
Math. Z. (2007) 255:669–690
DOI 10.1007/s00209-006-0039-6 Mathematische Zeitschrift

Harmonic operators: the dual perspective

Matthias Neufang · Volker Runde

Received: 16 August 2005 / Accepted: 9 May 2006 /
Published online: 1 December 2006
© Springer-Verlag 2006

Abstract The study of harmonic functions on a locally compact group G has recently
been transferred to a “non-commutative” setting in two different directions: Chu and
Lau replaced the algebra L∞(G) by the group von Neumann algebra VN(G) and the
convolution action of a probability measure μ on L∞(G) by the canonical action of
a positive definite function σ on VN(G); on the other hand, Jaworski and the first
author replaced L∞(G) by B(L2(G)) to which the convolution action by μ can be
extended in a natural way. We establish a link between both approaches. The action
of σ on VN(G) can be extended to B(L2(G)). We study the corresponding space H̃σ

of “σ -harmonic operators”, i.e., fixed points in B(L2(G)) under the action of σ . We
show, under mild conditions on either σ or G, that H̃σ is in fact a von Neumann
subalgebra of B(L2(G)). Our investigation of H̃σ relies, in particular, on a notion of
support for an arbitrary operator in B(L2(G)) that extends Eymard’s definition for
elements of VN(G). Finally, we present an approach to H̃σ via ideals in T (L2(G)),
where T (L2(G)) denotes the trace class operators on L2(G), but equipped with a
product different from composition, as it was pioneered for harmonic functions by
Willis.
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0 Introduction

Let G be a locally compact group, and let μ be a probability measure on G whose
support generates G. A function φ ∈ L∞(G) is called μ-harmonic if μ ∗ φ = φ. Har-
monic functions play a crucial rôle for the investigation of random walks on locally
compact groups and are extensively studied (see [1,9], for example). The collection of
all μ-harmonic functions is denoted by Hμ; it is easily seen to be a w∗-closed subspace
of L∞(G), but is a subalgebra only if it consists of the constants alone. Nevertheless,
Hμ can be equipped with a product – different, of course, from the one in L∞(G) –
turning it into an abelian von Neumann algebra ([1]).

Recently, the notion of harmonicity has been “quantized” in two, seemingly entirely
different directions.

One such quantization was introduced and studied by Chu and Lau in [2]. Their
approach can be considered dual to the classical concept of a harmonic function. In [6],
Eymard introduced the so-called Fourier algebra A(G) and Fourier–Stieltjes algebra
B(G) of G. If G is abelian with dual group Ĝ, the Fourier and Fourier–Stieltjes trans-
forms, respectively, yield isometric isomorphisms A(G) ∼= L1(Ĝ) and B(G) ∼= M(Ĝ).
Instead of looking at harmonicity with respect to a probability measure, Chu and
Lau consider harmonicity of functionals on A(G), i.e., of elements of the group von
Neumann algebra VN(G), with respect to a positive definite function σ ∈ B(G): an
operator T ∈ VN(G) is said to be σ -harmonic if σ · T = T, where · is the canonical
module action of B(G) on VN(G). The collection of all σ -harmonic functionals is
denoted by Hσ . Even though, this new theory seems to parallel the classical theory of
harmonic functions on the surface, it is, in fact, strikingly different. For instance, Hσ

is always a von Neumann subalgebra of VN(G) ([2, Remark 3.2.11]).
A completely different type of quantization was recently carried out by W. Jawor-

ski and the first author ([15]). Starting point is the the result by Ghahramani [10]
that there is a natural isometric representation θ of the measure algebra M(G) on
B(L2(G)), such that for μ ∈ M(G) and φ ∈ L∞(G) – viewed as a multiplication oper-
ator on L2(G) – we have θ(μ)φ = μ∗φ. Hence, the authors of [15] define an operator
T ∈ B(L2(G)) to be μ-harmonic for a probability measure μ if θ(μ)(T) = T. The
collection of all μ-harmonic operators is denoted by H̃μ. Like Hμ, the space H̃μ is a
von Neumann algebra, but with a product usually different from the one in B(L2(G));
in fact, H̃μ can be described as the crossed product of Hμ with G, where the action of
G on Hμ is given by left translation ([15, Proposition 6.3]).

In the present paper, we extend Chu’s and Lau’s notion of σ -harmonicity from
VN(G) to B(L2(G)) in a way that parallels the extension of μ-harmonicity from
L∞(G) to B(L2(G)) in [15].

As the predual space of the operator algebra VN(G), the Fourier algebra carries
a canonical operator space structure. (For the theory of operator spaces, we refer
to [4].) By Mcb(A(G)), we denote the completely bounded multipliers of A(G), i.e.,
those functions on G that induce completely bounded multiplication operators on
A(G). Obviously, Mcb(A(G)) is a commutative Banach algebra, and it contains B(G)
(with equality if and only if G is amenable). In [22], Neufang et al. constructed a
representation θ̂ of Mcb(A(G)) on B(L2(G)) which displays a perfect duality with
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Ghahramani’s representation of M(G) (for details, see [22]); in particular, it extends
the action of B(G) on VN(G) to B(L2(G)). For σ ∈ Mcb(A(G)), it is then natural to
define T ∈ B(L2(G)) to be σ -harmonic if θ̂ (σ )(T) = T. We denote the collection of
all σ -harmonic operators by H̃σ .

The aim of this paper is to explore the connections between this setting and the
two quantizations from [2] and [15]. For instance, one of our main results is that –
under very mild hypotheses which are always satisfied if G is amenable or the free
group in two generators – H̃σ is a von Neumann subalgebra of B(L2(G)), namely the
von Neumann subalgebra of B(L2(G)) generated by Hσ and L∞(G).

The paper is organized as follows.
First, we fix our notation and terminology and review a few basic facts about har-

monic functions (see [15]) and harmonic functionals in VN(G) (as introduced and
studied in [2]). We also recall results from [22] on the representation of Mcb(A(G))
on B(L2(G)).

Section 2 gives a characterization of adaptedness in terms of the Fourier–Stieltjes
transform (in the framework of locally compact abelian groups). This motivates our
definition of the dual notion of adaptedness for positive definite functions.

In Sect. 3, we introduce the support of an arbitrary (bounded linear) operator on
L2(G) such that it generalizes Eymard’s corresponding notion for elements of VN(G).
In order to prepare the ground for our main results, we investigate the properties of
our notion of support in detail.

Those main results are contained in Sect. 4. Using the representation of Mcb(A(G))
from [22], we naturally extend the notion of a σ -harmonic functional in VN(G) ([2])
to the one of a σ -harmonic operator in B(L2(G)), where σ is a positive definite func-
tion on G. Assuming either a very mild condition on G – the approximation property
([13]) – or that σ belongs to A(G), we show that the space of σ -harmonic operators
H̃σ is always a von Neumann subalgebra of B(L2(G)) and, in fact, precisely the von
Neumann algebra generated by L∞(G) and the algebra Hσ of σ -harmonic functionals
in VN(G). This may be viewed as a result “dual” to the corresponding characteriza-
tion (see [15]) of the von Neumann algebra of μ-harmonic operators in B(L2(G)) as
a crossed product over the algebra of μ-harmonic functions in L∞(G), where μ is a
probability measure on G. Our notion of support for an arbitrary operator on L2(G)
allows for an alternative characterization of H̃σ , at least if G has the approximation
property, namely as the operators in B(L2(G))with support contained in the subgroup
Gσ = σ−1({1}) of G.

Finally, in Sect. 5, we present an approach to harmonic operators in B(L2(G)) via
ideals in the predual T (L2(G)) in the spirit of [31] (see also [15, Sect. 3]). This makes
it necessary to endow the space T (L2(G)) with a product very different from the
composition of operators; this product arises naturally when one regards B(L2(G)) as
a Hopf–von Neumann algebra, with a co-multiplication naturally extending the one
of VN(G) (see [22,25,15]).

1 Preliminaries

Throughout this section, let G denote a locally compact group equipped with left Haar
measure. We follow standard notation and terminology of abstract harmonic analysis
as, e.g., in [12]. For p ∈ [1, ∞], we denote the corresponding Lp-space with respect to
left Haar measure on G by Lp(G). By M(G), we denote the algebra of all complex,
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regular Borel measures; M1(G) stands for the probability measures in M(G). We note
that L∞(G) is a von Neumann algebra acting naturally on L2(G) as multiplication
operators: for φ ∈ L∞(G), let Mφ ∈ B(L2(G)) be given by (Mφξ)(x) = φ(x)ξ(x) for
ξ ∈ L2(G) and x ∈ G. (For the sake of notational simplicity, we shall sometimes write
φ and Mφ interchangeably.)

The Banach algebra M(G) acts on Lp(G) for p ∈ [1, ∞] via convolution from the
left. For μ ∈ M(G), we define φ ∈ L∞(G) as μ-harmonic if μ ∗ φ = φ and set

Hμ := {φ ∈ L∞(G) : φ is μ-harmonic}.
(For the motivation for the name “μ-harmonic function”, see the introduction of [2].)
Usually, μ-harmonic functions are considered only for μ ∈ M1(G). To avoid patholo-
gies, we shall assumeμ to be adapted, i.e., 〈suppμ〉, the closed subgroup of G generated
by the support of μ, is all of G. For abelian G and adapted μ ∈ M1(G), the classical
Choquet–Deny theorem asserts that Hμ consists only of the constant functions. For
a general locally compact group G, a measure μ ∈ M1(G) such that Hμ

∼= C exists
if and only if G is amenable and σ -compact ([2, Proposition 2.1.3]). Even though Hμ

is not a von Neumann subalgebra of L∞(G), except if Hμ
∼= C, there is a natural

product on Hμ turning it into an abelian von Neumann algebra in its own right: given
f , g ∈ Hμ, one can show that the limit

w∗- lim
n

∫

G

ρ(x)(fg)dμ∗n(x)

exists in L∞(G) and is an explicit formula for the multiplication in Hμ (here, μ∗n

stands for the n-th convolution power of μ, and ρ(x) denotes right translation by x,
i.e., (ρ(x)φ)(y) := φ(yx) for φ : G → C and x, y ∈ G). For the classical theory of
random walks and harmonic functions, see [1,23,26], for example.

For any φ : G → C and x ∈ G, we define λ(x)φ : G → C by letting (λ(x)φ)(y) :=
φ(x−1y) for x ∈ G. For fixed x ∈ G, the map L2(G) 	 ξ 
→ λ(x)ξ is a unitary operator
on L2(G), and

λ : G → B(L2(G)), x 
→ λ(x)

is a unitary representation of G on L2(G), the left regular representation of G. The
group von Neumann algebra VN(G) of G is defined as VN(G) := λ(G)′′. The Fourier
algebra A(G) of G – introduced by Eymard in [6] – is the (unique) predual of VN(G).

As any operator algebra, VN(G) is a concrete operator space. (For the theory of
operator spaces, our reference is [4].) Since the category of operator spaces allows
for a natural duality theory, the dual space VN(G)∗ – and thus its subspace A(G) – is
an operator space in a canonical manner. In particular, we may speak of completely
bounded maps on A(G). (Following [4], we denote the completely bounded maps
on an operator space E by CB(E).) A multiplier of A(G) is a function σ on G such
that σA(G) ⊂ A(G); a multiplier is completely bounded if the corresponding multi-
plication operator is completely bounded. The collection of all completely bounded
multipliers is denoted by Mcb(A(G)). It naturally inherits an operator space structure
from CB(A(G)) which turns it into a commutative, completely contractive Banach
algebra, i.e., a Banach algebra which is an operator space such that multiplication is
completely contractive. An important subalgebra of Mcb(A(G)) is the Fourier–Stielt-
jes algebra B(G) of G (introduced also in [6]). It consists of all functions of the form
G 	 x 
→ 〈π(x)ξ , η〉, where π is a (always strongly continuous) unitary representation
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of G on a Hilbert space H and ξ , η ∈ H. It can be identified with the dual space of
the full group C∗-algebra C∗(G), i.e., of the enveloping C∗-algebra of L1(G), and
thus also has a canonical operator space structure. It contains A(G) as a closed ideal
and thus canonically embeds into Mcb(A(G)); this embedding is always completely
contractive, but is an isometric isomorphism if and only if G is amenable. For more
details and references to the original literature, see [27].

It is immediate from the definition of Mcb(A(G)) that A(G) is a completely con-
tractive Banach Mcb(A(G))-module through pointwise multiplication. Consequently,
VN(G) carries a dual Mcb(A(G))-module structure, namely

〈φ, σ · T〉 := 〈φσ , T〉 (σ ∈ Mcb(A(G)), T ∈ VN(G), φ ∈ A(G)).

Slightly generalizing the definition from [2], we say that, for σ ∈ Mcb(A(G)), a von
Neumann algebra element T ∈ V(G), is σ -harmonic if σ · T = T, and define

Hσ := {T ∈ VN(G) : T is σ -harmonic}.
(Chu and Lau consider Hσ only for σ ∈ P1(G), which denotes the positive definite
functions of norm one in B(G).) For abelian G with dual group Ĝ, the Fourier and
Fourier–Stieltjes transforms, respectively, yield isometric isomorphism A(G) ∼= L1(Ĝ)
and B(G) ∼= M(Ĝ), and conjugation with the Plancherel transform yields that

Hμ
∼= Hμ̂ (μ ∈ M(G)). (1)

Despite the formal analogies with harmonic functions, the harmonic functionals
according to Chu and Lau display a strikingly different behavior: for σ ∈ P1(G),
the set

Gσ := {x ∈ G : σ(x) = 1}
is a closed subgroup of G such that Hσ = λ(Gσ )

′′ ([2, Proposition 3.2.10]); in particu-
lar, Hσ is a von Neumann subalgebra of B(L2(G)).

Finally, we require a construction from [22]: there Neufang et al. define complete
isometry θ̂ : Mcb(A(G)) → CB(B(L2(G))) with the following properties:

• θ̂ is a unital, w∗-w∗-continuous algebra homomorphism
• θ̂ (Mcb(A(G))) consists precisely of those normal operators in CB(B(L2(G)))which

are L∞(G)-bimodule homomorphisms and leave VN(G) invariant
• for φ ∈ Mcb(A(G)) and T ∈ VN(G), we have θ̂ (φ)(T) = φ · T, i.e., the action of

Mcb(A(G)) on B(L2(G)) induced by θ̂ extends the canonical one of Mcb(A(G))
on VN(G).

Under many aspects, θ̂ can be viewed as dual to Ghahramani’s representation of M(G)
on B(L2(G)) (for details, see Sect. 4, and [22]).

For later use, we indicate how θ̂ is defined. Given φ ∈ Mcb(A(G)), there are a
Hilbert space H and continuous functions ξ , η : G → H such that

φ(x−1y) = 〈ξ(y), η(x)〉 (x, y ∈ G)

(see [16] for an accessible proof). Let (ei)i∈I be an orthonormal basis, and define

φi(x) := 〈ei, η(x)〉 and ψi(x) := 〈ξ(x), ei〉 (i ∈ I, x ∈ G).
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Then we have

θ̂ (φ)(T) :=
∑
i∈I

Mφi(x)TMψi(x).

For more details, see [22].

2 A dual characterization of adapted probability measures

Let G be a locally compact group, and let μ ∈ M1(G). It is fair to say that almost
nothing can be said about Hμ unless μ is adapted. In order to have a dual notion of
adaptedness, i.e., in the context of harmonic functionals as in [2], we first characterize
the adapted probability measures on a locally compact abelian group in terms of their
Fourier–Stieltjes transforms.

Proposition 2.1 Let G be a locally compact abelian group. Then the following are
equivalent for μ ∈ M1(G):

(i) μ is adapted;
(ii) if γ ∈ Ĝ is such that γ |suppμ ≡ 1, then γ = 1;

(iii) {γ ∈ Ĝ : μ̂(γ ) = 1} = {1}.
Proof (i) ⇐⇒ (ii) and (iii) �⇒ (i) are straightforward.

(ii) �⇒ (iii): Let γ ∈ Ĝ be such that

μ̂(γ ) =
∫

G

γ (x)dμ(x) = 1,

so that

1 = μ̂(γ ) =
∫

G

γ (x) dμ(x) =
∫

G

γ (x)dμ(x)

and thus
∫

G

Re γ (x)dμ(x) = 1
2

⎛
⎝

∫

G

γ (x) dμ(x)+
∫

G

γ (x)dμ(x)

⎞
⎠ = 1.

Since γ (G) ⊂ T, we have (Re γ )(G) ⊂ [−1, 1], so that

0 =
∫

G

1 dμ(x)−
∫

G

Re γ (x)dμ(x) =
∫

suppμ

(1 − Re γ (x))︸ ︷︷ ︸
≥0

dμ(x).

By the continuity of γ , this means that Re γ |suppμ ≡ 1, thus γ |suppμ ≡ 1, and therefore
γ = 1 by (ii).

Using (1) and [2, Proposition 3.2.10], we obtain a dual approach to the Choquet–
Deny theorem:

Corollary 2.2 Let G be a locally compact abelian group, and letμ ∈ M1(G) be adapted.
Then Hμ

∼= C holds.

In view of Proposition 2.1, we define for general locally compact groups:
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Definition 2.3 Let G be a locally compact group. Then we call σ ∈ P1(G) adapted if
Gσ = {e}.
Remark In terms of Definition 2.3, Proposition 2.1 can be reformulated as follows: a
probability measure on a locally compact abelian group is adapted if and only if its
Fourier–Stieltjes transform is adapted.

It is well known that there is an adapted probability measure on a locally compact
group G if and only if G is σ -compact. Since a locally compact abelian group is σ -com-
pact if and only if its dual is first countable, it is immediate that there is an adapted
positive definite function on such a group if and only if it is first countable.

The following proposition extends this to general locally compact groups:

Proposition 2.4 The following are equivalent for a locally compact group:

(i) there is an adapted σ ∈ P1(G);
(ii) G is first countable;

(iii) there is an adapted σ ∈ A(G) ∩ P1(G).

Proof (i) �⇒ (ii): Let σ ∈ P1(G) be adapted, fix a compact neighborhood U of e, and
define, for n ∈ N,

Un :=
{

x ∈ U : |σ(x)− 1| < 1
n

}
.

From the continuity of σ , it is clear that {Un : n ∈ N} consists of neighborhoods of e.
Let V be a neighborhood of e, and suppose without loss of generality that V is open
and contained in U. Since σ is continuous and adapted, and since U\V is compact,
we have that

ε0 := inf{|σ(x)− 1| : x ∈ U\V} > 0.

Choose n0 ∈ N so large that 1
n0

≤ε0. It follows that Un0 ⊂V. Consequently, {Un: n ∈ N}
is a base of neighborhoods of e.

Through translation, we see that every point of G has a countable base of neigh-
borhoods.

(ii) �⇒ (iii): Let {Un : n ∈ N} be a base of neighborhoods of e, and suppose without
loss of generality that Un+1 ⊂ Un for n ∈ N. For each n ∈ N, there is σn ∈ A(G)∩P1(G)
with supp σn ⊂ Un. Define

σ :=
∞∑

n=1

1
2n σn

so that, clearly, σ ∈ A(G) ∩ P1(G). Let x ∈ G\{e}. Since {Un : n ∈ N} is a base of
neighborhoods of e, there is n0 ∈ N such that x /∈ Un0 and thus x /∈ Un for n ≥ n0. It
follows that

|σ(x)| ≤
n0−1∑
n=1

1
2n |σn(x)| ≤

n0−1∑
n=1

1
2n < 1.

This proves (iii).
Finally, (iii) �⇒ (i) is trivial.
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3 The support of an operator on L2(G)

In [6], Eymard introduced the notion of support for elements of a group von Neumann
algebra: if G is a locally compact group and T ∈ VN(G), then the support supp T of T
is defined to consist of those x ∈ G such that φ(x) = 0 for all φ ∈ A(G) with φ · T = 0.

Using θ̂ , this notion can naturally be extended to arbitrary operators on L2(G):

Definition 3.1 Let G be a locally compact group, and let T ∈ B(L2(G)). Then the
support supp T of T is defined to be

supp T := {x ∈ G : φ(x) = 0 for all φ ∈ A(G) with θ̂ (φ)(T) = 0}.
Remarks

1. For operators in VN(G), this notion of support coincides with the one from [6].
2. The support of an operator is obviously a closed subset of G.

We first prove a few general assertions on the support of an operator.

Proposition 3.2 Let G be a locally compact group. Then, for φ ∈ A(G) and T ∈
B(L2(G)), we have

supp θ̂ (φ)(T) ⊆ suppφ ∩ supp T.

Proof Fix φ ∈ A(G) and T ∈ B(L2(G)).
Since θ̂ is multiplicative and A(G) is commutative, it is straightforward that any

ψ ∈ A(G) with θ̂ (ψ)(T) = 0 satisfies θ̂ (ψ)(θ̂(φ)(T)) = 0 as well. From Definition 3.2,
it is then immediate that supp θ̂ (φ)(T) ⊂ supp T.

To see that supp θ̂ (φ)(T) ⊂ suppφ as well, let x ∈ G\suppφ, and assume towards a
contradiction that x ∈ supp θ̂ (φ)(T). Since x /∈ suppφ, there is a neighborhood V of x
such that φ|V ≡ 0. Take ψ ∈ A(G) such that suppψ ⊆ V and ψ(x) = 1. Then ψφ ≡ 0
holds, so that θ̂ (ψ)(θ̂(φ)(T)) = θ̂ (ψφ)(T) = 0. Since x ∈ supp θ̂ (φ)(T), this implies
that ψ(x) = 0, which is a contradiction.

The following is an alternative description of the support of an operator:

Proposition 3.3 Let G be a locally compact group, and let T ∈ B(L2(G)). Then

{φ ∈ A(G) : θ̂ (φ)(T) = 0} (2)

is an ideal of A(G) whose hull equals supp T.

Proof Let the ideal (2) be denoted by I. Then we have for x ∈ G that

x /∈ supp T ⇐⇒ there is φ ∈ A(G) such that φ(x) �= 0 and θ̂ (φ)(T) = 0

⇐⇒ there is φ ∈ I with φ(x) �= 0

⇐⇒ x /∈ hull(I).

This completes the proof.

Since A(G) is Tauberian for any locally compact group G, the following is clear:

Corollary 3.4 Let G be a locally compact group, and let T ∈ B(L2(G)) be such that
supp T = ∅. Then θ̂ (φ)(T) = 0 holds for all φ ∈ A(G).
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Recall [13] that a locally compact group G is said to have the approximation prop-
erty if the constant function 1 lies in the w∗-closure of A(G) in Mcb(A(G)). Clearly,
every amenable, locally compact group has the approximation property (by Leptin’s
theorem), but so does also every weakly amenable group in the sense of [3], such
as F2, the free group in two generators. Nevertheless, the approximation property is
weaker than weak amenability: by [13, Corollary 1.17 and Remark 3.10], the group
Z

2
� SL(2, Z) has the approximation property, but is not weakly amenable.

Proposition 3.5 Let G be a locally compact group with the approximation property.
Then the following are equivalent for T ∈ B(L2(G)):

(i) supp T = ∅;
(ii) T = 0.

Proof Of course, only (i) �⇒ (ii) needs proof.
Let (eα)α be a net in A(G) that converges to 1 in the w∗-topology of Mcb(A(G)).

Since θ̂ is unital and w∗-w∗-continuous ([22, Theorem 4.5]), it follows that idB(L2(G)) =
w∗- limα θ̂(eα) and thus, by Corollary 3.4,

T = θ̂ (1)(T) = w∗− lim
α
θ̂(eα)(T) = 0.

This proves (ii).

Remark It is well possible that Proposition 3.5 is true for every locally compact group.

Let G be a locally compact group, and let F ⊂ G be closed. As is customary, we
write

I(F) := {φ ∈ A(G) : φ|F ≡ 0}.
We also define

BF(L2(G)) := {T ∈ B(L2(G)) : supp T ⊂ F}.
Lemma 3.6 Let G be a locally compact group, and let F ⊂ G be a set of synthesis for
A(G). Then θ̂ (φ)(T) = 0 holds for all φ ∈ I(F) and T ∈ BF(L2(G)).

Proof Let T ∈ BF(L2(G)), and set

I := {φ ∈ A(G) : θ̂ (φ)(T) = 0}.
By Proposition 3.3, we have

hull(I) = supp T ⊂ F.

Since F is a set of synthesis, this means that I(F) ⊂ I.

Since the multiplication of Mcb(A(G)) is separately w∗-continuous (see [8], for
instance), we obtain immediately (from the w∗-w∗-continuity of θ̂):

Corollary 3.7 Let G be a locally compact group with the approximation property,
let F ⊂ G be a set of synthesis, and let T ∈ BF(L2(G)). Then θ̂ (φ)(T) = 0 for all
φ ∈ Mcb(A(G)) with φ|F ≡ 0.
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Proof Let φ ∈ Mcb(A(G)) be such that φ|F ≡ 0, and let (eα)α be a net in A(G)
converging to 1 in the w∗-topology of Mcb(A(G)). Then (eαφ)α is a net in I(F) that is
w∗-convergent to φ. Lemma 3.6 and the w∗-w∗-continuity of θ̂ then yield the claim.

Let G be a locally compact group, let F ⊂ G be a set of synthesis, and let T ∈
BF(L2(G)). Then it is clear from Lemma 3.6 that θ̂ (φ)(T) for φ ∈ A(G) depends only
on φ|F (if G has the approximation property, this is even true for all φ ∈ Mcb(A(G))
by Corollary 3.7).

Proposition 3.8 Let G be a locally compact group, let H be a closed subgroup of G,
and let T ∈ BH(L2(G)). Then:

(i) if there is σ ∈ A(G) with σ |H = 1 and θ̂ (σ )(T) = T, then θ̂ (φ)(T) = φ(e)T for all
φ ∈ A(G) which are constant on H;

(ii) if G has the approximation property, then θ̂ (φ)(T) = φ(e)T holds for all φ ∈
Mcb(A(G)) which are constant on H.

Proof First, recall that H, as a closed subgroup, is a set of synthesis for G. ([30,
Theorem 3]).

Suppose that there is σ ∈ A(G) with σ |H = 1 and θ̂ (σ )(T) = T. Let φ ∈ A(G) be
constant on H. Then φ(e)σ − φ vanishes on H, so that, by Lemma 3.6 we have,

0 = θ̂ (φ(e)σ − φ)(T) = φ(e)θ̂(σ )(T)− θ̂ (φ)(T) = φ(e)T − θ̂ (φ)(T).

This proves (i).
For (ii), just note that, if φ ∈ Mcb(A(G)) is constant on H, then φ(e)− φ vanishes

on H. An application of Corollary 3.7 then yields (ii).

As we already noted, our notion of support coincides with the one from [6] for
operators in VN(G). We now compute the support of multiplication operators:

Example Let G be a locally compact group, and let f ∈ L∞(G). For any φ ∈ A(G),
we have

θ̂ (φ)(Mf ) = Mf θ̂ (φ)(1) = φ(e)Mf , (3)

where the first equality is due to the fact that θ̂ (φ) is an L∞(G)-bimodule homomor-
phism. If x ∈ G\{e}, we can find φ ∈ A(G)with φ(x) �= 0 = φ(e), so that θ̂ (φ)(Mf ) = 0
by (3). Hence, x cannot lie in supp Mf . Since x ∈ G\{e} was arbitrary, this means that
Mf ∈ Be(L2(G)). Moreover, it is also clear from (3) that e ∈ supp Mf whenever f �= 0,
i.e., supp Mf = {e}.

4 Harmonic operators: the dual picture

Let G be a locally compact group, and let θ : M(G) → CB(B(L2(G))) be the com-
pletely isometric representation from [10] (see also [19,20], and – for abelian G – [28])
given by

〈θ(μ)T,ω〉 :=
∫

G

〈ρ(t)Tρ(t−1),ω〉 dμ(t) (μ∈M(G), T ∈B(L2(G)), ω∈T (L2(G))).

For μ ∈ M1(G), Jaworski and Neufang define T ∈ B(L2(G)) to be μ-harmonic if
θ(μ)(T) = T ([15]). Since
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θ(μ)Mφ = Mμ∗φ (φ ∈ L∞(G)),

this generalizes the notion of a μ-harmonic function. More precisely, denoting the
space of μ-harmonic functions and operators by Hμ and H̃μ, respectively, this shows
that Hμ ⊆ H̃μ. Moreover, H̃μ carries a natural multiplication extending the one
of Hμ – and turning H̃μ into a non-commutative von Neumann algebra [15]: given
S, T ∈ H̃μ, their product in H̃μ is explicitly given by

w∗− lim
n

∫

G

ρ(x)(ST)ρ(x−1) μ∗n(x).

One of the main results obtained in [15] – affirmatively answering a question by Izumi
([14]) – consists of a precise structural description of H̃μ: provided that G is second
countable, H̃μ is exactly the crossed product of Hμ with G acting by left translation
([15, Theorem 6.3]). In particular, it shows that the algebra VN(G), as a subalge-
bra of H̃μ, plays the same rôle as the scalars for the classical algebra of harmonic
functions Hμ.

Using θ̂ : Mcb(A(G)) → CB(B(L2(G))) from [22], we can extend the notion of a
σ -harmonic functional on A(G) from [2] to that of a σ -harmonic operator in a way
analogous to the passage from Hμ to H̃μ via θ :

Definition 4.1 Let G be a locally compact group, and let σ ∈ Mcb(A(G)). Then an
operator T ∈ B(L2(G)) is called σ -harmonic if θ̂ (σ )(T) = T. We denote the collection
of all σ -harmonic operators on L2(G) by H̃σ .

Remarks

1. Obviously, H̃σ is a w∗-closed subspace of B(L2(G)).
2. Trivially, H̃σ contains Hσ , and since,

θ̂ (φ)(Mf ) = Mf θ̂ (φ)(1) = Mf f ∈ L∞(G),

it contains L∞(G) as well.

As proven in [2], Hσ is a von Neumann subalgebra of VN(G) for σ ∈ P1(G), which
stands in marked contrast to Hμ with μ ∈ M1(G). In the remainder of this section, we
shall see that a similar statement is true for H̃σ : under some, fairly mild, additional
hypotheses, it is a von Neumann subalgebra of B(L2(G)); in fact, we shall prove that

H̃σ = (Hσ ∪ L∞(G))′′. (4)

Remark The description (4) may be viewed as a dual version of the central structural
result [15, Theorem 6.3]; in our setting, it is the algebra L∞(G) which plays the rôle
of the scalars. Noting that L∞(G) and VN(G) are Kac algebras dual to each other
(see [5]), we are inclined to believe that one may find one single structure result that
unifies those descriptions of H̃σ and H̃μ in the general framework of Kac algebras
(or, even more generally, locally compact quantum groups).

We proceed through a series of lemmas and propositions.

Proposition 4.2 Let G be a locally compact group, and let σ ∈ P1(G). Then

(Hσ ∪ L∞(G))′′ ⊂ H̃σ

holds.
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Proof By von Neumann’s double commutant theorem, (Hσ ∪ L∞(G))′′ is the von
Neumann subalgebra of B(L2(G)) generated by Hσ and L∞(G). Since H̃σ is a w∗-
closed subspace of B(L2(G)), it is sufficient to show that finite products of operators
from Hσ ∪ L∞(G) belong to H̃σ . Moreover, since Hσ

∼= VN(Gσ ), it is enough to
consider products of the form

n∏
j=1

λ(xj)Mfj , (5)

where x1, . . . , xn ∈ Gσ and f1, . . . , fn ∈ L∞(G). Since

λ(x)Mf = Mλ(x)fλ(x) x ∈ G, f ∈ L∞(G),

a simple induction on the number of factors in (5) shows that (5) is, in fact, of the
form Mfλ(x) with f ∈ L∞(G) and x ∈ Gσ . Since θ̂ (σ ) is an L∞(G)-bimodule homo-
morphism and since θ̂ (σ ) fixes λ(x) if x ∈ Gσ , we have

θ̂ (σ )(Mfλ(x)) = Mf θ̂ (σ )(λ(x)) = Mfλ(x) (f ∈ L∞(G), x ∈ Gσ ).

i.e., Mfλ(x) ∈ H̃σ .
In view of the foregoing remarks, this completes the proof.

While Proposition 4.2 provides an estimate for H̃σ “from below”, we now give one
“from above”.

Extending our previous notation, we set Gσ := {x ∈ G : σ(x) = 1} for any
σ ∈ Mcb(A(G)). Note that Gσ need not be a subgroup of G unless σ ∈ P1(G), but
that it is still a closed subset of G, so that the conclusion of the following proposition
still makes sense.

Proposition 4.3 Let G be a locally compact group, and let σ ∈ Mcb(A(G)). Then we
have H̃σ ⊂ BGσ

(L2(G)).

Proof Let T ∈ H̃σ , and let x ∈ G\Gσ , i.e., σ(x) �= 1. Let φ ∈ A(G) be such that
φ(x) �= 0, so that ψ(x) := φ(x)σ (x)− φ(x) �= 0. On the other hand, we have

θ̂ (ψ)(T)= θ̂ (φσ )(T)−θ̂ (φ)(T)= θ̂ (φ)(θ̂(σ )(T))−θ̂ (φ)(T)= θ̂ (φ)(T)−θ̂ (φ)(T)=0.

This means that x /∈ supp T.

Let G be a locally compact group, and let H be a closed subgroup. We define

L∞(G : H) := {φ ∈ L∞(G) : λ(x)φ = φ for all x ∈ H}.
It is obvious that L∞(G : H) is w∗-closed in L∞(G). Slightly deviating from [7], we
set

B(G : H) := {φ ∈ B(G) : λ(x)φ = φ for all x ∈ H}.
(Note that in [7], right instead of left translates are considered.) We can canonically
embed B(G : H) into L∞(G : H). Also, we set

P1
H(G) := {σ ∈ P1(G) : σ |H ≡ 1}.

As is observed in [17], the functions in P1
H(G) are constant on both left and right

cosets of H and thus are contained in B(G : H). Following [17], we say that G has the
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H-separation property if, for each x ∈ G\H, there is σ ∈ P1
H(G) such that σ(x) �= 1. For

instance, whenever H is open, compact, or neutral, this includes all normal subgroups
as well as all closed subgroups of [SIN]-groups, G has the H-separation property (see
[17]).

Lemma 4.4 Let G be a locally compact group, and let H be a closed subgroup of G
such that G has the H-separation property. Then B(G : H) is w∗-dense in L∞(G : H).

Proof Let M denote the w∗-closure of the linear span of all right translates of all
functions in P1

H(G) in L∞(G). Then M is a von Neumann subalgebra of L∞(G) and
invariant under right translation. Set

L := {x ∈ G : λ(x)φ = φ for all φ ∈ M}.
Then L is a closed subgroup of G containing H, and from [29, Theorem 2] (see also
[18, Lemma 3.2]), we conclude that M = L∞(G : L).

Assume that there is x ∈ L\H. Since G has the H-separation property, there
is σ ∈ P1

H(G) ⊂ L∞(G : L) such that σ(x) �= 1 and thus λ(x−1)σ �= σ . This is a
contradiction, so that H = L.

For any locally compact group G and σ ∈ P1(G), it is clear by definition that G has
the Gσ -separation property. Hence, we obtain

Corollary 4.5 Let G be a locally compact group, and let σ ∈ P1(G). Then B(G : Gσ )

is w∗-dense in L∞(G : Gσ ).

Lemma 4.6 Let G be a locally compact group, let H be a closed subgroup, and let
φ ∈ B(G : H). Then there are a unitary representation π of G on a Hilbert space H as
well as ξ , η ∈ H such that

φ(x) = 〈π(x)ξ , η〉 (x ∈ G)

and π(y)η = η for all y ∈ H.

Proof By definition of B(G), there are a unitary representation π of G on a Hilbert
space H as well as ξ , η0 ∈ H such that

φξ ,η0(x) := 〈π(x)ξ , η0〉 = φ(x) (x ∈ G).

Without loss of generality, suppose that ‖ξ‖ = 1. Set

C := {η ∈ H : ‖η‖ ≤ ‖η0‖ and φξ ,η = φ}.
Then C is a non-empty, convex, weakly compact subset of H. Let η ∈ C and y ∈ H.
Then we have

φξ ,π(y)η(x) = 〈π(x)ξ ,π(y)η〉 = 〈π(y−1x)ξ , η〉
= (λ(y)φ)(x) = φ(x) (x ∈ G),

so that π(y)η ∈ C again. From the Ryll-Nardzewski fixed point theorem ([11, (9.6)
Theorem]), we conclude that there is η ∈ C with π(y)η = η for y ∈ H.

Proposition 4.7 Let G be a locally compact group, let H be a closed subgroup of G, let
T ∈ BH(L2(G)), and suppose that one of the following holds:
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(a) there is σ ∈ A(G) with σ |H = 1 and θ̂ (σ )(T) = T;
(b) G has the approximation property and the H-separation property.

Then T lies in (VN(H) ∪ L∞(G))′′.

For the proof, we first establish some conventions for (possibly infinite) matrices.
The extensive use of matrix calculations may seem like an unnecessary complication
at the first glance, but appears to be unavoidable in view of how θ̂ : Mcb(A(G)) →
CB(B(L2(G)) is defined in [22], namely via the extended Haagerup tensor product of
operator spaces, an object that itself is defined in terms of arbitrarily large matrices.

Given a linear space E and index sets I and J, we denote by MI×J(E) the matrices
[xi,j] i∈I

j∈J

with xi,j ∈ E for (i, j) ∈ I × J. If I = J, we write MJ(E), and if E = C, we simply

use the symbols MI×J and MJ instead of MI×J(C) and MJ(C), respectively. For x ∈ E
and [αi,j] i∈I

j∈J

, we set [αi,j] i∈I

j∈J

⊗ x = [αi,jx] i∈I

j∈J

. We convene to interpret families [xj]j∈J as

row vectors, and write [xj]t
j∈J

for the corresponding column vector. Finally, we denote
by 1J the matrix [δj,k]j,k∈J, and set 0I×J = [αi,j] i∈I

j∈J

with αi,j = 0 for (i, j) ∈ I × J.

Proof If (a) holds, H is necessarily compact, so that in both case (a) and case (b),
G has the H-separation property. By Lemma 4.4, B(G : H) is therefore w∗-dense in
L∞(G : H). We will show that MφT = TMφ for all φ ∈ B(G : H), so that T lies in
L∞(G : H)′. Since, as is easily checked,

(VN(H) ∪ L∞(G))′ = L∞(G : H),

this will prove the proposition.
We adapt part of the proof of [22, Theorem 5.1] to our situation.
Let φ ∈ B(G : H). By Lemma 4.6, there thus are a unitary representation π of G

on some Hilbert space H as well as ξ , η ∈ H such that

φ(x) = 〈π(x)ξ , η〉 (x ∈ G)

and π(y)η = η for y ∈ H. Let

K := {ζ ∈ H : π(y)ζ = ζ for y ∈ H},
so that, in particular, η ∈ K. Let (ei)i∈I be an orthonormal basis for K, and extend it to
an orthonormal basis (ei)i∈J for H (so that, in particular, I ⊂ J). For (i, k) ∈ J × J set

φi,k(x) := 〈π(x)ek, ei〉 and φ̌i,k(x) := φi,k(x
−1) (x ∈ G)

Since ei ∈ K, it follows that φi,k ∈ B(G : H) for all (i, k) ∈ I × J. By the definition of θ̂ ,
we have

θ̂ (φi,k)(T) =
∑
j∈J

Mφi,j TM
φ̌j,k

((i, k) ∈ I × J); (6)

By Proposition 3.8(i) or (ii) – depending on whether (a) or (b) is satisfied – the left
hand side of (6) equals φi,k(e)T for all (i, k) ∈ I × J, so that (6) becomes

φi,k(e)T =
∑
j∈J

Mφi,j TM
φ̌j,k

((i, k) ∈ I × J). (7)
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Interpreting (7) as a matrix identity – with matrices indexed over J × J – we obtain

φi,k(e)T = [φi,j]j∈J (1J ⊗ T)
[
φ̌j,k

]
j∈J

((i, k) ∈ I × J). (8)

We view � := [φi,k]i,k∈J as an element of MJ(Cb(G)) and set �̌ :=
[
φ̌i,k

]
i,k∈J

. Then �̌

also lies in MJ(Cb(G)) and satisfies

��̌ = 1J ⊗ 1 = �̌�. (9)

Furthermore, set � := [φi,k] i∈I

k∈J

∈ MI×J(Cb(G)). Since φi,k(e) = δi,k for (i, k) ∈ I × J,

we obtain from (8) that
(
1I ⊕ 0I×(J\I)

) ⊗ T = [φi,k(e)T] i∈I

k∈J

=
[
[φi,j]j∈J (1J ⊗ T)

[
φ̌j,k

]
j∈J

]
i∈I

k∈J

= � (1J ⊗ T) �̌,

and thus, by (9)

� (1J ⊗ T) = ((
1I ⊕ 0I×(J\I)

) ⊗ T
)
�. (10)

Let [αj]j∈J and [βi]i∈I be in �2(J) and �2(I), respectively, such that ξ = ∑
j∈J
αjej and

η = ∑
i∈I
βiei; it follows that

φ(x) = 〈π(x)ξ , η〉 =
∑
j∈J

i∈I

αj〈π(x)ej, ei〉β̄i =
∑
j∈J

i∈I

αj φi,j(x) β̄i (x ∈ G)

or, in matrix notation,

φ = [
β̄i

]t
i∈I
� [αj]j∈J.

Hence, we obtain eventually:

MφT = [
β̄i

]t
i∈I
� (1J ⊗ T) [αj]j∈J

= [
β̄i

]t
i∈I

((
1I ⊕ 0I×(J\I)

) ⊗ T
)
� [αj]j∈J

= TMφ .

This proves the claim.

We can now prove the main result of this section:

Theorem 4.8 Let G be a locally compact group, and let σ ∈ P1(G). Then the following
hold:

(i) if σ ∈ A(G), then H̃σ = (Hσ ∪ L∞(G))′′;
(ii) if G has the approximation property, then

H̃σ = (Hσ ∪ L∞(G))′′ = BGσ
(L2(G)).

In either case, H̃σ = (Hσ ∪ L∞(G))′′ is a von Neumann subalgebra of B(L2(G)).
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Proof By Propositions 4.2 and 4.3

(Hσ ∪ L∞(G))′′ ⊂ H̃σ ⊂ BGσ
(L2(G))

holds without any additional hypotheses.
In case (i), we conclude from Proposition 4.7 (with condition (a)) that H̃σ ⊂

(Hσ ∪ L∞(G))′′. For case (ii), recall that, as we remarked before Corollary 4.5, G has
the Gσ -separation property. Hence, by Proposition 4.7 (with condition (b)), we even
have BGσ

(L2(G)) ⊂ (Hσ ∪ L∞(G))′′. This proves the theorem.

Remark We believe, but have been unable to prove, that

H̃σ = (Hσ ∪ L∞(G))′′ = BGσ
(L2(G))

holds without any additional hypotheses on σ or G.

For adapted σ , we obtain as a special case:

Corollary 4.9 Let G be a locally compact group, and let σ ∈ P1(G) be adapted. Then
the following hold:

(i) if σ ∈ A(G), then H̃σ = L∞(G);
(ii) if G has the approximation property, then

H̃σ = L∞(G) = Be(L2(G)).

In either case, H̃σ = L∞(G) is a von Neumann subalgebra of B(L2(G)).

5 Harmonic operators through ideals in the predual

An alternative, very fruitful approach to the classical space Hμ of μ-harmonic func-
tions (where μ is a probability measure) has been carried out by Willis [31]. There,
the study of Hμ is transferred to its pre-annihilator

Jμ := {f − f ∗ μ : f ∈ L1(G)}L1(G)

in L1(G), which (obviously) forms a left ideal in the group algebra. In order to
investigate the non-commutative analogue H̃μ of Hμ in a similar fashion, Jaworski
and the first-named author use the “quantized” convolution product in the space
T (L2(G)) = B(L2(G))∗ of trace class operators, as introduced and studied in [19]
and [21] (see also [24] for further results on this product). Indeed, they show that the
pre-annihilator

J̃μ := {ω − θ(μ)∗(ω) : ω ∈ T (L2(G))}T (L
2(G))

of H̃μ in T (L2(G)) forms a left ideal with respect to this convolution ([15, Proposition
3.3]).

We shall first indicate how to equip T (L2(G)) with a product that turns it into a
completely contractive Banach algebra, and may be thought of as a “non-commuta-
tive pointwise product”, in other words, a Fourier algebra type product, instead of a
convolution type product, as described above. Just as the latter, the multiplication we
shall consider here is also very different from the ordinary composition of operators.
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From a Hopf–von Neumann algebraic point of view, both the convolution type and
the Fourier algebra type product on the space T (L2(G)) are constructed in exactly
the same way: the first one is derived from a co-multiplication on B(L2(G)) that
canonically extends the one of L∞(G)whereas the second one is based on a canonical
extension of the co-multiplication of VN(G). In this sense, both products on T (L2(G))
are “dual” to each other.

Let G be a locally compact group. We define a unitary operator W ∈ B(L2(G×G))
by letting

(Wξ)(x, y) := ξ(x, xy) (ξ ∈ L2(G), x, y ∈ G).

Identifying L2(G×G)with L2(G)⊗̃2L2(G) (Hilbert space tensor product), we denote
the flip map on L2(G × G) by σ . Then Ŵ := σW∗σ is a again unitary, and

�̂ : B(L2(G)) → B(L2(G × G)), T 
→ Ŵ(1 ⊗ T)Ŵ∗

is a co-multiplication, i.e., a normal, unital, injective ∗-homomorphism satisfying

(�̂ ⊗ id) ◦ �̂ = (id ⊗ �̂) ◦ �̂.

The pre-adjoint

�̂∗ : T (L2(G))⊗̂T (L2(G)) → T (L2(G)),

where ⊗̂ denotes the projective tensor product of operator spaces, is a complete con-
traction and turns T (L2(G)) into a completely contractive Banach algebra. In order
to tell this product on T (L2(G)) apart from the usual composition of operators, we
denote it by •, so that

〈ω • ρ, T〉 := 〈ω ⊗ ρ, �̂(T)〉 ω, ρ ∈ T (L2(G)), T ∈ B(L2(G)).

Furthermore, the pre-adjoint of the inclusion VN(G) ⊂ B(L2(G)) is an algebra homo-
morphism π : T (L2(G)) → A(G) (and necessarily a complete quotient map), and
B(L2(G)) becomes a completely contractive T (L2(G))-bimodule through

ω · T := (id ⊗ ω)(�̂(T)) and T · ω := (ω ⊗ id)(�̂(T))

(ω ∈ T (L2(G)), T ∈ B(L2(G))).

(These module actions have been studied in [22,25].)
Since Ŵ ∈ VN(G)⊗̄L∞(G), we have

ω · T = (id ⊗ ω)(Ŵ(1 ⊗ T)Ŵ∗) ∈ VN(G) (ω ∈ T (L2(G)), T ∈ B(L2(G))).

Hence, the module action induces a complete contraction Ŝ : T (L2(G))⊗̂B(L2(G)) →
VN(G). In [25], UCQ(G) is defined to be the range of Ŝ in VN(G), equipped with the
quotient operator space structure. The dual space UCQ(G)∗ then naturally becomes
a completely contractive Banach algebra, which contains McbA(G) as a closed subal-
gebra, and the adjoint Ŝ∗ extends the representation θ̂ from Mcb(A(G)) to UCQ(G)∗.
More precisely, if, for n ∈ UCQ(G)∗ and T ∈ B(L2(G)), one defines n�T ∈ B(L2(G))
through

〈n � T,ω〉 := 〈n,ω · T〉 (ω ∈ T (L2(G)))

then, for each n ∈ UCQ(G)∗, the map

B(L2(G)) → B(L2(G)), T 
→ n � T
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is a completely bounded operator on B(L2(G)), which we denote by ˜̂
θ(n). It is easy to

check that ˜̂
θ = Ŝ∗. For more information, see [25] (and [22] for the amenable case).

In the sequel, we shall use the fact that ˜̂
θ and θ̂ coincide on A(G), which follows from

[25] (or [22] if G is amenable). For the reader’s convenience, we include a different
(and short) proof:

Lemma 5.1 Let G be a locally compact group. Then we have

˜̂
θ(φ) = θ̂ (φ) (φ ∈ A(G)).

Proof Let φ ∈ A(G), and note that both ˜̂
θ(φ) and θ̂ (φ) are normal, which follows

easily from the definition (see also [22, Theorem 4.3] for θ̂ (φ)).

Both ˜̂
θ(φ) and θ̂ (φ) are L∞(G)-bimodule maps: we already know this for θ̂ (φ), and

it follows for ˜̂
θ(φ) from [25, Theorem 2.3]. Furthermore, ˜̂

θ(φ) and θ̂ (φ) coincide on all
operators λ(x) with x ∈ G: we know that θ̂ (φ) on VN(G) is nothing but the canonical

action of φ on VN(G), and the same follows for ˜̂
θ(φ) from its definition. Consequently,

we have

˜̂
θ(φ)(Mfλ(x)) = Mf

˜̂
θ(φ)(λ(x))

= Mf θ̂ (φ)(λ(x)) = θ̂ (φ)(Mfλ(x)) (f ∈ L∞(G), x ∈ G).

As in the proof of Proposition 4.2, we conclude that ˜̂
θ(φ) = θ̂ (φ).

Following [2], where the analogous questions for VN(G) and Hσ were considered,
we now study the pre-annihilator of H̃σ in T (L2(G)) for any σ ∈ Mcb(A(G)).

Lemma 5.2 For any locally compact group G, we have

T · ω = θ̂ (π(ω))(T) (ω ∈ T (L2(G)), T ∈ B(L2(G)).

where π : T (L2(G)) → A(G) is the canonical quotient map.

Proof Let ω ∈ T (L2(G)), and let T ∈ B(L2(G)). Then we have

〈ρ, T · ω〉 = 〈ω • ρ, T〉 = 〈ω, ρ · T〉 (ρ ∈ T (L2(G))).

Since ρ · T ∈ VN(G) for ρ ∈ T (L2(G)), the evaluation of ω at ρ · T depends only on
π(ω), so that 〈ρ, T · ω〉 = 〈π(ω), ρ · T〉 for each ρ ∈ T (L2(G)). Hence we obtain

〈ρ, T · ω〉 = 〈π(ω), ρ · T〉
= 〈π(ω), Ŝ(ρ ⊗ T)〉
= 〈ρ ⊗ T, Ŝ∗(π(ω))〉
= 〈ρ ⊗ T, ˜̂

θ(π(ω))〉
= 〈ρ, ˜̂

θ(π(ω))(T)〉
= 〈ρ, θ̂ (π(ω))(T)〉, by Lemma 5.1,

for all ρ ∈ T (L2(G)), as desired.

The following is a consequence of [25, Lemma 2.1], using the fact that
˜̂
θ |Mcb((A(G))= θ̂ . We include our own (short) proof for the sake of completeness:
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Lemma 5.3 For any locally compact group G, we have

θ̂ (φ)(ω · T) = ω · θ̂ (φ)(T) φ ∈ Mcb((A(G)), ω ∈ T (L2(G)), T ∈ B(L2(G)).

Proof Let φ ∈ Mcb((A(G)), let ω, ρ ∈ T (L2(G)), and let T ∈ B(L2(G)).
We first note that

〈π(θ̂(φ)∗(ρ)), S〉 = 〈θ̂ (φ)∗(ρ), S〉
= 〈ρ, θ̂ (φ)(S)〉
= 〈ρ,φ · S〉
= 〈π(ρ),φ · S〉
= 〈π(ρ)φ, S〉 (S ∈ VN(G)),

so that

π(θ̂(φ)∗(ρ)) = π(ρ)φ. (11)

Now we obtain:

〈ρ, θ̂ (φ)(ω · T)〉 = 〈θ̂ (φ)∗(ρ),ω · T〉
= 〈θ̂ (φ)∗(ρ) • ω, T〉
= 〈ω, T · θ̂ (φ)∗(ρ)〉
= 〈ω, θ̂ (π(θ̂(φ)∗(ρ)))(T)〉, by Lemma 5.2,

= 〈ω, θ̂ (π(ρ)φ)(T)〉, by (11),

= 〈ω, θ̂ (π(ρ))(θ̂(φ)(T))〉
= 〈ω, θ̂ (φ)(T) · ρ〉, by Lemma 5.2 again,

= 〈ρ • ω, θ̂ (φ)(T)〉
= 〈ρ,ω · θ̂ (φ)(T)〉.

Since ρ ∈ T (L2(G)) is arbitrary, this yields that

θ̂ (φ)(ω · T) = ω · θ̂ (φ)(T),
as claimed.

Theorem 5.4 Let G be a locally compact group, and let σ ∈ Mcb(A(G)). Then

Ĩσ := {θ̂ (σ )∗(ω)− ω : ω ∈ T (L2(G))}T (L
2(G))

is the pre-annihilator of H̃σ in T (L2(G)) – so that H̃σ
∼= (T (L2(G))/Ĩσ )∗ – and a

two-sided ideal of (T (L2(G)), •).

Proof It is straightforward to see that

ω ∈ Ĩσ ⇐⇒ 〈ω, T〉 = 0 for all T ∈ H̃σ (ω ∈ T (L2(G))).

Hence, Ĩσ is indeed the pre-annihilator of H̃σ in T (L2(G)), and (T (L2(G))/Ĩσ )∗ =
Ĩ⊥
σ

∼= H̃σ holds.
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We first show that Ĩσ is a left ideal in T (L2(G)). To this end, let ω, ρ ∈ T (L2(G)),
and note that

〈ω • θ̂ (σ )∗(ρ), T〉 = 〈θ̂ (σ )∗(ρ), T · ω〉
= 〈ρ, θ̂ (σ )(T · ω)〉
= 〈ρ, θ̂ (σ )(θ̂(π(ω))(T))〉, by Lemma 5.2,

= 〈ρ, θ̂ (π(ω)σ )(T)〉
= 〈ρ, θ̂ (π(ω))(θ̂(σ )(T))〉
= 〈ρ, θ̂ (σ )(T) · ω〉, again by Lemma 5.2,

= 〈ω • ρ, θ̂ (σ )(T)〉
= 〈θ̂ (σ )∗(ω • ρ), T〉. (T ∈ B(L2(G))),

so that

ω • θ̂ (σ )∗(ρ) = θ̂ (σ )∗(ω • ρ)
and therefore

ω • (θ̂(σ )∗(ρ)− ρ) = ω • θ̂ (σ )∗(ρ)− ω • ρ = θ̂ (σ )∗(ω • ρ)− ω • ρ ∈ Ĩσ (12)

Since ω, ρ ∈ T (L2(G)) were arbitrary, it follows that Ĩσ is a left ideal as claimed.
To see that Ĩσ is also a right ideal, let ω, ρ ∈ T (L2(G)), so that

〈(θ̂(σ )∗(ρ)) • ω, T〉 = 〈(θ̂(σ )∗(ρ)),ω · T〉
= 〈ρ, θ̂ (σ )(ω · T)〉
= 〈ρ,ω · θ̂ (σ )(T)〉, by Lemma 5.3,

= 〈ρ • ω, θ̂ (σ )(T)〉
= 〈θ̂ (σ )∗(ρ • ω), T〉 (T ∈ B(L2(G)))

and thus

(θ̂(σ )∗(ρ)) • ω = θ̂ (σ )∗(ρ • ω).
A calculation similar to (12) then lets us conclude that Ĩσ is a right ideal, too.

Remark The above result mirrors both [2, Definition 3.2.1] and [15, Proposition 3.3]
in our setting.

Finally, we consider another ideal of (T (L2(G)), •).
Proposition 5.5 Let G be a locally compact group, and let σ ∈ Mcb(A(G)). Then

L∞(G)⊥ := {ω ∈ T (L2(G)) : 〈ω, Mφ〉 = 0 for all φ ∈ L∞(G)}
is a two-sided ideal in (T (L2(G)), •) which is contained in the augmentation ideal

T0(L2(G)) := {ω ∈ T (L2(G)) : 〈ω, 1〉 = 0}
and, if σ(e) = 1, contains Ĩσ .

Proof Trivially, L∞(G)⊥ ⊂ T0(L2(G)) holds.
Moreover, if σ(e) = 1, then

〈θ̂ (σ )∗(ρ)− ρ, Mφ〉 = 〈ρ, θ̂ (σ )(Mφ)〉 − 〈ρ, Mφ〉 = 〈ρ, Mφ〉 − 〈ρ, Mφ〉
holds for all ρ ∈ T (L2(G)) and φ ∈ L∞(G), so that Ĩσ ⊂ L∞(G)⊥.
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It remains to be shown that L∞(G)⊥ is indeed an ideal of T (L2(G)).
Let ρ,ω ∈ T (L2(G)). Then we see that

〈ρ • ω, Mφ〉 = 〈ω, Mφ · ρ〉
= 〈ω, θ̂ (π(ρ))(Mφ)〉, by Lemma 5.2,

= 〈ω, Mφθ̂(π(ρ))(1)〉 (13)

= 〈ω, Mφ(π(ρ) · 1)〉
= 〈ρ, 1〉〈ω, Mφ〉 (φ ∈ L∞(G))

holds. From (13), it is immediate that L∞(G)⊥ is indeed a two-sided ideal of T (L2(G)).

Remark Since L∞(G)⊥ is a two-sided ideal of (T (L2(G)), •), the product • induces
a product—likewise denoted by •—on the quotient algebra T (L2(G))/L∞(G)⊥ ∼=
L1(G). This product, however, is not the usual convolution product on L1(G): from
(13), it is clear that

f • g = 〈f , 1〉g (f , g ∈ L1(G)).
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