On the Topological Centre Problem for Weighted Convolution Algebras

Matthias Neufang

Abstract

Let G be a locally compact noncompact group. We show that under a very mild assumption on the weight function w, the weighted group algebra $L_1(G, w)$ is strongly Arens irregular in the sense of [Dal–Lam–Lau 01]. To this end, we first derive a general factorization theorem for bounded families in the $L_\infty (G, w^{-1})^*$-module $L_\infty (G, w^{-1})$.

1 Introduction

Let G be a locally compact group, and let $w : G \rightarrow (0, \infty)$ be a weight function, i.e., a positive continuous function on G such that $w(st) \leq w(s)w(t)$ for all $s, t \in G$; for convenience we shall assume that $w(e) = 1$, where e is the neutral element of G. We will consider the following spaces, normed in such a way that multiplication resp. division by the weight becomes an isometry between the unweighted and the corresponding weighted space (whose norm we will denote by $\| \cdot \|_w$):

\begin{align*}
L_1(G, w) &= \{ f \mid wf \in L_1(G) \} \\
L_\infty (G, w^{-1}) &= \{ f \mid w^{-1}f \in L_\infty (G) \} \\
LUC (G, w^{-1}) &= \{ f \mid w^{-1}f \in LUC(G) \} \\
C_0 (G, w^{-1}) &= \{ f \mid w^{-1}f \in C_0(G) \} \\
M(G, w) &= \{ \mu \mid w\mu \in M(G) \}.
\end{align*}

Then we have $L_\infty (G, w^{-1}) = L_1(G, w)^*$ and $M(G, w) = C_0 (G, w^{-1})^*$. For every $y \in G$, we define $\tilde{\delta}_y := w(y)^{-1} \delta_y$, which is an element of norm one in $M(G, w)$.

Our aim is to show that for all locally compact noncompact groups, the weighted group algebra $L_1(G, w)$ is strongly Arens irregular in the sense of Dales–Lamb–Lau (see [DAL–LAM–LAU 01]), provided the weight satisfies some very mild boundedness condition. Here, strong Arens irregularity means that the topological centre of the bidual algebra $(L_1(G, w)^{**}, \circ)$, equipped with the first Arens product, precisely equals the algebra $L_1(G, w)$ itself, i.e., it is extremally small. This is a generalization of the main result, Thm. 1, of [LAU–LOS 88], where the corresponding assertion is proved for the (unweighted) group algebra $L_1(G)$, to the weighted situation. Although covering a

2000 Mathematics Subject Classification: 22D15, 43A20, 43A22.

Key words and phrases: locally compact group, weighted group algebra, left uniformly continuous functions, Arens product, topological centre.

The author is currently a PIMS Postdoctoral Fellow at the University of Alberta, Edmonton, where this work was accomplished. The support of PIMS is gratefully acknowledged.
by far more general case, our proof is not of higher complexity, if not even simpler, than the one
given in [Lau–Los 88].

In the following, we shall always regard \(L_1(\mathcal{G}, w)^{**} \) as endowed with the first Arens multiplication.
Let us briefly recall the three step construction of the latter, arising from the convolution product
(denoted by “\(\ast \)”) in \(L_1(\mathcal{G}, w) \) via various module actions. – For \(m, n \in L_1(\mathcal{G}, w)^{**}, h \in L_1(\mathcal{G}, w)^* \)
and \(f, g \in L_1(\mathcal{G}, w) \) one defines:
\[
\langle h \circ f, g \rangle := \langle h, f * g \rangle \\
\langle n \circ h, f \rangle := \langle n, h \circ f \rangle \\
\langle m \circ n, h \rangle := \langle m, n \circ h \rangle.
\]
A fairly comprehensive exposition of the basic theory of Arens products is given in [Pal 94], §1.4.
As for topological centres, an excellent source is [LAU–ÜLG 96]. We shall only need the definition
of the latter, which we briefly recall here:
\[
Z_t(L_1(\mathcal{G}, w)^{**}) := \{ m \in L_1(\mathcal{G}, w)^{**} \mid n \mapsto m \circ n \text{ is } w^* - w^* \text{ continuous on } L_1(\mathcal{G}, w)^{**} \}.
\]
We will use the fact (cf. [Grø 90], Prop. 1.3) that, with the natural module operation stemming from
the construction of the first Arens product on \(L_1(\mathcal{G}, w)^{**} \), the equality \(L_\infty(\mathcal{G}, w^{-1}) \odot L_1(\mathcal{G}, w) = \text{LUC (} \mathcal{G}, w^{-1}) \)
holds. Hence, a natural module operation of \(\text{LUC (} \mathcal{G}, w^{-1})^* \) on \(L_\infty(\mathcal{G}, w^{-1}) \) is given by
\[
\langle m \odot h, g \rangle = \langle m, h \odot g \rangle,
\]
where \(m \in \text{LUC (} \mathcal{G}, w^{-1})^* \), \(h \in L_\infty(\mathcal{G}, w^{-1}) \), \(g \in L_1(\mathcal{G}, w) \). It is readily verified that we have
\(m \odot h = \tilde{m} \circ h \), where \(\tilde{m} \) is an arbitrary Hahn-Banach extension of \(m \) to \(L_\infty(\mathcal{G}, w^{-1})^* \).

In the sequel, we shall denote by \(\mathfrak{t}(\mathcal{G}) \) the compact covering number of the group \(\mathcal{G} \), i.e., the least
cardinality of a compact covering of \(\mathcal{G} \). For the sake of brevity, we further introduce the following
terminology (the first part of the definition also appears in [Dal–Lam–Lau 01]).

Definition 1.1. (i) A subset \(S \) of \(\mathcal{G} \) will be called dispersed if \(S \) is not contained in any union of a
family of compact subsets of \(\mathcal{G} \), the family having cardinality strictly less than \(\mathfrak{t}(\mathcal{G}) \).

(ii) For a subset \(S \subseteq \mathcal{G} \), we say that the weight \(w \) is diagonally bounded on \(S \) if we have:
\[
\sup_{s \in S} w(s)w\left(s^{-1} \right) < \infty.
\]

Now we can formulate the main result of the present note; we remark that it has very recently also
been obtained independently by Dales–Lamb–Lau in [Dal–Lam–Lau 01], though with a different
proof. In particular, our factorization result, Theorem 2.2, does not appear in [Dal–Lam–Lau 01].

Theorem 1.2. Let \(\mathcal{G} \) be a locally compact noncompact group with compact covering number \(\mathfrak{t}(\mathcal{G}) \).
Suppose that there is a dispersed set \(S \subseteq \mathcal{G} \) on which the weight function \(w \) is diagonally bounded.
Then \(L_1(\mathcal{G}, w) \) is strongly Arens irregular.

We wish to stress the following important points regarding our approach:

- We prove a (formal) sharpening of the interesting inclusion contained in Theorem 1.2. Namely,
we will show that for an element \(m \in L_\infty(\mathcal{G}, w^{-1})^* \) in order to belong to \(L_1(\mathcal{G}, w) \), it suffices
that left multiplication by \(m \) be \(w^*-w^* \)-continuous on the \(w^* \)-closure of the set of all Hahn-
Banach extensions of functionals in \(\overline{w} \{ w \} \subseteq \text{Ball (LUC (} \mathcal{G}, w^{-1})^* \} \) to \(L_\infty(\mathcal{G}, w^{-1})^* \). Instead,
the definition of the topological centre demands \(w^* \)-continuity on all of \(L_\infty(\mathcal{G}, w^{-1})^* \).
Then there exists a family \(S \subseteq \mathcal{G} \) on which the weight function \(w \) is diagonally bounded.

Next we present our crucial tool, which is a general factorization theorem for bounded families in \(L_\infty(\mathcal{G}, w^{-1}) \); it provides a generalization of Thm. 2.2 in [NEU 01a] to the weighted situation.

Theorem 2.2. Let \(\mathcal{G} \) be a locally compact noncompact group with compact covering number \(\mathfrak{t}(\mathcal{G}) \). Suppose that there exists a dispersed set \(S \subseteq \mathcal{G} \), and closed under finite unions; we denote the corresponding family of compacta by \((K_\alpha)_{\alpha \in I} \). Set \(\tilde{I} := I \times I \). For \(\tilde{\alpha} = (\alpha, i) \in \tilde{I} \), put \(K_{\tilde{\alpha}} = K_{(\alpha, i)} := K_\alpha \). Then \((K_{\tilde{\alpha}})_{\tilde{\alpha} \in \tilde{I}} \) is a covering of \(\mathcal{G} \) having the same properties than the original one. Since the set \(S \) is dispersed, by the same reasoning as in Lemma 3 of [Lau–Los 88], we see that there exists a family \((y_{\tilde{\alpha}})_{\tilde{\alpha} \in \tilde{I}} \subseteq S \) such that

\[
K_{\tilde{\alpha}} y_{\tilde{\alpha}}^{-1} \cap K_{\tilde{\beta}} y_{\tilde{\beta}}^{-1} = \emptyset \quad \forall \tilde{\alpha}, \tilde{\beta} \in \tilde{I}, \tilde{\alpha} \neq \tilde{\beta}.
\]

Set \(S' := \{ y_{\tilde{\alpha}} \mid \tilde{\alpha} \in \tilde{I} \} \). We define, for \((\alpha, i), (\beta, j) \in \tilde{I} \):

\[
(\alpha, i) \preceq (\beta, j) \iff K_{(\alpha, i)} \subseteq K_{(\beta, j)} \iff K_\alpha \subseteq K_\beta \iff : \alpha \preceq' \beta.
\]

Let \(\mathcal{F} \) be an ultrafilter on \(I \) which dominates the order filter. Define, for \(j \in I \),

\[
\psi_j' := w^*(-\lim_{\beta \to \infty} y_{(\beta,j)}^{-1} y_{\tilde{\beta}}^\sim) \in \overline{w^*}(\mathcal{G}) \subseteq \text{Ball}(LUC(\mathcal{G}, w^{-1})),
\]
and let \(\psi_j \) be arbitrary Hahn-Banach extensions of \(\psi_j' \) to \(L_\infty (\mathcal{G}, w^{-1})^* \).

Since \(w \) is diagonally bounded on \(S' \), we have:

\[
\sup_{s \in S'} \| w \left(s^{-1} \right) \delta_s \|_w = \sup_{s \in S'} w(s)w \left(s^{-1} \right) < \infty.
\]

Thus, the family of functions

\[
H_{(\alpha, i)} := \left(w \left(y_{(\alpha, i)}^{-1} \right) \delta_{y_{(\alpha, i)}} \right) \circ \left(\chi_{K_{(\alpha, i)}} \right) h_i = w \left(y_{(\alpha, i)}^{-1} \right) r_{y_{(\alpha, i)}} \left(\chi_{K_{(\alpha, i)}} \right) h_i
\]

is bounded in \(L_\infty (\mathcal{G}, w^{-1}) \), whence \((w^{-1}H_{(\alpha, i)}) \) is a bounded family in \(L_\infty (\mathcal{G}) \). By (1), the projections \(r_{y_{(\alpha, i)}} \chi_{K_{(\alpha, i)}} = \chi_{K_{(\alpha, i)}y_{(\alpha, i)}^{-1}} \) are pairwise orthogonal, so that

\[
H := \sum_{\alpha \in I} \sum_{i \in I} w^{-1}H_{(\alpha, i)} \quad (w^* \text{- limits})
\]

defines a function in \(L_\infty (\mathcal{G}) \). Hence, we have

\[
h := \sum_{\alpha \in I} \sum_{i \in I} H_{(\alpha, i)} \in L_\infty (\mathcal{G}, w^{-1}).
\]

Using (1), we obtain for all \((\alpha, i), (\beta, j), (\gamma, k) \in \widetilde{I}\), where \((\gamma, k) \preceq (\beta, j)\):

\[
\chi_{K_{(\gamma, k)}} r_{y_{(\beta, j)}}^{-1} r_{y_{(\alpha, i)}} \left(\chi_{K_{(\alpha, i)}} \right) h_i = \chi_{K_{(\gamma, k)}} \chi_{K_{(\beta, j)}} r_{y_{(\beta, j)}}^{-1} r_{y_{(\alpha, i)}} \left(\chi_{K_{(\alpha, i)}} \right) h_i
\]

\[
= \chi_{K_{(\gamma, k)}} \left[r_{y_{(\beta, j)}}^{-1} \left(r_{y_{(\beta, j)}} \chi_{K_{(\beta, j)}} \right) r_{y_{(\alpha, i)}} \left(\chi_{K_{(\alpha, i)}} \right) h_i \right]
\]

\[
= \delta_{(\alpha, i), (\beta, j)} \chi_{K_{(\gamma, k)}} h_j.
\]

Taking into account (2), we deduce that for all \(j \in I \) and \((\gamma, k) \in \widetilde{I}\):

\[
\chi_{K_{(\gamma, k)}} (\psi_j \circ h) = w^* - \lim_{\beta \to \infty} \sum_{\alpha \in I} \sum_{i \in I} w \left(y_{(\alpha, i)}^{-1} \right) w \left(y_{(\beta, j)}^{-1} \right)^{-1} \chi_{K_{(\gamma, k)}} r_{y_{(\beta, j)}}^{-1} r_{y_{(\alpha, i)}} \left(\chi_{K_{(\alpha, i)}} \right) h_i
\]

\[
= \chi_{K_{(\gamma, k)}} h_j,
\]

whence the desired factorization formula follows.

\[\square\]

3 Strong Arens irregularity of \(L_1 (\mathcal{G}, w) \)

We now come to the proof of Theorem 1.2. – To establish the nontrivial inclusion, let \(m \in Z_t (L_1 (\mathcal{G}, w)^{**}) \). The group \(\mathcal{G} \) being noncompact, we infer from Proposition 2.1 that \(L_1 (\mathcal{G}, w) \) has Mazur’s property of level \(\mathfrak{p} (\mathcal{G}) \). So in order to prove that \(m \in L_1 (\mathcal{G}, w) \), let \((h_\alpha)_{\alpha \in I} \subseteq L_\infty (\mathcal{G}, w^{-1}) \) be a bounded net converging \(w^* \) to 0, where \(|I| = \mathfrak{p} (\mathcal{G}) \). Thanks to Theorem 2.2, we have the factorization

\[
h_\alpha = \psi_\alpha \circ h = \tilde{\psi}_\alpha \circ h \quad (\alpha \in I)
\]
with \(\psi_\alpha \in \delta_\mathcal{G} \subseteq \text{Ball}(\mathcal{LUC}(\mathcal{G}, w^{-1})^*) \) and \(h \in L_\infty(\mathcal{G}, w^{-1}) \). Here, \(\tilde{\psi}_\alpha \) denotes some arbitrarily chosen Hahn-Banach extension of \(\psi_\alpha \) to \(L_\infty(\mathcal{G}, w^{-1})^* \). We have to show that \(a_\alpha := \langle m, h_\alpha \rangle \xrightarrow{\alpha} 0 \).

Due to the boundedness of \((h_\alpha)_\alpha \), it suffices to prove that every convergent subnet of \((a_\alpha)_\alpha \) tends to 0. Let \((\langle m, h_{\alpha, \beta} \rangle)_\beta \) be such a convergent subnet. Furthermore, let

\[
E := w^* - \lim_{\gamma} \tilde{\psi}_{\alpha, \beta, \gamma} \in \text{Ball} \left(L_\infty(\mathcal{G}, w^{-1})^* \right)
\]

be a \(w^* \)-cluster point of the net \(\left(\tilde{\psi}_{\alpha, \beta} \right)_\beta \subseteq \text{Ball} \left(L_\infty(\mathcal{G}, w^{-1})^* \right) \).

We first note that \(E \odot h = 0 \), since for arbitrary \(g \in L_1(\mathcal{G}, w) \) we obtain:

\[
\langle E \odot h, g \rangle = \langle E, h \odot g \rangle = \lim_{\gamma} \langle \psi_{\alpha, \beta, \gamma}, h \odot g \rangle = \lim_{\gamma} \langle h_{\alpha, \beta, \gamma}, g \rangle = 0.
\]

Now we conclude, using the fact that \(m \in Z_t(L_1(\mathcal{G}, w)^{**}) \):

\[
\lim_{\beta} \langle m, h_{\alpha, \beta} \rangle = \lim_{\gamma} \langle m, h_{\alpha, \beta, \gamma} \rangle = \lim_{\gamma} \langle m, \tilde{\psi}_{\alpha, \beta, \gamma} \odot h \rangle = \lim_{\gamma} \langle m \circ \tilde{\psi}_{\alpha, \beta, \gamma}, h \rangle = \langle m \circ E, h \rangle = \langle m, E \circ h \rangle = 0,
\]

which yields the desired convergence.

References

Author’s address:
Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
E-mail: mneufang@math.ualberta.ca