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Abstract

A doubly stochastic measure on the unit square is a Borel probability measure whose horizental and
vertical marginals both coincide with the Lebesgue measure. The set of doubly stochastic measures is
convex and compact so its extremal points are of particular interest. The problem #111 of Birkhoff
(Lattice Theory 1948) is to provide a necessary and sufficient condition on the support of a doubly
stochastic measure to guarantee extremality. It was proved by Beneš and Štěpán that an extremal
doubly stochastic measure is concentrated on a set which admits an aperiodic decomposition. Hestir
and Williams later found a necessary condition which is nearly sufficient by further refining the aperiodic
structure of the support of extremal doubly stochastic measures. Our objective in this work is to provide a
more practical necessary and nearly sufficient condition for a set to support an extremal doubly stochastic
measure.
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1 Introduction

A doubly n×n stochastic matrix is a real matrix whose entries are non-negative and whose rows and columns
individually sum to one. A classical theorem due to Birkhoff [3] and von Neumann [19] states that the set
of doubly stochastic matrices is the convex hull of the set of n× n permutation matrices. Birkhoff proposed
the problem of extending this to an infinite dimensional analog known as Birkhoffs Problem #111 (Lattice
Theory, Revised Edition [4]). This project has been taken up at various points since its formulation. A
doubly stochastic measure on the square refers to a non-negative Borel probability measure on [0, 1]× [0, 1]
whose horizontal and vertical marginals both coincide with Lebesgue measure m on [0, 1]. Let us denote this
set of doubly stochastic measures by Π(m,m) that is indeed a convex and weak−∗ compact set. A measure
γ in Π(m,m) is an extremal point if it cannot be written as a convex combination of measures in Π(m,m).
Doubly stochastic measures and their extremal points are interesting objects to study for several reasons.
For instance, all joint probability distributions can be represented using doubly stochastic measures. In par-
ticular there has been an extensive study on the class of extremal doubly stochastic measures whose support
is contained in a hairpin set(see e.g. [10, 14, 20, 22, 23]). From the applied probability point of view, doubly
stochastic measures are a class of probability measures that is in one-to-one correspondence with the class
of copulas (see, e.g., [18]). They are also extremely important in the theory of Monge-Kantorovich optimal
mass transportation to prove uniqueness of optimal transference plans (see e.g. [1, 7, 17, 21, 24]).

One can formulate the problem in slightly greater generality, by replacing the two copies of ([0, 1],m)
with probability spaces (X,µ) and (Y, ν), where X and Y are complete separable metric spaces equipped
with Borel probabilty measures µ and ν respectively. Denote by Π(µ, ν) the set of Borel probability measures
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on X × Y having µ and ν for marginals.

Characterizations of extremal doubly stochastic measures originally given by Douglas and Lindenstrauss
[9, 15] states that a measure γ ∈ Π(µ, ν) is extremal if and only if L1(X; dµ) ⊕ L1(Y ; dν) is dense in
L1(X × Y ; dµ ⊗ ν). This characterization is framed in a functional analytic language which doesn’t give
a simple test for extremality; nor is it obvious how this criterion could be reduced to a condition on the
support of γ in X × Y. Significant further progress was made by Beneš & Štěpán [5]. We shall need a few
preliminaries before stating their result. For a map f from a set X to a set Y denote by Dom(f) the domain
of f , by Ran(f) the range of f and by Graph(f) the graph of f defined by

Graph(f) =
{

(x, g(x)); x ∈ Dom(f)
}
.

For a map g from Y to X, the antigraph of g is denoted by Antigraph(g) and defined by

Antigraph(g) =
{

(g(y), y); y ∈ Dom(g)
}
.

Here we recall the definition of aperiodic representations [5, 8].

Definition 1.1 Let X and Y be two sets and let f : X → Y and g : Y → X. Define

T (x) =

{
g ◦ f(x), x ∈ Dom(f) ∩ f−1

(
Dom(g)

)
= D(T ),

x, x /∈ D(T ).

The maps f, g are aperiodic if x ∈ D(T ) implies that Tn(x) 6= x for all n ≥ 1. If f, g are aperiodic and
Graph(f)∩Antigraph(g) = ∅ then S = Graph(f)∪Antigraph(g) is called an aperiodic decomposition of S.
Moreover, if (X,Σ(X)) and (Y,Σ(Y )) are measure spaces and the maps f and g are measurable we call the
maps f, g measure-aperiodic if any T -invariant probability measure defined on Σ(X) is supported by X\D(T ).

It what follows we say that γ ∈ Π(µ, ν) is concentrated on a set S if the outer measure of its complement is
zero, i.e. γ∗(Sc) = 0. Here is the result of Beneš and Štěpán [5] regarding doubly stochastic measures with
aperiodic supports.

Theorem 1.2 (Beneš & Štěpán 1987) Let (X,B(X), µ) and (Y,B(Y ), ν) be complete separable Borel
metric spaces. If γ is an extremal point of Π(µ, ν) then γ is concentrated on a set which admits an aperiodic
decomposition.
Moreover, let f : X → Y and g : Y → X be aperiodic measurable maps and Graph(f) ∩ Antigraph(g) = ∅.
Then there exists at most one γ ∈ Π(µ, ν) that is supported on S = Graph(f) ∪ Antigraph(g) provided f
and g are measure-aperiodic.

Note that the uniqueness result in the ladder theorem implies extremality as an immediate consequence.
Hestir and Williams [13] provided an alternate proof of the latter Theorem while further refining the structure
these graphs should take, and rewriting them in terms of limb numbering systems. Here we recall the notion
of a numbered limb system proposed by Hestir and Williams [13] to the unit square and adapted by Ahmed-
Kim-McCann [1] to X × Y.

Definition 1.3 (Numbered limb system) Let X and Y be Borel subsets of complete separable metric
spaces. A relation S ⊂ X × Y is a numbered limb system if there is a sequence of maps f2i : Dom(f2i) ⊂
Y → X and f2i−1 : Dom(f2i−1) ⊂ X → Y such that S = ∪∞i=1Graph(f2i−1) ∪Antigraph(f2i), with

1. Ran(fi) ⊂ Dom(fi−1) for each i > 1,

2. Dom(fi) ∩Dom(fj) = ∅ for i− j even,

3. Ran(f1) ∩Dom(h2i) = ∅ for all i ≥ 1.

By making use of the axiom of choice, Hestir and Williams deduced from the aperiodically condition of
Beneš and Štěpán [5] that each extremal doubly stochastic measure vanishes outside some numbered limb
system. Conversely, by assuming that the graphs (and antigraphs) comprising the system are Borel subsets
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of the square, they proved that vanishing outside a number limb system is sufficient to guarantee extremality
of a doubly stochastic measure. Their converse result was extended in the more general setting of subsets
X × Y of complete separable metric spaces, and under a weaker measurability hypothesis on the graphs
and antigraphs [1, 7]. The difficulty of applying Theorem 1.2 to prove extremality resides partly in the fact
that any geometrical characterization of extremality must be invariant under arbitrary measure-preserving
transformations applied independently to the horizontal or vertical variables. In this work we replace the
aperiodic and measure-aperiodic hypothesis in Theorem 1.2 with a more practical one.

Definition 1.4 For functions f : X → Y and g : Y → X we say that the graph of f is strongly disjoint
from the antigraph of g provided

1. Graph(f) ∩Antigraph(g) = ∅;

2. There exists a bounded function θ : Y → R such that θ
(
f ◦ g(y)

)
> θ(y) for every y ∈ Dom(f ◦ g).

If X and Y are Polish spaces and f, g are Borel measurable, say that the graph of f is strongly disjoint from
the antigraph of g in a measurable way if conditions (1) and (2) hold with θ being Borel measurable.

Here we state our main theorem in this paper.

Theorem 1.5 Let (X,B(X), µ) and (Y,B(Y ), ν) be complete separable Borel metric spaces. Let f : X → Y
and g : Y → X be two measurable functions such that the graph of f is strongly disjoint from the antigraph
of g in a measurable way. Then there exists at most one γ ∈ Π(µ, ν) that is supported on S = Graph(f) ∪
Antigraph(g).
Moreover, if γ is an extremal point of Π(µ, ν) then there exist functions f : X → Y and g : Y → X such
that γ is supported on Graph(f) ∪ Antigraph(g) and the graph of f is strongly disjoint from the antigraph
of g.

We shall now provide some applications of Theorem 1.5. In the first one we establish a criterion for the
uniqueness of measures in Π(µ, ν) that are supported on the graphs of a countable set of measurable maps.

Theorem 1.6 Let X and Y be Polish spaces equipped with Borel probability measures µ on X and ν on Y,
and let {Ti}ki=1 be a (possibly infinite) sequence of measurable maps from X to Y . Assume that the following
assertions hold:

1. For each i ≥ 2 the map Ti is injective on the set

Di :=
{
x ∈ Dom(T1) ∩Dom(Ti); T1x 6= Tix

}
,

and Ran(Ti) ∩Ran(Tj) = ∅ for all i, j ≥ 2 with i 6= j.

2. There exists a bounded measurable function θ : Y → R with the property that θ(T1x) > θ(Tix) on Di.

Then there exists at most one γ ∈ Π(µ, ν) that is supported on ∪ki=1Graph(Ti).

As an immediate consequence of the latter theorem we recover the following uniqueness result due to Seethoff
and Shiflett [22].

Corollary 1.7 Let X = Y = [0, 1] and µ = ν be the Lebesgue measure. If T1 ≤ T2 and one of T1 or T2
is injective on D = {x;T1(x) 6= T2(x)} then there exists at most one γ ∈ Π(µ, ν) that is supported on the
graphs of T1 and T2.

Proof. Suppose T2 is injective on D. One can define θ : D → R by θ(y) = −y. Since T1 ≤ T2 then
θ
(
T1(y)

)
> θ
(
T2(y)

)
on D. The result then follows from Theorem 1.6. �

As another application of Theorem 1.5, by relaxing the measurability hypotheses required by Hestir and
Williams [13], we show that there exists at most one doubly stochastic measure vanishing outside a limb
numbering system by imposing some mild measurability assumptions (see Theorem 3.4). Our measurability
hypotheses is different from the one established in [1]. We remark that an example in [5] shows that some
measurability hypothesis is nevertheless required (see also [16]).

In the next section we shall provide some preliminary and independent results required for the proofs.
Section 3 is devoted to the proofs and more applications of Theorem 1.5.
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2 Measurable weak sections and extremality

In this section we gather some results from measure theory including Choquet type integral representations
and transformations of measures by images and preimages of measurable maps. They are essential for the
proof of the main results in the next section.

Let (X,B, µ) be a finite, not necessarily complete measure space, and (Y,Σ) a measurable space. The
completion of B with respect to µ is denoted by Bµ, when necessary, we identify µ with its completion on
Bµ. A function T : X → Y is said to be (B,Σ)-measurable if and only if T−1(A) ∈ B for all A ∈ Σ. The push
forward of the measure µ by the map T is denoted by T#µ, i.e.

T#µ(A) = µ(T−1(A)), ∀A ∈ Σ.

By the change of variable formula it amounts to saying that
∫
Y
f(y) d(T#µ) =

∫
X
f ◦T (x) dµ, for all bounded

measurable functions f : Y → R. We also have the following definition.

Definition 2.1 Let T : X → Y be (B,Σ)-measurable and ν a positive measure on Σ. We call a map
F : Y → X a (Σν ,B)-measurable section of T if F is (Σν ,B)- measurable and T ◦ F = IdY .

Recall that a Polish space is a separable completely metrizable topological space. A Souslin space (resp.
set) is the image of a Polish space (resp. set) under a continuous mapping. Obviously every Polish space is
a Souslin space. The following theorem ensures the existence of measurable sections ([6], Theorem 9.1.3).
This is indeed a consequence of von Neumann’s selection theorem.

Theorem 2.2 Let X and Y be Souslin spaces and let T : X → Y be a Borel mapping such that T (X) = Y .
Then, there exists a mapping F : Y → X such that T ◦ F (y) = y for all y ∈ Y and F is measurable with
respect to every Borel measure on Y .

If X is a topological space we denote by B(X) the set of Borel subsets in X. The space of Borel probability
measures on a topological space X is denoted by P(X). For a measurable map T : (X,B(X)) → (Y,Σ, ν)
denote by M(T, ν) the set of all measures λ on B(X) so that T pushes λ forward to ν, i.e.

M(T, ν) = {λ; T#λ = ν}.

Evidently M(T, ν) is a convex set. A measure λ is an extreme point of M(T, ν) if the identity λ =
tλ1 + (1 − t)λ2 with t ∈ (0, 1) and λ1, λ2 ∈ M(T, ν) imply that λ1 = λ2. The set of extreme points of
M(T, ν) is denoted by extM(T, ν).

We recall the following result from [12] in which a characterization of the set extM(T, ν) is given (see
also [11] for the case where T is continuous).

Theorem 2.3 Let (Y,Σ, ν) be a probability space, (X,B(X)) be a Hausdorff space with a Radon probability
measure λ, and let T : X → Y be an (B(X),Σ)-measurable mapping. If T is surjective and Σ is countably
separated then the following conditions are equivalent:
(i) λ is an extreme point of M(T, ν);
(ii) there exists a (Σν ,B(X))-measurable section F : Y → X of the mapping T with λ = F#ν.

Finally, if in addition, Σ is countably generated and for some σ-algebra S with Σ ⊂ S ⊂ Σν and there
exists a (S,B(X))-measurable section of the mapping T , then the indicated conditions are equivalent to the
following condition:
(iii) there exists an (S,B(X))-measurable section F of the mapping T such that λ = F#ν.

The most interesting for applications is the case where X and Y are Souslin spaces with their Borel σ-
algebras and T : X → Y is a surjective Borel mapping. Then the conditions formulated before assertion (iii)
are fulfilled if we take for S the σ-algebra generated by all Souslin sets. Thus, in this situation, the extreme
points of the set M(T, ν) are exactly the measures of the form F#ν, where F : Y → X is measurable with
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respect to (S,B(X)) and T ◦ F (y) = y for all y ∈ Y .

We shall now make use of the Choquet theory in the setting of noncompact sets of measures to represent
each λ ∈ M(T, ν) as a Choquet type integral over extM(T, ν). Let us first recall some notations from von
Weizsäcker-Winkler [25]. In the measurable space (X,B(X)), let H be a set of non-negative measures on
B(X). By

∑
H we denote the σ-algebra over H generated by the functions % → %(B), B ∈ B(X). If H is a

convex set of measures we denote by extH the set of extreme points of H. The set of tight positive measures
on B(X) is denoted by M+(X). For a family F of real valued Borel measurable functions on X we define

M+
F (X) = {% ∈M+(X); F ⊂ L1(%)},

where L1(%) is the set of %-integrable real functions on X. Denote by σM+
F (X) the topology on M+

F (X) of
the functions % 7→

∫
f d%, f ∈ F . The weakest topology on M+

F (X) that makes the functions % 7→
∫
f d%

lower semi-continuous for all lower semi-continuous bounded functions f on X is denoted by vM+
F (X).

Denote by vσM+
F (X) the topology generated by σM+

F (X) and vM+
F (X). Here is the main result of von

Weizsäcker-Winkler [25] regarding the Choquet theory in the setting of noncompact sets of measures.

Theorem 2.4 Let F be a countable family of real Borel functions on a topological space X. Let H be a
convex subset of M+

F (X) such that sup%∈H %(X) < ∞. If H is closed with respect to vσM+
F (X) then for

every λ ∈ H there is a probability measure ξ on
∑
extH which represents λ in the following sense

λ(B) =

∫
extH

%(B) dξ(%),

for every B ∈ B(X).

We now use the above theorem to represent each λ ∈M(T, ν) as a Choquet type integral over extM(T, ν).

Theorem 2.5 Let X and Y be complete separable metric spaces and ν a finite measure on B(Y ). Let
T : (X,B(X)) → (Y,B(Y )) be a surjective measurable mapping and let λ ∈ M(T, ν). Then there exists a
probability measure ξ on

∑
extM(T,ν) such that for each B ∈ B(X),

λ(B) =

∫
extM(T,ν)

%(B) dξ(%).

Proof. Note first that any finite Borel measure on a Polish space is tight ([2], Theorem 12.7). It is also
known that the Borel σ-algebra of a Souslin space is countably generated and countably separated ([6],
Corollary 6.7.5). Let A be a countable family in B(Y ) which generates B(Y ) as a σ-field. Let

F =
{
χA ◦ T ; A ∈ A

}
,

where χA is the indicator function of A and χA ◦ T is the composition of the map T with the function χA.
Note that F is a countable family of real Borel functions on X. It is clear that M(T, ν) is closed with respect
to the topology vσM+

F (X). Thus, it follows from Theorem 2.4 that there exists a probability measure ξ on∑
extM(T,ν) such that for each B ∈ B(X) the map %→ %(B) from extM(T, ν) to R is measurable and

λ(B) =

∫
extM(T,ν)

%(B) dξ(%).

�
We conclude this section by another interesting result in [12] that shows that for a map T : (X,B(X)) →
(Y,B(Y ), ν) all measurable sections of T can, modulo ν, be parameterized by the pre-image measures of ν
and this parametrization can be done in a measurable way.

Theorem 2.6 Let X and Y be complete separable metric spaces and ν a finite measure on B(Y ). Let Σ̃ be
the σ-field of universally measurable subsets of Y. Assume that T : (X,B(X)) → (Y,B(Y )) is a surjective
measurable mapping. Then there exists an

∑
extM(T,ν)⊗Σ̃−B(X) measurable map L : extM(T, ν)×Y → X

with the following properties:
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i. For fixed % ∈ extM(T, ν), the function L(%, .) is an Σ̃− B(X) measurable section for T.

ii. For every measurable section F for T there exists % ∈ extM(T, ν) with L(%, y) = F (y) for ν-a.e. y ∈ Y.

Moreover, if λ ∈M(T, ν) then there exists a probability measure ξ on
∑
extM(T,ν) such that∫

X

g(x) dλ =

∫
extM(T,ν)

∫
X

g(x) d%(x) dξ(%) =

∫
extM(T,ν)

∫
Y

g
(
L(%, y)

)
dν(y) dξ(%).

for every real Borel measurable function g ∈ L1(λ).

Proof. The existence of an
∑
extM(T,ν)⊗Σ̃ − B(X) measurable map L : extM(T, ν) × Y → X satisfying

properties (i) and (ii) was established in Corollary 1 in [12].
For λ ∈M(T, ν) it follows from Theorem 2.5 that there exists a Borel probability measure ξ on

∑
extM(T,ν)

such that for each B ∈ B(X),

λ(B) =

∫
extM(T,ν)

%(B) dξ(%).

Thus, for every Borel measurable function g : X → R in L1(λ) we have,∫
X

g(x) dλ =

∫
extM(T,ν)

∫
X

g(x) d%(x) dξ(%).

It now follows from property (i) that for each % ∈ extM(T, ν), the function L(%, .) is an Σ̃−B(X) measurable
section for T. This implies that σ = L(%, .)#ν. Therefore,∫

extM(T,ν)

∫
X

g(x) d%(x) dξ(%) =

∫
extM(T,ν)

∫
Y

g
(
L(%, y)

)
dν(y) dξ(%),

as desired. �

3 Proofs and more applications

In this section we shall first prove Theorems 1.5 and 1.6 by using the tools introduced in the previous section.
We shall then proceed with more applications of these theorems.

Proof of Theorem 1.5 (The nearly sufficient condition). We will use Theorem 1.2 to prove this
part. By assumptions f : X → Y and g : Y → X are Borel measurable and the graph of f is strongly disjoint
from the antigraph of g in a measurable way. This implies that Graph(f) ∩ Antigraph(g) = ∅ and there
exists a Borel measurable bounded function θ : Y → R such that θ

(
f ◦ g(y)

)
> θ(y) for all y ∈ Dom

(
f ◦ g

)
.

Define T : X → X as in Definition 1.1, i.e.,

T (x) =

{
g ◦ f(x), x ∈ Dom(f) ∩ f−1

(
Dom(g)

)
= D(T ),

x, x /∈ D(T ).

We shall now proceed with the rest of the proof in two steps. In the first step we show that f and g are
aperiodic and in the second step we show that f and g are measure-aperiodic. Then the result follows from
Theorem 1.2.

Step 1: Assume that there exist x ∈ D(T ) = Dom(f)∩f−1
(
Dom(g)

)
and n ∈ N such that (g◦f)n(x) = x.

It follows that there exists y ∈ g−1(x) that

f ◦ (g ◦ f)n−1(x) = y (1)

By induction we shall verify that the following inequality holds for every k ≤ n,

θ
(
f ◦ (g ◦ f)k−1(x)

)
≥ θ
(
f(x)

)
. (2)
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It obviously holds for k = 1. Assuming it holds for k < n we prove that it holds for k + 1. We have

θ
(
f ◦ (g ◦ f)k(x)

)
= θ

(
f ◦ g ◦ (f ◦ g)k−1 ◦ f(x)

)
≥ θ

(
(f ◦ g)k−1 ◦ f(x)

) (
since by assumption θ ◦ f ◦ g ≥ θ

)
= θ

(
f ◦ (g ◦ f)k−1(x)

)
≥ θ

(
f(x)

) (
since the inequality holds for k

)
This completes the induction. It now follows from (1) and (2) that

θ(y) = θ
(
f ◦ (g ◦ f)n−1(x)

)
≥ θ
(
f(x)

)
.

Thus θ(y) ≥ θ
(
f(x)

)
. Taking into account that y ∈ g−1(x) we have θ(y) ≥ θ

(
f ◦ g(y)

)
. This leads to a

contradiction as θ(y) < θ
(
f ◦ g(y)

)
.

Step 2: To prove that f and g are measure-aperiodic we need to show that any T -invariant probability
measure on B(X) is supported in X \ D(T ) where D(T ) = Dom(f) ∩ f−1

(
Dom(g)

)
. Suppose that λ is a

probability measure on B(X) with T#λ = λ. Note first that since T (x) = x for each x ∈ X \D(T ) we have
that λ

(
T−1(A)

)
= λ(A) for every measurable subset of D(T ). It then implies that (g ◦ f)#λ = λ on D(T ).

Let f|D(T ) be the restriction of f on D(T ) and let η be the push forward of λ by f|D(T ). Since (g ◦ f)#λ = λ

on D(T ), it follows that g#η = λ. Let M(g, λ) be the set of positive measures on B
(
Dom(g)

)
defined by

M(g, λ) =
{
ζ; g#ζ = λ

}
.

Note that M(g, λ) is convex and η ∈ M(g, λ). By Theorem 2.3, extreme points of the set M(g, λ) are
determined by the preimages of g. Let Σ̃ be the σ-field of universally measurable subsets of D(T ). It follows
from Theorem 2.6 that there exists an

∑
extM(g,λ)⊗Σ̃− B

(
Dom(g)

)
measurable map

L : extM(g, λ)×D(T )→ Dom(g),

such that for fixed % ∈ extM(g, λ), the function L(%, .) is an Σ̃ − B
(
Dom(g)

)
measurable section for g.

Moreover, since η ∈ M(g, λ), it follows from Theorem 2.5 that there exists a probability measure ξ on∑
extM(g,λ) such that ∫

Dom(g)

g(y) dη =

∫
extM(g,λ)

∫
Dom(g)

g(y) d%(y) dξ(%),

for every bounded Borel measurable function g on Y . Since θ is bounded and Borel measurable it follows
from Theorem 2.6 that ∫

Dom(g)

θ(y) dη =

∫
extM(g,λ)

∫
Dom(g)

θ(y) d%(y) dξ(%)

=

∫
extM(T,ν)

∫
D(T )

θ
(
L(%, x)

)
dλ(x) dξ(%). (3)

For each % ∈ extM(g, λ), by the properties of the function θ, we have θ
(
f ◦ g ◦ L(%, x)

)
> θ

(
L(%, x)

)
on

D(T ). Since g ◦ L(%, x) = x we obtain

θ
(
f(x)

)
> θ
(
L(%, x)

)
∀x ∈ D(T ). (4)

It now follows (3) and (4) that∫
D(T )

θ
(
f(x)

)
dλ =

∫
Dom(g)

θ(y) dη

=

∫
extM(T,ν)

∫
D(T )

θ
(
L(%, x)

)
dλ(x) dξ(%)

≤
∫
extM(T,ν)

∫
D(T )

θ
(
f(x)

)
dλ(x) dξ(%)

=

∫
D(T )

θ
(
f(x)

)
dλ.
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This in fact implies that ∫
extM(T,ν)

∫
D(T )

[
θ
(
f(x)

)
− θ
(
L(%, x)

)]
dλ(x) dξ(%) = 0.

Since the integrand is non-negative there exists %0 ∈ extM(T, ν) such that θ
(
L(%0, x)

)
− θ
(
f(x)

)
= 0 for

λ almost every x ∈ D(T ). On the other hand by (4) we have that θ
(
f(x)

)
> θ

(
L(%, x)

)
for all x ∈ D(T )

and therefore λ must be zero on D(T ). This indeed proves that λ must be supported in X \ D(T ) which
completes the proof of Step (2). �

Note that the uniqueness result in Theorem 1.5 implies extremality.

Corollary 3.1 Let (X,B(X), µ) and (Y,B(Y ), ν) be complete separable Borel metric spaces. Let f : X → Y
and g : Y → X be two measurable functions such that the graph of f is strongly disjoint from the antigraph
of g in a measurable way. If γ ∈ Π(µ, ν) is supported on S = Graph(f)∪Antigraph(g) then γ is an extremal
point of Π(µ, ν).

Proof. Suppose that there exist γ1, γ2 ∈ Π(µ, ν) and 0 < t < 1 such that γ = tγ1 + (1− t)γ2. It implies
that γ ≥ γi for i = 1, 2 and therefore both γ1 and γ2 vanish outside S. According to Theorem 1.5 there exists
at most one doubly stochastic measure in Π(µ, ν) supported in S. Hence, γ1 = γ2 and the measure γ is an
extremal point of Π(µ, ν). �

Proof of Theorem 1.6. For each i ≥ 2, since Ti is injective on Di, we have that Ti(Di) is a measurable
subset of Y ([6], Theorem 6.8.6). Define

g : Dom(g) = ∪ki=2Ti(Di) ⊂ Y → X,

by g(y) = Ti
−1
|Di

(y) for y ∈ Ti(Di) and note that g is measurable. Define

f : Dom(f) = Dom(T1) ⊂ X → Y,

by f(x) = T1(x). We shall verify the assumptions of Theorem 1.5 for functions f and g. Note that Graph(f)∩
Antigraph(g) = ∅. In fact, if Graph(f) ∩ Antigraph(g) 6= ∅ then there exists x ∈ Dom(f) and y ∈ Dom(g)
with (x, f(x)) = (g(y), y). It then follows that y = f(x) = T1(x) and x = Ti

−1
|Di

(y) for some 2 ≤ i ≤ k. This

is a contradiction as T1(x) 6= Ti(x) on Di. To conclude we need to verify that θ
(
f ◦ g(y)

)
> θ(y) for every

y ∈ Dom(f ◦ g). Take y ∈ Dom(g) ∩ g−1
(
Dom(f)

)
. There exists i ≥ 2 and x ∈ Di such that y = Ti(x).

Thus,
θ
(
f ◦ g(y)

)
= θ
(
f ◦ g ◦ Ti(x)

)
= θ
(
f(x)

)
= θ
(
T1(x)

)
> θ
(
Ti(x)

)
= θ(y),

from which the result follows. �

By making use of Theorem 1.6 one can easily generalize the result of Seethoff and Shiflett (Corollary 1.7)
to higher dimensions. For x = (x1, ..., xn) and y = (y1, ..., yn) in Rn we define x � y if and only if xi ≤ yi
for all 1 ≤ i ≤ n.

Corollary 3.2 Let X = Y = [0, 1]n and µ = ν be the n-dimensional Lebesgue measure. Assume that
T1, T2 : [0, 1]n → [0, 1]n are such that T1 � T2 and one of T1 or T2 is injective on

D =
{
x;T1(x) 6= T2(x)

}
.

Then there exists at most one γ ∈ Π(µ, ν) that is supported on the graphs of T1 and T2.

Proof Suppose that T2 is injective on D. One can define θ : Y → R by θ(y1, ..., yn) = −
∑n
i=1 yi. Since

T1 � T2, it is easily seen that θ
(
T1(x)

)
> θ

(
T2(x)

)
on D. Thus, all the requirements in Theorem 1.6 are

met. �

Here is another application of Theorem 1.6 for maps with disjoint ranges.
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Corollary 3.3 Let X and Y be Polish spaces equipped with Borel probability measures µ on X and ν on Y.
Let {Ti}ki=1 be a sequence of measurable maps from X to Y such that Ti is injective for each i ∈ {2, ..., k}
and Ran(Ti) ∩ Ran(Tj) = ∅ for all 1 ≤ i, j ≤ k with i 6= j. If Ran(T1) is measurable then there exists at
most one γ ∈ Π(µ, ν) that is supported on the graphs of T1, T2, ..., Tk.

Proof. Define θ(y) = χRan(T1)(y), the indicator function of Ran(T1). Since Ran(T1) is measurable we have
that θ is a bounded measurable function. For each i ≥ 2 we have Ran(T1) ∩ Ran(Ti) = ∅ and therefore for
all x ∈ Dom(T1) ∩Dom(Ti) we have

θ(T1x) = 1 > 0 = θ(Tix).

Thus the result follows from Theorem 1.6. �

In the following we provide an application of Theorem 1.5 to doubly stochastic measures vanishing outside
a limb numbering system.

Theorem 3.4 Let X and Y be complete separable metric spaces, equipped with Borel probability measures
µ on X and ν on Y . Suppose there is a numbered limb system S = ∪∞i=1Graph(f2i−1)∪Antigraph(f2i) with
the property that ∪∞i=1Graph(f2i−1) and ∪∞i=1Antigraph(f2i) are Souslin (e.g. Borel measurable) subsets of
X × Y. If Dom(f2i) is Borel measurable for each i ≥ 1 then at most one γ ∈ Π(µ, ν) vanishes outside of S.

Proof. Define g : Dom(g) = ∪∞i=1Dom(f2i) ⊂ Y → X by g(y) = f2i(y) when y ∈ Dom(f2i). By disjoint-
ness of domains g is a single-valued function and Antigraph(g) = ∪∞i=1Antigraph(f2i). Similarly define the
function f : Dom(f) := ∪∞i=1Dom(f2i−1) ⊂ X → Y by f(x) = f2i−1(x) when x ∈ Dom(f2i−1). By assump-
tions ∪∞i=1Graph(f2i−1) and ∪∞i=0Antigraph(f2i) are Souslin subsets of X ×Y. Therefore, Antigraph(g) and
Graph(f) are Souslin subsets of the product space from which we obtain that both functions g : Dom(g) ⊂
Y → X and f : Dom(f) ⊂ X → Y are Borel measurable ([6], Lemma 6.7.1).

We now show that Graph(f) ∩ Antigraph(g) = ∅. If Graph(f) ∩ Antigraph(g) 6= ∅ then there exist
i, j ≥ 1 and x ∈ Dom(f2i−1) and y ∈ Dom(f2j) such that

(
x, f2i−1(x)

)
=
(
f2j(y), y

)
. Since x = f2j(y) ∈

Ran(f2j) ⊂ Dom(f2j−1) we must have i = j. Similarly, for i > 1, y = f2i−1(x) ∈ Rang(f2i−1) ⊂ Dom(f2i−2)
from which we have i− 1 = j which leads to a contradiction. The case i = 1 also leads to a contradiction as
Rang(f1) ∩Dom(f2k) = ∅ for all k ≥ 1.

Define θ : ∪∞i=Dom(f2i) → R by θ(y) = 2−i for y ∈ Dom(f2i). Since for each i ≥ 1, Dom(f2i) is
measurable we have that θ is a bounded Borel measurable function. We show that θ satisfies the assumption
of Theorem 1.5. Take y ∈ Dom(g) ∩ g−1

(
Dom(f)

)
. Thus, y ∈ Dom(f2k) for some k > 1. This implies that

g(y) = f2k(y) and since Ran(f2k) ⊂ Dom(f2k−1) we have that

f ◦ g(y) = f ◦ f2k(y) = f2k−1 ◦ f2k(y).

Therefore, f ◦ g(y) ∈ Ran(f2k−1). Since Ran(f2k−1) ⊂ Dom(f2k−2) we obtain

θ
(
f ◦ g(y)

)
= 2−(k−1) > 2−k = θ(y).

Therefore, Graph(f) is strongly disjoint from Antigraph(g) in a measurable way. It now follows from
Theorem 1.5 that at most one γ ∈ Π(µ, ν) can be supported on

Graph(f) ∪Antigraph(g) = ∪∞i=1Graph(f2i−1) ∪Antigraph(f2i).

�

Remark 3.5 Hestir and Williams [13] proved that vanishing outside a number limb system

S = ∪∞i=1Graph(f2i−1) ∪Antigraph(f2i),

is sufficient to guarantee extremality of a doubly stochastic measure, provided that fi is Borel measurable for
every i ≥ 1. Their result was later improved by Ahmed-Kim-McCann [1] by showing that if Graph(f2i−1)
and Antigraph(f2i) are γ-measurable subsets of X × Y for each i ≥ 1 and for every γ ∈ Π(µ, ν) vanishing
outside of S then at most one γ vanishes outside S.
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We conclude this section by completing the proof of Theorem 1.5.

Proof of Theorem 1.5 (The necessary condition). If γ is an extremal point of the convex
set Π(µ, ν) then by the main result of Hestir and Williams [13] there exists a numbered limb system
S = ∪∞i=1Graph(f2i−1) ∪ Antigraph(f2i) such that γ∗(Sc) = 0. Define functions f, g and θ as in the proof
of Theorem 3.4. Even though these functions may not be measurable but the graph of f is strongly disjoint
from the antigraph of g. �
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