of \(g \in G \), which is the permutation character of \(G \).

- The group structure tells us that we’ll get the same distance enumerator for any \(g \in G \), so we might as well take \(g = 1 \) (the identity element).
Distance enumerators for permutation groups

- We notice that

\[
 d_H(g, h) = \# x \text{ where } x^g \neq x^h = n - \pi(gh^{-1}).
\]

- \(\pi(g)\) is the number of fixed points of \(g \in G\), which is the permutation character of \(G\).

- The group structure tells us that we’ll get the same distance enumerator for any \(g \in G\), so we might as well take \(g = 1\) (the identity element).

- So we have:

\[
 \Delta_G(y) = \sum_{g \in G} y^{n-\pi(g)}
\]

(where \(n\) is the degree of \(G\)).
Computing with characters

We can rewrite the distance enumerator of a group G as

$$\Delta_G(y) = \sum_{g \in R} |g^G| y^{n-\pi(g)}$$

where R is a set of conjugacy class representatives for G, and g^G denotes the conjugacy class containing g.
Computing with characters

- We can rewrite the distance enumerator of a group G as

$$
\Delta_G(y) = \sum_{g \in R} |g^G| y^{n-\pi(g)}
$$

where R is a set of conjugacy class representatives for G, and g^G denotes the conjugacy class containing g.

- Computer algebra systems often have built-in commands for computing the values of $|g^G|$ and $\pi(g)$ (in GAP, these are the SizesConjugacyClasses and NaturalCharacter commands.)
Computing with characters

- We can rewrite the distance enumerator of a group G as

$$\Delta_G(y) = \sum_{g \in R} |g^G| y^{n-\pi(g)}$$

where R is a set of conjugacy class representatives for G, and g^G denotes the conjugacy class containing g.

- Computer algebra systems often have built-in commands for computing the values of $|g^G|$ and $\pi(g)$ (in GAP, these are the SizesConjugacyClasses and NaturalCharacter commands.)

- So by using these commands it is straightforward to find the coefficients of Δ_G.

However, this method is often computationally expensive, and is not always very efficient!
We can rewrite the distance enumerator of a group G as

$$\Delta_G(y) = \sum_{g \in R} |g^G| y^{n-\pi(g)}$$

where R is a set of conjugacy class representatives for G, and g^G denotes the conjugacy class containing g.

Computer algebra systems often have built-in commands for computing the values of $|g^G|$ and $\pi(g)$ (in GAP, these are the SizesConjugacyClasses and NaturalCharacter commands.)

So by using these commands it is straightforward to find the coefficients of Δ_G.

However, this method is often computationally expensive, and is not always very efficient!
Cycle Index

- In fact, the distance enumerator is related to a well-studied polynomial.
In fact, the distance enumerator is related to a well-studied polynomial.

The *cycle index* of G is the polynomial

$$Z(G) = \frac{1}{|G|} \sum_{g \in G} \prod_{i \geq 1} s_i^{c_i(g)}$$

where $c_i(g)$ is the number of i-cycles of g, and the s_i are indeterminates.
Cycle Index

- In fact, the distance enumerator is related to a well-studied polynomial.
- The cycle index of G is the polynomial

$$Z(G) = \frac{1}{|G|} \sum_{g \in G} \prod_{i \geq 1} s_i^{c_i(g)}$$

where $c_i(g)$ is the number of i-cycles of g, and the s_i are indeterminates.

- By substituting $s_1 \leftarrow x$, $s_i \leftarrow y^i$ for $i > 1$, we obtain

$$Q_G(x, y) = \frac{1}{|G|} \sum_{g \in G} x^{\pi(g)} y^{n-\pi(g)},$$

so $\Delta_G(y) = |G| Q_G(1, y)$.
Cycle Index

- In fact, the distance enumerator is related to a well-studied polynomial.

- The cycle index of G is the polynomial

$$Z(G) = \frac{1}{|G|} \sum_{g \in G} \prod_{i \geq 1} s_i^{c_i(g)}$$

where $c_i(g)$ is the number of i-cycles of g, and the s_i are indeterminates.

- By substituting $s_1 \leftarrow x$, $s_i \leftarrow y^i$ for $i > 1$, we obtain

$$Q_G(x, y) = \frac{1}{|G|} \sum_{g \in G} x^{\pi(g)} y^{n-\pi(g)},$$

so $\Delta_G(y) = |G|Q_G(1, y)$.

- There are various identities for the cycle index, that we hope to specialise to our polynomial Q_G.
Direct products

Suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$), where the sets Ω and Γ are disjoint.

Then the direct product, $G \times H$, acts on the disjoint union $\Omega \cup \Gamma$ in an obvious way.

Clearly, the number of fixed points of an element $(g, h) \in G \times H$ is the sum of those numbers for g and h.

Thus, for its action on $\Omega \cup \Gamma$, we have $Q_{G \times H}(x, y) = Q_G(x, y) Q_H(x, y)$.
Suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$), where the sets Ω and Γ are disjoint.

Then the direct product, $G \times H$, acts on the disjoint union $\Omega \cup \Gamma$ in an obvious way.
Direct products

- Suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$), where the sets Ω and Γ are disjoint.
- Then the direct product, $G \times H$, acts on the disjoint union $\Omega \cup \Gamma$ in an obvious way.
- Clearly, the number of fixed points of an element $(g, h) \in G \times H$ is the sum of those numbers for g and h.

Thus, for its action on $\Omega \cup \Gamma$, we have $Q_{G \times H}(x, y) = Q_G(x, y) Q_H(x, y)$.
Suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$), where the sets Ω and Γ are disjoint.

Then the direct product, $G \times H$, acts on the disjoint union $\Omega \cup \Gamma$ in an obvious way.

Clearly, the number of fixed points of an element $(g, h) \in G \times H$ is the sum of those numbers for g and h.

Thus, for its action on $\Omega \cup \Gamma$, we have

$$Q_{G \times H}(x, y) = Q_G(x, y)Q_H(x, y).$$
Direct product: product action

- The direct product also acts on the Cartesian product of Ω and Γ (also in a fairly obvious way).
Direct product: product action

- The direct product also acts on the Cartesian product of Ω and Γ (also in a fairly obvious way).
- This time, however, a point $(\omega, \gamma) \in \Omega \times \Gamma$ is fixed by an element $(g, h) \in G \times H$ iff ω is fixed by g and γ is fixed by h.
Direct product: product action

- The direct product also acts on the Cartesian product of Ω and Γ (also in a fairly obvious way).
- This time, however, a point $(\omega, \gamma) \in \Omega \times \Gamma$ is fixed by an element $(g, h) \in G \times H$ iff ω is fixed by g and γ is fixed by h.
- Define a product of monomials $x^a y^b \circ x^c y^d$ by the rule

$$x^a y^b \circ x^c y^d = x^{ac} y^{bc+ad+bd}$$

which is then extended linearly to a product of polynomials, $f(x, y) \circ g(x, y)$.
The direct product also acts on the Cartesian product of \(\Omega \) and \(\Gamma \) (also in a fairly obvious way).

This time, however, a point \((\omega, \gamma) \in \Omega \times \Gamma\) is fixed by an element \((g, h) \in G \times H\) iff \(\omega\) is fixed by \(g\) and \(\gamma\) is fixed by \(h\).

Define a product of monomials \(x^a y^b \circ x^c y^d\) by the rule

\[
x^a y^b \circ x^c y^d = x^{ac} y^{bc+ad+bd}
\]

which is then extended linearly to a product of polynomials, \(f(x, y) \circ g(x, y)\).

Then it is possible to show that for its action on \(\Omega \times \Gamma\),

\[
Q_{G \times H}(x, y) = Q_G(x, y) \circ Q_H(x, y).
\]
Direct product: product action

- The direct product also acts on the Cartesian product of Ω and Γ (also in a fairly obvious way).
- This time, however, a point $(\omega, \gamma) \in \Omega \times \Gamma$ is fixed by an element $(g, h) \in G \times H$ iff ω is fixed by g and γ is fixed by h.
- Define a product of monomials $x^a y^b \circ x^c y^d$ by the rule

$$x^a y^b \circ x^c y^d = x^{ac} y^{bc+ad+bd}$$

which is then extended linearly to a product of polynomials, $f(x, y) \circ g(x, y)$.
- Then it is possible to show that for its action on $\Omega \times \Gamma$,

$$Q_{G \times H}(x, y) = Q_G(x, y) \circ Q_H(x, y).$$

- These two identities for the direct product answered a question of Blake, Cohen and Deza from 1979.
Wreath products

- Again, suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$).
Wreath products

- Again, suppose G acts on Ω (where $|\Omega| = n$) and H acts on Γ (where $|\Gamma| = m$).
- The *wreath product* of G and H, denoted $G \wr H$, is formed as follows:
 - Take the union of m disjoint copies of Ω, which are labelled by the elements of Γ.
 - Let the direct product $G^m = G \times G \times \cdots \times G$ act componentwise on the m copies of Ω, and then let H permute the copies according to how it acts on the labels.
 - The resulting group $G^m \rtimes H := G \wr H$ is the wreath product.
Wreath products, continued

- We also have an identity for the distance enumerator of the wreath product.
We also have an identity for the distance enumerator of the wreath product.

For the wreath product $G \wr H$ acting on mn points, we have

$$Q_{G \wr H}(x, y) = Q_H(Q_G(x, y), y^n).$$
We also have an identity for the distance enumerator of the wreath product.

For the wreath product $G \wr H$ acting on mn points, we have

$$Q_{G \wr H}(x, y) = Q_H(Q_G(x, y), y^n).$$

This identity can be proved directly.....
\[Q_{G \cap H}(x, y) = \frac{1}{|G \cap H|} \sum_{a \in G \cap H} x^{\pi(a)} y^{nm - \pi(a)} \]

\[= \frac{1}{|G|^m |H|} \sum_{a \in G \cap H} \prod_{i=1}^{m} x^{\pi_i(a)} y^{n - \pi_i(a)} \]

\[= \frac{1}{|G|^m |H|} \sum_{h \in H} \sum_{(g_1, \ldots, g_m) \in G^m} \prod_{i \in \text{Fix}(h)} x^{\psi(g_i)} y^{n - \psi(g_i)} \prod_{i \in \text{Supp}(h)} y^n \]

\[= \frac{1}{|H|} \sum_{h \in H} \left(\prod_{i \in \text{Fix}(h)} \frac{1}{|G|} \sum_{g_i \in G} x^{\psi(g_i)} y^{n - \psi(g_i)} \right) \left(\prod_{i \in \text{Supp}(h)} \frac{1}{|G|} \sum_{g_i \in G} y^n \right) \]

\[= \frac{1}{|H|} \sum_{h \in H} \left(\prod_{i \in \text{Fix}(h)} Q_G(x, y) \right) \left(\prod_{i \in \text{Supp}(h)} y^n \right) \]

\[= Q_H(Q_G(x, y), y^n). \]
Example

Consider the group $S_2 \wr S_2$, which is isomorphic to the dihedral group D_8 (the symmetry group of the square).
Example

- Consider the group $S_2 \wr S_2$, which is isomorphic to the dihedral group D_8 (the symmetry group of the square).
- It’s easy to see that $Q_{S_2}(x, y) = \frac{1}{2}(x^2 + y^2)$.
Example

- Consider the group $S_2 \wr S_2$, which is isomorphic to the dihedral group D_8 (the symmetry group of the square).
- It’s easy to see that $Q_{S_2}(x, y) = \frac{1}{2}(x^2 + y^2)$.
- So our identity gives us

$$Q_{S_2 \wr S_2}(x, y) = \frac{1}{2} \left(\left(\frac{1}{2}(x^2 + y^2) \right)^2 + y^4 \right) = \frac{1}{8} \left(x^4 + 2x^2y^2 + 5y^4 \right),$$

which agrees with what we would expect for $Q_{D_8}(x, y)$.
Consider the group $S_2 \wr S_2$, which is isomorphic to the dihedral group D_8 (the symmetry group of the square).

It's easy to see that $Q_{S_2}(x, y) = \frac{1}{2}(x^2 + y^2)$.

So our identity gives us

$$Q_{S_2 \wr S_2}(x, y) = \frac{1}{2} \left(\left(\frac{1}{2}(x^2 + y^2) \right)^2 + y^4 \right) = \frac{1}{8} (x^4 + 2x^2y^2 + 5y^4),$$

which agrees with what we would expect for $Q_{D_8}(x, y)$.

Therefore the distance enumerator is

$$\Delta_{D_8}(y) = 1 + 2y^2 + 5y^4.$$
Generalised hyperoctahedral groups

- The *generalised hyperoctahedral group* is the wreath product \(G = C_m \wr S_n \).
Generalised hyperoctahedral groups

- The generalised hyperoctahedral group is the wreath product $G = C_m \wr S_n$.
- We can also use our identity to obtain a formula for Q_G for this group:

$$Q_G(x, y) = \frac{1}{m^n n!} \sum_{i=0}^{mn} f(i) x^i y^{mn-i}$$

where

$$f(i) = \begin{cases} \sum_{k=0}^n m^{n-k}(m-1)^{k-i/m} \binom{n}{k}\binom{k}{i/m} d(n-k) & \text{if } m \mid i, \\ 0 & \text{if } m \nmid i. \end{cases}$$
The \textit{generalised hyperoctahedral group} is the wreath product $G = C_m \wr S_n$.

We can also use our identity to obtain a formula for Q_G for this group:

$$Q_G(x, y) = \frac{1}{m^n n!} \sum_{i=0}^{mn} f(i) x^i y^{mn-i}$$

where

$$f(i) = \begin{cases} \sum_{k=0}^{n} m^{n-k}(m-1)^{k-\frac{i}{m}} \binom{n}{k} \binom{k}{i/m} d(n-k) & \text{if } m \mid i, \\ 0 & \text{if } m \nmid i. \end{cases}$$

While this is a messy formula, for specific values of m and n one can compute these polynomials near-instantaneously.
THE END
THE END

Reference: