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Abstract

The objective of this paper is to establish new variational principles for symmetric boundary value problems.
Let V be a Banach space and V ∗ its topological dual. We shall consider problems of the type Λu = DΦ(u)
where Λ : V → V ∗ is a linear operator and Φ : V → R is a Gâteaux differentiable convex function whose
derivative is denoted by DΦ. It is established that solutions of the latter equation are associated with critical
points of functions of the type

Iλ,µ(u) := µΦ∗(Λu)− λΦ(u)− µ− λ
2
〈Λu, u〉,

where λ, µ are two real numbers, Φ∗ is the Fenchel dual of the function Φ and 〈., .〉 is the duality pairing
between V and V ∗. By assigning different values to λ and µ one obtains variety of new and classical variational
principles associated to the equation Λu = DΦ(u). Namely, Euler-Lagrange principle (for µ = 0, λ = 1 and
symmetric Λ), Clarke-Ekeland least action principle (for µ = 1, λ = 0 and symmetric Λ), Brezis-Ekeland
variational principle (µ = 1, λ = −1) and of course many new variational principles such as

I1,1(u) = Φ∗(Λu)− Φ(u),

which corresponds to λ = 1 and µ = 1. These new potential functions are quite flexible, and can be adapted
to easily deal with both nonlinear and homogeneous boundary value problems.

1 Introduction

Let V be a reflexive Banach space, V ∗ its topological dual and 〈., .〉 be the bi-linear duality pairing between
V and V ∗. Assume that Φ : V → R is convex, , Gâteaux differentiable and lower semi-continuous and that
Λ : Dom(Λ) ⊂ V → V ∗ is a linear symmetric operator. Consider the equation

Λu = DΦ(u), u ∈ V (1)

where DΦ(u) stands for the derivative of Φ at u. It follows that the Euler-Lagrange functional corresponding
to equation (1) is of the form F (u) = 1

2 〈Λu, u〉 − Φ(u) and critical points of F are weak solutions of these
equation. F. Clarke and I. Ekeland established an interesting dual variational formulation for the Euler-
Lagrange functional F where the operator Λ is not necessarily positive and may have an infinite sequence of
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eigenvalues ranging from −∞ to ∞. In fact, they established a one-to-one correspondence between critical
points of the functional F and the functional

FCE(u) =
1

2
〈Λu, u〉 − Φ∗(Λu),

where Φ∗ : V ∗ → (−∞,∞] is the Fenchel dual of Φ defined by

Φ∗(p) = sup
u∈V
{〈u, p〉 − Φ(u)}, ∀p ∈ V ∗.

Recently, using the theory of non-convex self-duality [14, 15, 16, 17], the present author has established a
new class of functionals for which their critical points are solutions of (1). Our aim in this work is to use
a more direct approach towards establishing new variational principles. As a result, we shall show that one
can indeed associate an infinity number of functionals to a given equation of the form (1) for which their
critical points are solutions of this equation.
Recall that a linear operator Λ : Dom(Λ) ⊂ V → V ∗ is said to be positive (resp. negative) if 〈Λu, u〉 ≥ 0
(resp. 〈Λu, u〉 ≤ 0) for all u ∈ Dom(Λ). Here we state our main theorem in this work.

Theorem 1.1 Let V be a reflexive Banach space and V ∗ its topological dual. Let Φ : V → R be a Gâteaux
differentiable convex and lower semi-continuous function, and let Λ : Dom(Λ) ⊂ V → V ∗ be a surjective
linear operator such that its domain is dense in V . For each λ, µ ∈ R and u ∈ V define

Iλ,µ(u) := µΦ∗(Λu)− λΦ(u)− µ− λ
2
〈Λu, u〉.

Then, critical points of Iλ,µ are solutions of the equation

Λu = DΦ(u),

provided either of the following conditions hold,

1. Λ is a symmetric operator, λ 6= 0 and µ = 0;

2. Λ is a symmetric operator λ = 0 and µ 6= 0;

3. Λ is a negative operator and µ = −λ 6= 0;

4. Λ is a positive symmetric operator and λµ > 0;

5. Λ is a negative symmetric operator and λµ < 0.

The surjectivity assumption on the linear operator Λ : Dom(Λ) ⊂ V → V ∗ in the theorem above can be
weakened as explained in Remark 3.5.
We shall now discuss this result in more details by analyzing each item in Theorem 1.1.

Euler-Lagrange principle: In item 1) of Theorem 1.1, the operator Λ is symmetric, λ 6= 0 and µ = 0.
In this case the functional Iλ,µ reads as

Iλ,0(u) = −λ
(

Φ(u)− 1

2
〈Λu, u〉

)
,

and this is nothing but the Euler Lagrange functional corresponding to the equation Λu = DΦ(u).

Clarke-Ekeland least action principle: In the second item Λ is a symmetric operator, λ = 0 and
µ 6= 0. The functional Iλ,µ reads as

I0,µ(u) = µ
(

Φ∗(Λu)− 1

2
〈Λu, u〉

)
.

This is indeed the Clarke-Ekeland least action principle. In fact, Clarke and Ekeland introduced this in-
teresting dual variational formulation for Hamiltonian systems associated with a convex Hamiltonian (see
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[4, 5, 6, 7]). Such a duality principle has turned out to be extremely useful for various purposes such as
existence of periodic solutions and solutions with minimum period.

Brezis-Ekeland variational principle: In item 3) the assumption is that Λ is a negative operator and
µ = −λ 6= 0. In this case the functional Iλ,µ has the following structure,

I−µ,µ(u) = µ
(

Φ∗(Λu) + Φ(u)− 〈Λu, u〉
)

This principle was first proposed by H. Brezis and I. Ekeland for convex Gradient flows [2, 3]. Recently, there
has been an extensive study to prove existence and uniqueness for certain partial differential equations using
this principle. We refer the interested reader to [1, 11, 18, 19, 21] and references therein for more details on
this principle (the bibliography is not exhaustive).

New variational principles: In items 4) and 5) of Theorem 1.1, Λ is assumed to be either a positive
symmetric operator with λµ > 0, or a negative symmetric operator with λµ < 0. For example

I1,1(u) = Φ∗(Λu)− Φ(u) & I2,1(u) = Φ∗(Λu) +
1

2
〈Λu, u〉 − 2Φ(u)

are just two new variational principles among many more for which their critical points are solutions of
the equation Λu = DΦ(u). As shown, these principles associate to an equation several potential functions
which can often be used with relative ease compared to other methods such as the use of Euler-Lagrange
functions. These potential functions are quite flexible, and can be adapted to easily deal with both nonlinear
and homogeneous boundary value problems. Additionally, in most cases the solutions generated using this
new method have greater regularity than the solutions obtained using the standard Euler-Lagrange function.
In this work we mostly focus on Homogeneous boundary value problems and we address problems with non-
linear boundary conditions in our forthcoming work. We refer the interested reader to [14, 15, 16, 17] where
some particular cases of these principles were established. We also refer to [12, 13] for some applications in
Partial differential equations and Dynamical systems.

Theorem 1.1 applies readily to many differential equations giving new formulations and resolutions. In
the following two relatively simple examples we illustrate how the new functionals Iλ,µ given in Theorem 1.1
will be useful in the calculus of variations.

Example 1: A semi-linear Elliptic equation. Suppose Ω is a smooth bounded domain in RN and
consider the following problem,

{
−∆u+ u = |u|p−2u+ f(x), x ∈ Ω,
∂u
∂n = 0, x ∈ ∂Ω,

(2)

where 2 < p < 2N
N−2 and f ∈ L2(Ω). We would like to apply Theorem 1.1 to this problem. Let V = Lp(Ω).

It follows that V ∗ = Lq(Ω) where 1
p + 1

q = 1. Define Λ : Dom(Λ) ⊂ V → V ∗ by Λ(u) = −∆u+ u where

Dom(Λ) = {u ∈ Lp(Ω);−∆u+ u ∈ Lq(Ω) and
∂u

∂n
= 0 on ∂Ω}.

Problem (2) can be rewritten as Λu = DΦ(u) where the functional Φ : X → R is defined by

Φ(u) =
1

p

∫
Ω

|u(x)|p dx+

∫
Ω

u(x)f(x) dx.

An easy calculation shows that Φ∗ the Fenchel dual of Φ is of the form

Φ∗(v) =
1

q

∫
Ω

|v(x)− f(x)|q dx.
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Also note that for each u ∈ Dom(Λ) we have

〈Λu, u〉 =

∫
Ω

(−∆u+ u)u dx =

∫
Ω

(
|∇u|2 + u2

)
dx ≥ 0,

which shows that Λ is a positive symmetric operator. Thus, Λ satisfies assumptions 1), 2) and 4) of Theorem
1.1. Therefore, critical points of either of the following functionals correspond to solutions of the problem
(2):

I. Euler-Lagrange principle for λ = 1, µ = 0 :

I1,0 = Φ(u)− 1

2
〈Λu, u〉 =

1

p

∫
Ω

|u|p dx+

∫
Ω

uf dx− 1

2

∫
Ω

(
|∇u|2 + u2

)
dx;

II. Clarke-Ekeland principle for λ = 0, µ = 1 :

I0,1 = Φ∗(Λu)− 1

2
〈Λu, u〉 =

1

q

∫
Ω

| −∆u+ u− f |q dx− 1

2

∫
Ω

(
|∇u|2 + u2

)
dx;

III. A new principle without the term 〈Λu, u〉 for λ = µ = 1 :

I1,1 = Φ∗(Λu)− Φ(u) =
1

q

∫
Ω

| −∆u+ u− f |q dx− 1

p

∫
Ω

|u|p dx−
∫

Ω

uf dx;

VI. Another new principle for λ = 2 and µ = 1 :

I2,1 = Φ∗(Λu)− 2Φ(u) +
1

2
〈Λu, u〉

=
1

q

∫
Ω

| −∆u+ u− f |q dx− 2

p

∫
Ω

|u|p dx− 2

∫
Ω

uf dx+
1

2

∫
Ω

(
|∇u|2 + u2

)
dx

It is worth noting that in the above example the functionals I1,1 and I2,1 are continuously differentiable
on the Sobolev space W 2,q(Ω) and therefore if ũ is a critical point of either I1,1 or I2,1 then ũ ∈ W 2,q(Ω)
is a solution of (2). Thus, any solution obtained by these functionals is slightly more regular than solutions
obtained by the standard Euler-Lagrange functional which are at most H1(Ω) regular.

Example 2: A semi-linear Parabolic equation. Let Ω be a smooth bounded domain in RN and
T > 0. Consider the following problem,

 ut −∆u+ |u|p−2u = f(x, t), (t, x) ∈ (0, T )× Ω,
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
u(x, 0) = u(x, T ), x ∈ Ω,

(3)

where 1 < p < 2N/(N − 2) and f ∈ L2
(
0, T ;L2(Ω)

)
. Let V = L2

(
0, T ;H1

0 (Ω)
)

and V ∗ = L2
(
0, T ;H−1(Ω)

)
.

Define Φ : V → R by

Φ(u) =
1

2

∫
Ω

∫ T

0

|∇u|2 dt dx+
1

p

∫
Ω

∫ T

0

|u|p dt dx−
∫

Ω

∫ T

0

fu dt dx,

and define Λ : Dom(Λ) ⊂ V → V ∗ by Λu = −ut where

Dom(Λ) = {u ∈ V ; ut ∈ V ∗ and u(x, 0) = u(x, T ) for all x ∈ Ω}.

Then problem (3) can be rewritten as Λu = DΦ(u). For each u ∈ Dom(Λ) we have

〈Λu, u〉V×V ∗ = −
∫

Ω

∫ T

0

uut dt dx = −1

2

∫
Ω

∫ T

0

d

dt
u2 dt dx =

1

2

∫
Ω

[u(x, 0)2 − u(x, T )2] dx = 0.
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Note that Λ is not symmetric so only item 3) of Theorem 1.1 applies to this problem. It then follows
from item 3) in Theorem 1.1 for µ = 1 and λ = −1 and Remark 3.5 that every critical point of the functional

I−1,1 = Φ∗(Λu) + Φ(u)− 〈Λu, u〉 = Φ∗(−ut) + Φ(u),

is a solution of the problem (3). On the other hand it is easily seen that the functional I−1,1 admits a unique
critical point (minimum) since the functional I−1,1 is strictly convex, lower semi-continuous and coercive.

In the next section we gather some preliminary results required for the proofs. Section (3) is devoted to
address some new variational principles and to prove Theorem 1.1.

2 Preliminaries

In this section we recall some important definitions and results from Convex Analysis and theory of linear
operators used in this work. For more details we refer the interested reader to [9, 20].

Let V and W be two real Banach spaces and let 〈., .〉 be a bi-linear form on the phase space V ×W.

Definition 2.1 We say that a bi-linear form puts V and W in duality. This duality is said to be separating
if,
(1) for 0 6= u ∈ V, there exists an element p ∈W such that 〈u, p〉 6= 0,
(2) for 0 6= p ∈W, there exists an element u ∈ V such that 〈u, p〉 6= 0.

The weak topology on V induced by 〈., .〉 is denoted by σ(V,W ) and analogously σ(W,V ) is the weak
topology on W. It is known that σ(V,W ) and σ(W,V ) are Hausdorff topologies if and only if the duality
between V and W is separating. A function Ψ : V → R is said to be σ(V,W )−lower semi-continuous if

Ψ(u) ≤ lim inf
n→∞

Ψ(un),

for each u ∈ V and any sequence un approaching u in the weak topology σ(V,W ). Let Ψ : V → R∪ {∞} be
a proper convex function. The subdifferential ∂Ψ of Ψ is defined to be the following set-valued operator: if
u ∈ Dom(Ψ), set

∂Ψ(u) = {p ∈W ; 〈p, v − u〉+ Ψ(u) ≤ Ψ(v) for all v ∈ V }

and if u 6∈ Dom(Ψ), set ∂Ψ(u) = ∅. If Ψ is Gâteaux differentiable at u, denote by DΨ(u) the derivative of
Ψ at u. In this case ∂Ψ(u) = {DΨ(u)}.
The Fenchel dual of an arbitrary function Ψ is denoted by Ψ∗ that is function on W and is defined by

Ψ∗(p) = sup{〈p, u〉 −Ψ(u);u ∈ V }.

Clearly Ψ∗ : W → R ∪ {∞} is convex and σ(W,V )−lower semi-continuous. Consequently Ψ∗∗ : V →
R ∪ {∞} is always convex and σ(V,W )−lower semi-continuous. The following standard result is crucial in
the subsequent analysis.

Proposition 2.1 Let Ψ : V → R ∪ {∞} be an arbitrary function. The following statements hold:
(1) Ψ∗∗(u) ≤ Ψ(u) for all u ∈ V.
(2) Ψ(u) + Ψ∗(p) ≥ 〈p, u〉 for all u ∈ V and p ∈W.
(3) If Ψ is convex and lower-semi continuous then Ψ∗∗ = Ψ and the following assertions are equivalent:

• Ψ(u) + Ψ∗(p) = 〈u, p〉.

• p ∈ ∂Ψ(u).

• u ∈ ∂Ψ∗(p).

The following is a crucial property of convex functions. A proof is given in [15] and for the convenience
of the reader we shall also sketch the proof here.
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Proposition 2.2 Let V and W be in separating duality and Ψ : V → R∪ {∞} be a proper convex function.
Suppose Ψ is sub-differentiable at u, v ∈ V. If there exist p ∈ ∂Ψ(u) and q ∈ ∂Ψ(v) with

〈p− q, u− v〉 = 0 (4)

then p, q ∈ ∂Ψ(u) ∩ ∂Ψ(v).

Proof. It follows from p ∈ ∂Ψ(u) and q ∈ ∂Ψ(v) that

Ψ(u) + Ψ∗(p) = 〈p, u〉
Ψ(v) + Ψ∗(q) = 〈q, v〉.

Adding up this equalities, we obtain

〈p, u〉+ 〈q, v〉 = Ψ(u) + Ψ∗(p) + Ψ(v) + Ψ∗(q)

It also follows from (4) that 〈p, u〉 + 〈q, v〉 = 〈p, v〉 + 〈q, u〉, which together with the above equation imply
that

〈p, v〉+ 〈q, u〉 = Ψ(u) + Ψ∗(p) + Ψ(v) + Ψ∗(q)

= Ψ(v) + Ψ∗(p) + Ψ(u) + Ψ∗(q)

and therefore

Ψ(v) + Ψ∗(p)− 〈p, v〉+ Ψ(u) + Ψ∗(q)− 〈q, u〉 = 0.

This together with the fact that

Ψ(v) + Ψ∗(p)− 〈p, v〉 ≥ 0, Ψ(u) + Ψ∗(q)− 〈q, u〉 ≥ 0,

imply that both terms are indeed zero,

Ψ(v) + Ψ∗(p)− 〈p, v〉 = 0,

Ψ(u) + Ψ∗(q)− 〈q, u〉 = 0.

Thus, it follows from Proposition 2.1 that p ∈ ∂Ψ(v) and q ∈ ∂Ψ(u). �

As an important and straightforward consequence of the above Proposition we have the following.

Theorem 2.2 Let V and W be in separating duality and Ψ : V → R ∪ {∞} be a proper convex function.
Suppose Ψ is Gâteaux differentiable at u, v ∈ X. Then

〈DΨ(u)−DΨ(v), u− v〉 = 0

if and only if DΨ(u) = DΨ(v).

Proof. Since Ψ is Gâteaux differentiable at u, v ∈ X, we have ∂Ψ(u) = {DΨ(u)} and ∂Ψ(v) = {DΨ(v)}.
Set p = DΨ(u) and q = DΨ(v). If 〈DΨ(u)−DΨ(v), u− v〉 = 0, it follows from the above Proposition that
p, q ∈ ∂Ψ(u) ∩ ∂Ψ(v). This implies DΨ(u) = DΨ(v). �

For the reader’s convenience, we also recall some standard notions about linear operators.

Definition 2.3 Let V be a reflexive Banach space and V ∗ its topological dual. A linear operator Λ :
Dom(Λ) ⊂ V → V ∗ is called symmetric if Dom(Λ) is dense in V and 〈Λu, v〉 = 〈u,Λv〉 for all elements
u and v in the domain of Λ. The operator Λ is said to be positive (resp. negative) if 〈Λu, u〉 ≥ 0 (resp.
〈Λu, u〉 ≤ 0) for all u ∈ Dom(Λ).
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Definition 2.4 Let V be a reflexive Banach space and V ∗ its topological dual. Let Λ : Dom(Λ) ⊂ V → V ∗

be a linear operator. The adjoint Λ∗ of Λ is a linear operator from V to V ∗ defined by

〈Λ∗u, v〉 = 〈u,Λv〉, ∀v ∈ Dom(Λ),

with
Dom(Λ∗) =

{
u ∈ V ; sup{〈u,Λv〉; v ∈ Dom(Λ), ‖v‖V ≤ 1} <∞

}
.

Note that for a symmetric operator Λ, in general Λ 6= Λ∗ unless Λ is self-adjoint. Throughout this paper we
always assume that every linear operator has a dense domain.

Finally, since the functional proposed in Theorems 1.1 may not be Gâteaux differentiable, we are required
to give a meaning to a critical point of such a functional.

Definition 2.5 Let Ψ : V ∗ → R∪{+∞} be a convex and lower semi-continuous function and let F : V → R
be Gâteaux differentiable. Assume that Λ : Dom(Λ) ⊂ V → V ∗ is a linear operator and λ ∈ R is a scalar.
Say that u ∈ V is a critical point of

I(w) := Ψ(Λw) + F (w) + λ〈Λw,w〉,

if I(u) is finite and there exists v ∈ ∂Ψ(Λu) such that

〈v,Λη〉+ 〈DF (u), η〉+ λ〈Λη, u〉+ λ〈Λu, η〉 = 0, for all η ∈ Dom(Λ).

3 Variational principles

In this section we first establish a variational principle for symmetric boundary value problems similar to
the one in item 4) of Theorem 1.1 where we replace the sign condition on the operator with a new condition
so called the symmetry-condition. We shall also prove Theorem 1.1 at the end of this section. Throughout
this section we shall always assume that V is a reflexive Banach space and V ∗ is its topological dual.

Definition 3.1 Let Φ : V → R be a Gâteaux differentiable convex function and Λ : Dom(Λ) ⊂ V → V ∗

be a symmetric operator. Say that the pair (Λ,Φ) satisfies the symmetry-condition at ũ ∈ V if for every
ṽ ∈ ∂Φ∗(Λũ) ∩Dom(Λ) with Λṽ = DΦ(ũ) one can conclude that Λũ = Λṽ.
We say that the pair (Λ,Φ) satisfies the symmetry-condition globally if for each ũ, ṽ ∈ V satisfying{

Λũ = DΦ(ṽ)
Λṽ = DΦ(ũ),

one can conclude that Λũ = Λṽ.

It is easily seen that if the pair (Λ,Φ) satisfies the symmetry-condition globally then it satisfies the symmetry
condition at each u ∈ V. Here is our result for situations in which the symmetry-condition is fulfilled.

Theorem 3.2 Let Φ : V → R be a Gâteaux differentiable convex and lower semi-continuous function, and
let the linear operator Λ : Dom(Λ) ⊂ V → V ∗ be symmetric and onto. Assume that the following properties
hold,

1. u is a critical point of

I(w) = Φ∗(Λw)− Φ(w).

2. The pair (Λ,Φ) satisfies the symmetry-condition at u.

Then u is a solution of the equation
Λw = DΦ(w). (5)

Conversely, solutions of the equation (5) are always critical points of the functional I(w).
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Proof. Suppose u is a critical point of I. Thus, there exists v ∈ ∂Φ∗(Λu) such that

〈v,Λη〉 − 〈DΦ(u), η〉 = 0 for all η ∈ Dom(Λ). (6)

Since Λ is onto, there exists w ∈ Dom(Λ) such that Λw = DΦ(u). This together with (6) imply that

〈v,Λη〉 = 〈Λw, η〉 = 〈w,Λη〉 for all η ∈ Dom(Λ), (7)

from which we obtain
〈v − w,Λη〉 = 0 for all η ∈ Dom(Λ).

Since Λ is onto the latter expression implies that w = v and therefore Λv = Λw = DΦ(u). It also follows
from v ∈ ∂Φ∗(Λu) that Λu = DΦ(v). Thus,

Λv = DΦ(u) & Λu = DΦ(v). (8)

Considering (8) and the fact that (Λ,Φ) satisfies the symmetry-condition at u we obtain that Λu = Λv.
This yields that Λu = DΦ(u) as desired.

Conversely, suppose u is a solution of problem (5). It follows from Λu = DΦ(u) that u ∈ ∂Φ∗(Λu) and
therefore for η ∈ Dom(Λ) we obtain

〈u,Λη〉 − 〈DΦ(u), η〉 = 〈Λu−DΦ(u), η〉
= 0,

thereby giving that u is a critical point of I. �

We now discuss some cases where the symmetry-condition holds.

Lemma 3.3 The pair (Λ,Φ) satisfy the symmetry-condition globally provided either of the following condi-
tions hold.

1. The operator Λ is positive.

2. The map w → Λw +DΦ(w) is injective.

3. There exists a constant M > 0 such that ‖Λw‖V ∗ ≥ M‖w‖V for all w ∈ V and DΦ is Lipschitz with
a Lipschitz constant K such that K < M.

Proof. Part 1): it follows from Λu = DΦ(v) and Λv = DΦ(u) that Λu− Λv = DΦ(v)−DΦ(u). Thus,

〈Λu− Λv, u− v〉 = 〈DΦ(v)−DΦ(u), u− v〉 = −〈DΦ(v)−DΦ(u), v − u〉.

Since Λ is positive we have 〈Λu− Λv, u− v〉 ≥ 0 and therefore

〈DΦ(v)−DΦ(u), v − u〉 ≤ 0. (9)

On the other hand Φ is convex and therefore DΦ is monotone, i.e.

〈DΦ(v)−DΦ(u), v − u〉 ≥ 0.

The latter inequality with (9) imply that

〈DΦ(v)−DΦ(u), v − u〉 = 0.

It now follows from Theorem 2.2 that DΦ(v) = DΦ(u) and therefore Λu = Λv.
Part 2): it follows from Λu = DΦ(v) and Λv = DΦ(u) that Λu+DΦ(u) = Λv+DΦ(v) and by the injectivity
assumption we obtain u = v.
Part 3): it follows that

‖Λu− Λv‖V ∗ ≥M‖v − u‖V ≥ K‖v − u‖V ≥ ‖DΦ(u)−DΦ(v)‖V ∗ . (10)
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Since Λu = DΦ(v) and Λv = DΦ(u) we have Λu−Λv = DΦ(v)−DΦ(v). Therefore, substituting Λu−Λv =
DΦ(v)−DΦ(v) in (10) yields that

‖Λu− Λv‖V ∗ ≥M‖v − u‖V ≥ K‖v − u‖V ≥ ‖Λu− Λv‖V ∗ ,

from which we obtain
M‖v − u‖V = K‖v − u‖V .

Since, M > K we must have u = v. �

Example: System of Transport equations. Let a : Ω → RN be a smooth function on a bounded
domain Ω of RN . Consider the first order operator Aw = a.∇w = ΣNi=1ai

∂wi

∂xi
. Assume that the vector field

ΣNi=1ai
∂wi

∂xi
is actually the restriction of a smooth vector field ΣNi=1āi

∂wi

∂xi
defined on an open neighborhood of

Ω̄ and each āi is a C1,1 function on that neighborhood. Consider the system

 εa.∇u = ∆v + |v|p−2v, x ∈ Ω
−εa.∇v = ∆u+ |u|q−2, x ∈ Ω
u = v = 0, x ∈ ∂Ω

(11)

We can apply Theorem 3.2 to establish the following result.

Theorem 3.4 Assume that div(a) = 0 on Ω, 1 < p, q < 2N
N−2 , p

′ = p/(p− 1) and q′ = q/(q− 1). Then there
exists ε0 > 0 such that for 0 < ε < ε0 every critical point of the functional

I(u, v) =
1

p′

∫
Ω

|εa.∇u−∆v|p
′
dx+

1

q′

∫
Ω

|εa.∇v + ∆u|q
′
dx− 1

p

∫
Ω

|v|p dx− 1

q

∫
Ω

|u|q dx

is a solution of the system (11).

Proof. Set V = Lq(Ω)× Lp(Ω) and V ∗ = Lq
′
(Ω)× Lp′(Ω). Define Φ : V → R by

Φ(u, v) =
1

q

∫
Ω

|u|q dx+
1

p

∫
Ω

|v|p dx.

Let Λ : Dom(Λ) ⊂ V → V ∗ be the operator Λ(u, v) = (−εa.∇v −∆u, εa.∇u−∆v) with

Dom(Λ) = {(u, v) ∈ V ; Λ(u, v) ∈ V ∗ & u = v = 0, x ∈ ∂Ω}.

Note that Λ is a symmetric operator and for each (u, v) ∈ Dom(Λ) we have

〈Λ(u, v), (u, v)〉 =

∫
Ω

|∇v|2 dx+

∫
Ω

|∇u|2 dx+ 2ε

∫
Ω

(a.∇u)v dx

≥
∫

Ω

|∇v|2 dx+

∫
Ω

|∇u|2 dx− 2ε‖a‖∞
λ1

‖∇u‖L2(Ω;RN )‖∇v‖L2(Ω;RN ),

where λ1 is the first eigenvalue of −∆ with Dirichlet boundary condition. The above estimate indeed shows
that Λ is positive provided ε ≤ ε0 := λ1/‖a‖∞. The result now follows from Theorem 3.2 and Lemma 3.3. �

We remark that by standard methods in the calculus of variations like the mountain pass lemma one
can prove that the functional I in Theorem 3.4 has at least one critical point when |1/p − 1/q| < 1/N.
This critical point then will be a solution of the system (11) due to Theorem 3.4. Since in this work we
are concerned with new variational principles we do not elaborate about existence results. We conclude this
section by proving the main theorem stated in the introduction.

Proof of Theorem 1.1. Let u be a critical point of Iλ,µ. Then there exists v ∈ ∂Φ∗(Λu) such that

µ〈v,Λη〉 − λ〈DΦ(u), η〉 − µ− λ
2
〈u,Λη〉 − µ− λ

2
〈Λu, η〉 = 0, ∀η ∈ Dom(Λ). (12)
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Set w := 2v − u and therefore v = (u+ w)/2. This together with v ∈ ∂Φ∗(Λu) give that

Λu = DΦ(v) = DΦ(
u+ w

2
). (13)

Substituting v = (u+ w)/2 in (12) implies that

µ

2
〈w,Λη〉+

λ

2
〈u,Λη〉 − λ〈DΦ(u), η〉 − µ− λ

2
〈Λu, η〉 = 0, ∀η ∈ Dom(Λ). (14)

If Λ is symmetric we then have

µ

2
〈w,Λη〉 − µ

2
〈u,Λη〉+ λ〈u,Λη〉 − λ〈DΦ(u), η〉 = 0, ∀η ∈ Dom(Λ). (15)

On the other hand, v ∈ ∂Φ∗(Λu) and therefore Λu = DΦ(v). Plugging this into (15) implies that

µ

2
〈w,Λη〉 − µ

2
〈u,Λη〉+ λ〈DΦ(v), η〉 − λ〈DΦ(u), η〉 = 0, ∀η ∈ Dom(Λ). (16)

Proof under assumption 1): by assuming µ = 0 and λ 6= 0 in (16) we have

〈DΦ(v), η〉 − 〈DΦ(u), η〉 = 0, ∀η ∈ Dom(Λ).

Since, Dom(Λ) is dense, this implies that DΦ(u) = DΦ(v) for which together with (13) we obtain Λu =
DΦ(u) and we are done.

Proof under assumption 2): by assuming µ 6= 0 and λ = 0 in (16) we have

〈w,Λη〉 − 〈u,Λη〉 = 0, ∀η ∈ Dom(Λ).

This shows that w = u as Λ is surjective. The result now follows from (13).

Proof under assumption 3): by assuming µ = −λ 6= 0 in (14) we obtain

1

2
〈w,Λη〉 − 1

2
〈u,Λη〉+ 〈DΦ(u), η〉 − 〈Λu, η〉 = 0, ∀η ∈ Dom(Λ). (17)

By substituting Λu = DΦ(v) and w = 2v − u in (17) we have

〈v − u,Λη〉 = 〈DΦ(v)−DΦ(u), η〉, ∀η ∈ Dom(Λ). (18)

Since Λ is surjective, there exists η0 ∈ Dom(Λ) such that Λη0 = DΦ(v) − DΦ(u). Plugging η0 into (18)
implies that

〈v − u,Λη0〉 = 〈DΦ(v)−DΦ(u), η0〉,

from which we have
〈v − u,DΦ(v)−DΦ(u)〉 = 〈Λη0, η0〉. (19)

Since Λ is a negative operator the right hand side of (19) is non-positive and since DΦ is monotone the left
hand side of (19) is non-negative from which we obtain

〈DΦ(v)−DΦ(u), v − u〉 = 0.

It now follows from Theorem 2.2 that DΦ(u) = DΦ(v) from which together with (13) we obtain Λu = DΦ(u).

Proof under assumption 4) and 5): It follows from (16) that

µ

2
〈w − u,Λη〉 = λ〈DΦ(u)−DΦ(v), η〉, ∀η ∈ Dom(Λ). (20)

Substituting w = 2v − u in (20) we obtain

µ

λ
〈v − u,Λη〉 = 〈DΦ(u)−DΦ(v), η〉, ∀η ∈ Dom(Λ). (21)
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Since Λ is surjective, there exists η0 ∈ Dom(Λ) such that Λη0 = DΦ(v)−DΦ(u). Therefore, it follows from
(21) for η0 that

〈v − u,DΦ(v)−DΦ(u)〉 = −λ
µ
〈Λη0, η0〉. (22)

Under either assumptions 4) or 5) in the theorem the right hand side of (22) is non-positive and since Φ is
convex the left hand side of (22) is non-negative. Therefore,

〈DΦ(u)−DΦ(v), v − u〉 = 0.

Again using Theorem 2.2 we have DΦ(u) = DΦ(v) and the result follows from (13). �

Remark 3.5 One can drop the surjectivity assumption on Λ in items 3), 4) and 5) and replace it by a
condition on the sign of the operator Λ∗, the adjoint of Λ, as follows:

• In item 3), the surjectivity of Λ can be replaced by the condition that Λ∗ is a negative operator. Indeed,
it follows from (18) in the proof and Definition 2.4 that v − u ∈ Dom(Λ∗). Thus, form (18) we have
that Λ∗(v − u) = DΦ(v)−DΦ(u) and therefore

〈v − u,Λ∗(v − u)〉 = 〈DΦ(v)−DΦ(u), v − u〉,

from which we obtain 〈DΦ(v)−DΦ(u), v − u〉 = 0 and consequently DΦ(v) = DΦ(u).

• In item 4) (resp. item 5)), the surjectivity of Λ can be replaced by the condition that Λ∗ is a positive
(resp. negative) operator. Indeed, it follows from (21) in the proof that v−u ∈ Dom(Λ∗) and therefore,

−µ
λ
〈v − u,Λ∗(v − u)〉 = 〈DΦ(v)−DΦ(u), v − u〉

This together with the sign condition on Λ∗ imply that 〈v − u,DΦ(v)−DΦ(u)〉 = 0 and, consequently
DΦ(v) = DΦ(u).

It is also evident that the surjectivity assumption is not needed in item 1). In item 2) it can be replaced by
the condition that Λ has a dense range in V ∗.

4 A variational principle on convex sets

Let V be a reflexive Banach space, V ∗ its topological dual and K be a closed convex subset of V. Assume that
Φ : V → R is convex, Gâteaux differentiable and lower semi-continuous and that Λ : Dom(Λ) ⊂ V → V ∗ is
a linear symmetric operator. Our objective is to provide a variational principle for the following equation.

Λu = DΦ(u), u ∈ K. (23)

Let Φ∗ be the Fenchel dual of Φ. Define the function ΨK : V → (−∞,+∞] by

ΨK(u) =

{
Φ∗(Λu), u ∈ K,
+∞, u 6∈ K. (24)

Consider the functional I : V → (−∞,+∞] defined by

I(w) := ΨK(w)− Φ(w).

A point u ∈ Dom(ΨK) is said to be a critical point of I if DΦ(u) ∈ ∂ΨK(u) or equivalently,

ΨK(v)−ΨK(u) ≥ 〈DΦ(u), v − u〉, ∀v ∈ V.

The above definition for the critical points of I is equivalent to the one given in Definition 2.5. We have the
following result.
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Theorem 4.1 Let V be a reflexive Banach space and K be a closed convex subset of V. Let Φ : V → R be a
Gâteaux differentiable convex and lower semi-continuous function, and let the linear operator Λ : Dom(Λ) ⊂
V → V ∗ be symmetric and positive. Assume that u is a critical point of I(w) = ΨK(w) − Φ(w), and that
there exists v ∈ K satisfying the linear equation,

Λv = DΦ(u).

Then u ∈ K is a solution of the equation
Λu = DΦ(u).

Proof. Since u is a critical point of I, it follows from the definition that

ΨK(w)−ΨK(u) ≥ 〈DΦ(u), w − u〉, ∀w ∈ V. (25)

Since I(u) is a finite number we have that u ∈ K and ΨK(u) = Φ∗(Λu). By assumption, there exists v ∈ K
satisfying Λv = DΦ(u). Substituting w = v in (25) yields that

Φ∗(Λv)− Φ∗(Λu) = ΨK(v)−ΨK(u) ≥ 〈DΦ(u), v − u〉 = 〈Λv, v − u〉. (26)

On the other hand it follows from Λv = DΦ(u) that u ∈ ∂Φ∗(Λv) and therefore

Φ∗(Λu)− Φ∗(Λv) ≥ 〈u,Λu− Λv〉. (27)

Adding up (26) with (27) we obtain

0 ≥ 〈u,Λu− Λv〉+ 〈Λv, v − u〉.

Since Λ is symmetric we obtain that 〈u − v,Λu − Λv〉 ≤ 0 from which together with the fact that Λ is
non-negative we obtain

〈u− v,Λu− Λv〉 = 0. (28)

By applying Theorem 2.2 to the convex function w → 〈Λw,w〉 and taking into account (28), we obtain that
Λu = Λv. Therefore,

Λu = Λv = DΦ(u),

as desired. �
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