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Abstract

Column and row operator spaces—which we denote by COL and ROW; respectively—over

arbitrary Banach spaces were introduced by the first-named author; for Hilbert spaces, these

definitions coincide with the usual ones. Given a locally compact group G and p; p0Að1;NÞ
with 1

p
þ 1

p0 ¼ 1; we use the operator space structure on CBðCOLðLp0 ðGÞÞÞ to equip the Figà-

Talamanca–Herz algebra ApðGÞ with an operator space structure, turning it into a quantized

Banach algebra. Moreover, we show that, for ppqp2 or 2pqpp and amenable G; the

canonical inclusion AqðGÞCApðGÞ is completely bounded (with cb-norm at most K2
G; where

KG is Grothendieck’s constant). As an application, we show that G is amenable if and only if
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ApðGÞ is operator amenable for all—and equivalently for one—pAð1;NÞ; this extends a

theorem by Ruan.
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MSC: primary 47L25; secondary 43A15; 43A30; 46B70; 46J99; 46L07; 47L50

Keywords: Operator spaces; Operator sequence spaces; Column and row spaces; Locally compact groups;
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0. Introduction

The Fourier algebra AðGÞ of a locally compact group G was introduced by
Eymard in [Eym1]. If G is abelian with dual group G; then the Fourier transform

induces an isometric isomorphism of AðGÞ and L1ðGÞ: Although the Fourier algebra

is an invariant for G—like L1ðGÞ—, its Banach algebraic amenability does not

correspond well to the amenability of G—very much unlike L1ðGÞ: The group G is

amenable if and only if L1ðGÞ is amenable as a Banach algebra [Joh1], but there are
compact groups, among them SOð3Þ; for which AðGÞ fails to be even weakly
amenable [Joh2]. In fact, the only locally compact groups G for which AðGÞ is an
amenable Banach algebra in the sense of [Joh1] are those with an abelian subgroup
of finite index [Run3].

Since AðGÞ is the predual of the group von Neumann algebra VNðGÞ; it is an
operator space in a natural manner. In [Rua1], Ruan introduced a variant of
amenability for ‘‘quantized’’ Banach algebras—called operator amenability—that
reflects the operator space structures of those algebras. He showed that a locally
compact group G is amenable if and only if AðGÞ is operator amenable [Rua1,
Theorem 3.6]. Further results by Aristov [Ari], Wood [Woo], and Spronk [Spr] lend
additional support to the belief that homological properties of AðGÞ; such as
amenability, biprojectivity or weak amenability, correspond to properties of G much
more naturally if the operator space structure is taken into account. Even if one is
only interested in AðGÞ as a Banach algebra, considering the canonical operator
space structure can be valuable: Although the main result of [Run3] is purely
classical in its statement, its proof is operator space theoretic. (Further examples of
classical results obtained with the help of operator space methods can be found in
[F–K–L–S].)

In [Her1], Herz introduced, for pAð1;NÞ; an Lp-analog of the Fourier algebra,
denoted by ApðGÞ: These algebras are called Figà-Talamanca–Herz algebras. It was

asked by the third-named author if there was an analog of Ruan’s theorem for
arbitrary Figà-Talamanca–Herz algebras [Run1, Problem 34]. The first obstacle
towards a solution of this problem is that there is—at first glance—no natural
operator space structure for ApðGÞ if pAð1;NÞ\f2g:

In [Run2], the same author used the operator space structure introduced by Pisier
on the Lp-spaces via complex interpolation [Pis1] to define operator space analogs
OApðGÞ of the classical Figà-Talamanca–Herz algebras for all pAð1;NÞ: These
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operator Figà-Talamanca–Herz algebras display properties similar to those of their
classical counterparts (see, for example, [Run2, Theorem 4.10]). Nevertheless, the
construction from [Run2] is unsatisfactory for two reasons:

1. Although we have a contractive inclusion ApðGÞCOApðGÞ for all pAð1;NÞ; the
two algebras ApðGÞ and OApðGÞ can fail to be identical as Banach spaces for pa2:

2. Even though AðGÞ ¼ OA2ðGÞ as Banach spaces, they need not have the same
operator space structure.

The reason why AðGÞ and OA2ðGÞ need not coincide as operator spaces is that the
operator space structure of AðGÞ stems from VNðGÞ and thus from the column

Hilbert space over L2ðGÞ; whereas OA2ðGÞ is defined by means of the operator

Hilbert space over L2ðGÞ: In order to get a satisfactory operator space structure for
general Figà-Talamanca–Herz algebras, one should therefore strive for an extension
of the notion of column space from Hilbert spaces to arbitrary Lp-spaces.

In his doctoral dissertation [Lam], the first-named author introduced such a
notion; in fact, he defined column and row spaces over arbitrary Banach spaces. We
first outline his construction and then use it to equip general Figà-Talamanca–Herz
algebras with a canonical operator space structure, turning them into ‘‘quantized’’
Banach algebras. As an application, we extend [Rua1, Theorem 3.6] to arbitrary
Figà-Talamanca–Herz algebras.

1. Preliminaries

1.1. Figà-Talamanca–Herz algebras

Let G be a locally compact group. For any function f : G-C; we define f̌ : G-C by

letting f̌ðxÞ :¼ f ðx	1Þ for xAG: Let pAð1;NÞ; and let p0Að1;NÞ be dual to p; i.e.
1
p
þ 1

p0 ¼ 1: The Figà-Talamanca–Herz algebra ApðGÞ consists of those functions

f : G-C such that there are sequences ðxnÞNn¼1 in LpðGÞ and ðZnÞ
N

n¼1 in Lp0 ðGÞ such that

XN
n¼1

jjxnjjLpðGÞjjZnjjLp0 ðGÞoN ð1Þ

and

f ¼
XN
n¼1

xn � $Zn: ð2Þ

The norm on ApðGÞ is defined as the infimum over all sums (1) such that (2) holds. It

is clear that ApðGÞ is a Banach space that embeds contractively into C0ðGÞ: It was
shown by Herz [Her1] that ApðGÞ is closed under pointwise multiplication and, in

fact, a Banach algebra. The case where p ¼ q ¼ 2 had previously been studied by
Eymard [Eym1]; in this case AðGÞ :¼ A2ðGÞ is called the Fourier algebra of G:
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Let lp0 : G-BðLp0 ðGÞÞ be the regular left representation of G on Lp0 ðGÞ: Via

integration, lp0 extends to a representation of L1ðGÞ on Lp0 ðGÞ: The algebra of p0-

pseudomeasures PMp0 ðGÞ is defined as the w�-closure of lp0 ðL1ðGÞÞ in BðLp0 ðGÞÞ:
There is a canonical duality PMp0 ðGÞDApðGÞ� via

/x � $Z;TS :¼ /TZ; xS ðxALp0 ðGÞ; ZALpðGÞ;TAPMp0 ðGÞÞ:

If p ¼ 2; then VNðGÞ :¼ PM2ðGÞ is a von Neumann algebra, the group von Neumann

algebra of G:
For more information, see [Eym1], [Eym2], [Her1], [Her2], and [Pie].

1.2. Operator spaces and quantized Banach algebras

There are now two booklength monographs available on the subject of operator
spaces ([E–R] and [Pis2]); furthermore, a very accessible survey article is available on
the internet [Wit]. We therefore refrain from repeating here the basic definitions of
operator space theory. In our choice of notation, we mostly follow [E–R]. In
particular, the projective and injective tensor product of Banach spaces are denoted

by#g and#l; respectively, whereas ## and &# stand for the projective and injective
tensor product of operator spaces.

We deviate from [E–R] with our notation in two points:

1. The minimal and maximal operator space over a given Banach space E is denoted
by MINðEÞ and MAXðEÞ; respectively.

2. The column and row space over a Hilbert space H is denoted by COLðHÞ and
ROWðHÞ; respectively.

Definition 1.1. A quantized Banach algebra is an algebra which is also an operator
space such that multiplication is completely bounded.

Remark. We do not require multiplication to be completely contractive (such
algebras are called completely contractive Banach algebras; see [Rua1]). In our choice
of terminology, we follow [Ari].

Examples. 1. For any Banach algebra A—not necessarily with contractive
multiplication—the maximal operator space MAXðAÞ is a quantized Banach
algebra.

2. If H is a Hilbert space, then any closed subalgebra of BðHÞ is completely
contractive.

3. We denote the W �-tensor product by %#: A Hopf–von Neumann algebra is a
pair ðM;rÞ; where M is a von Neumann algebra, and r is a co-multiplication: a

unital, w�-continuous, and injective �-homomorphism r :M-M %#M which is
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co-associative, i.e. the diagram

commutes. Let M� denote the unique predual of M: By [E–R, Theorem 7.2.4],

we have M %#MDðM� ##M�Þ�: Thus r induces a complete contraction

r� :M� ##M�-M� turning M� into a completely contractive Banach algebra.
4. Let G be a locally compact group. Then the representation

G/BðL2ðG � GÞÞ; x/l2ðxÞ#l2ðxÞ

induces a co-multiplication r : VNðGÞ-VNðG � GÞDVNðGÞ %#VNðGÞ: Hence,
AðGÞ with its canonical operator space structure is a completely contractive Banach
algebra.

2. Operator sequence spaces

In [Math], Mathes characterized the column operator space COLðHÞ over a
Hilbert space H through the isometries

Mn;1ðCOLðHÞÞ ¼ Mn;1ðMAXðHÞÞ and M1;nðCOLðHÞÞ ¼ M1;nðMINðHÞÞ

for all nAN; i.e. COLðHÞ is maximal on the columns and minimal on the rows.
A similar characterization holds for ROWðHÞ:

In order to define column and row operator spaces over arbitrary Banach spaces in
the next section, we first introduce and discuss an axiomatic characterization of the
columns of operator spaces: the operator sequence spaces. Those spaces were
introduced by the first-named author in his doctoral dissertation [Lam, Definition
1.1.1]. They form a category somewhere in between Banach and operator spaces.
A full account of the theory of operator sequence spaces will be published elsewhere.

In this section, we content ourselves with presenting the concepts and results we
need for the remainder of the paper: to define column and row operator spaces over
arbitrary Banach spaces and to use those operator space structures to turn the Figà-
Talamanca–Herz algebras into quantized Banach algebras. We are somewhat
sketchy with our proofs—especially if they consist mainly of routine calculations or
straightforward adaptations of proofs of the corresponding Banach or operator
space results.

Definition 2.1. A sequential norm over a Banach space E is a sequence ðjj 
 jj
n
_ÞNn¼1

such that jj 
 jj
1
_ is the given norm on E and jj 
 jj

n
_ is, for each nAN; a norm on En
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such that

x

0

� �����
����

����
����
mþn
_

¼ jjxjj
m
_ ðm; nAN; xAEmÞ;

x

y

� �����
����

����
����
2

mþn
_

pjjxjj2
m
_ þ jjyjj2

n
_ ðm; nAN; xAEm; yAFnÞ

and

jjaxjj
m
_pjjajj jjxjj

n
_ ðm; nAN; xAEn; aAMm;nÞ:

For nAN; we write E
n
_

to denote En equipped with jj 
 jj
n
_: The space E together with

the sequential norm ðjj 
 jj
n
_ÞNn¼1 is called an operator sequence space (over E).

Examples. 1. Letting C
n
_

:¼ c2n for nAN; we define the (unique) operator sequence

space over C:
2. Let E be any Banach space. The minimal operator sequence space minðEÞ over E

is defined by letting minðEÞn
_

:¼ Bðc2n;EÞ for nAN; the adjective minimal will be

justified below.
3. Let E be any Banach space. The maximal operator sequence space maxðEÞ over

E is defined as follows: For nAN and xAEn; define

jjxjj
n
_ :¼ inffjjajj jjyjjc2mðEÞ : mAN; aAMn;m; yAEm; x ¼ ayg:

As in the case of minðEÞ; the use of the adjective maximal will soon become clear.

4. Let E be an operator sequence space, and let mAN: We define ðEm
_

Þn
_

:¼ E
mn
_

for

nAN: This turns E
m
_

into an operator sequence space.
5. Let E be an operator space. Define an operator sequence space CðEÞ over

M1ðEÞ by letting CðEÞn
_

:¼ Mn;1ðEÞ for nAN: It will become apparent in the next

section that every operator sequence space occurs in that fashion.

Having introduced the objects of the category of operator sequence spaces, we
now turn to defining its morphisms.

Given two operator sequence spaces E and F ; a linear map T : E-F ; and nAN;
let

T
n
_

: E
n
_

-F
n
_

; ½xj�j¼1;y;n/½Txj�j¼1;y;n

denote the nth amplification of T :

ARTICLE IN PRESS
A. Lambert et al. / Journal of Functional Analysis 211 (2004) 245–269250



Definition 2.2. Let E and F be operator sequence spaces. Then TABðE 1
_

;F
1
_

Þ is
called sequentially bounded if

jjT jjsb :¼ sup
nAN

jjT n
_

jj
BðE n

_

;F
n
_

Þ
oN:

If jjT jjsbp1; we call T a sequential contraction, and if T
n
_

is an isometry for each

nAN; we call T a sequential isometry. The collection of all sequentially bounded
maps from E to F is denoted by SBðE;FÞ:

Remarks. 1. It is straightforward that jj 
 jjsb turns SBðE;FÞ into a Banach space.

2. We write SBðEÞ instead of SBðE;EÞ:

Examples. 1. Let E be an operator sequence space, and let F be a Banach space.
Then

SBðE;minðFÞÞ ¼ BðE 1
_

;FÞ ð3Þ

holds isometrically. (This justifies the name minimal operator space.)
2. Let E be a Banach space, and let F be an operator sequence space. Then

SBðmaxðEÞ;FÞ ¼ BðE;F
1
_

Þ ð4Þ

holds isometrically. (This justifies the adjective maximal.)
3. Let E be an infinite-dimensional Banach space. Then idE : MINðEÞ-MAXðEÞ

is not completely bounded [Pau1, Theorem 2.12]. Interestingly, the situation
for operator sequence spaces and sequentially bounded maps is different: For
example, if A is a C�-algebra, then A is subhomogeneous if and only if
idAASBðminðAÞ;maxðAÞÞ [Lam, Satz 2.2.25].

Next, we sketch the duality theory for operator sequence spaces. We first
introduce a canonical operator sequence space structure over the Banach space of all
sequentially bounded maps between operator sequence spaces:

Proposition 2.3. Let E and F be operator sequence spaces. Letting

SBðE;FÞn
_

:¼ SBðE;F
n
_

Þ ðnANÞ

defines an operator sequence space over SBðE;FÞ:

We skip the proof which parallels the one of the corresponding result for operator
spaces.

We require an analog of Smith’s lemma [E–R, Proposition 2.2.2] for operator
sequence spaces:
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Lemma 2.4 (Smith’s lemma for operator sequence spaces). Let E and F be operator

sequence spaces such that dim F ¼ moN: Then BðE 1
_

;F
1
_

Þ ¼ SBðE;FÞ holds with

jjT jjsb ¼ jjTm
_

jj for each TABðE;FÞ:

Proof. Let TABðE;FÞ; and let nAN: Let x ¼ ½xj�j¼1;y;nAE
n
_

; and let y1;y; ym be a

basis for F : Then there are aj;kAC for j ¼ 1;y; n and k ¼ 1;y;m such that

Txj ¼
Xm

k¼1

aj;kyk:

Let y :¼ ½yk�k¼1;y;mAF
m
_

and a :¼ ½aj;k� j¼1;y;n
k¼1;y;m

AMn;m: It follows that

T
n
_

x ¼ ay:

Let vAMn;m be a partial isometry such that a ¼ vjaj; where jaj :¼ ða�aÞ
1
2: It follows

that

jjayjj
F

n
_ ¼ jjvjajyjj

F
n
_pjjjajyjj

F
m
_ ð5Þ

and

jjjajyjj
F

m
_ ¼ jjv�ayjj

F
m
_pjjayjj

F
n
_ ð6Þ

so that in (5) and (6) equality holds. Consequently, we have

jjT n
_

xjj
F

n
_ ¼ jjayjj

F
n
_

¼ jjv�ayjj
F

m
_

¼ jjv�T
n
_

xjj
F

m
_

¼ jjTm
_

ðv�xÞjj
F

m
_

p jjTm
_

jj jjv�xjj
F

m
_

p jjTm
_

jj jjxjj
F

n
_;

so that jjT n
_

jjpjjTm
_

jj: Since nAN was arbitrary, this yields jjT jjsbpjjTm
_

jj: The

converse inequality is trivial. &
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Remark. In view of [E–R, Proposition 2.2.2], one might have suspected that

Lemma 2.4 holds true for F ¼ c2m only. The fact that there is a stronger version of

Smith’s lemma for operator sequence spaces than for operator spaces has interesting
consequences. For example, the principle of local reflexivity, which is a cornerstone
of the local theory of Banach spaces [D–F, 6.6], but fails to have an analog for
operator spaces [E–R, Corollary 14.3.8], still works in the category of operator
sequence spaces [Lam, Satz 1.3.26].

Corollary 2.5. Let E be an operator sequence space. Then E� ¼ SBðE;CÞ holds

isometrically.

With Corollary 2.5 at hand, we can now equip the (Banach space) dual of an
operator sequence space with a canonical operator sequence space structure.

Taking the adjoint of a sequentially bounded operator yields again a sequentially
bounded operator. But more is true:

Theorem 2.6. Let E and F be operator sequence spaces. Then

jjðT�Þn
_

jj ¼ jjT n
_

jj ðnAN;TASBðE;FÞÞ

holds. Moreover,

SBðE;FÞ-SBðF�;E�Þ; T/T� ð7Þ

is a sequential isometry.

Proof. The first part of the theorem is [Lam, Satz 1.3.14] and has a proof similar to
its operator space analog [E–R, Proposition 3.2.2]. In particular, (7) is an isometry.

To see that (7) is in fact a sequential isometry, fix nAN and note that, we have a
(sequential) isometric canonical isomorphism

SBððF n
_

Þ�;E�ÞDSBðF�; ðE�Þn
_

Þ ð8Þ

by [Lam, Satz 1.3.10 and Satz 1.3.12]. Hence, we have the following canonical
isometries:

SBðE;FÞn
_

¼ SBðE;F
n
_

Þ

+SBððF n
_

Þ�;E�Þ; by ½Lam; Satz 1:3:14�;

DSBðF �; ðE�Þn
_

Þ; by ð8Þ;

¼ SBðF �;E�Þn
_

:

This completes the proof. &
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We conclude this section with the analog of the MIN2MAX duality [Lam, Satz
2.1.11]:

Theorem 2.7 (min2max duality). For any Banach space E; we have the sequentially

isometric isomorphisms

minðEÞ� ¼ maxðE�Þ and maxðEÞ� ¼ minðE�Þ:

Proof. Since the compatibility of biduals for operator spaces [Ble, Theorem 2.5] has
an analog in the category of operator sequence spaces [Lam, Satz 1.3.19] with an
almost identical proof, the min2max duality can be proven by more or less following
the proof of the MIN2MAX duality in [Ble]. &

3. Column and row spaces over arbitrary Banach spaces

With the preparations made in the previous section, we can now define column
and row spaces over arbitrary Banach spaces. As before, the material is from [Lam]
and will appear elsewhere in fuller detail.

Definition 3.1. Let E be an operator sequence space. Then the minimal operator space

MinðEÞ over E is defined by letting MnðMinðEÞÞ :¼ Bðc2n;E
n
_

Þ:

Remarks. 1. By [Lam, Satz 4.1.2], MinðEÞ is an operator space for any operator
sequence space E:

2. For any operator space E; and for any operator sequence space F ;

CBðE;MinðFÞÞ ¼ SBðCðEÞ;FÞ

holds isometrically [Lam, Satz 4.1.6].
3. Let F be a Banach space. Then the previous remark and the isometric identity

(3) combined yield that

CBðE;MinðminðFÞÞÞ ¼ BðM1ðEÞ;FÞ

holds isometrically for each operator space E; so that we have MinðminðFÞÞ ¼
MINðFÞ:

The following definition generalizes V. I. Paulsen’s formula for the maximal
operator space norm over a Banach space [Pau2, Theorem 2.1]:

Definition 3.2. Let E be an operator sequence space. Then the maximal operator

space MaxðEÞ over E is defined by letting, for xAMnðEÞ;

jjxjjMnðMaxðEÞÞ :¼ inffjjajj jjbjj : x ¼ a diagðv1;y; vkÞbg;
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where the infimum is taken over all k; lAN; aAMn;kl ; bAMk;n; and v1;y; vk in the

closed unit ball of E
l
_

:

Remarks. 1. By [Lam, Satz 4.1.10], MaxðEÞ is an operator space for any operator
sequence space E:

2. For any operator sequence space E; and for any operator space F ;

CBðMaxðEÞ;FÞ ¼ SBðE;CðFÞÞ

holds isometrically [Lam, Satz 4.1.12].
3. Let E be a Banach space. Then the previous remark and the isometric identity

(4) combined yield that

CBðMaxðmaxðEÞÞ;FÞ ¼ BðE;M1ðFÞÞ

holds isometrically for each operator space F ; i.e. MaxðmaxðEÞÞ ¼ MAXðEÞ:

There is a duality between Min and Max as between min and max and MIN and
MAX [Lam, Satz 4.2.1]:

Theorem 3.3 (Min2Max duality). For any operator sequence space E; we have the

completely isometric isomorphisms

MinðEÞ� ¼ MaxðE�Þ and MaxðEÞ� ¼ MinðE�Þ:

We can now define the column space COLðEÞ and the row space ROWðEÞ over an
arbitrary Banach space E:

Definition 3.4. Let E be a Banach space.

(a) The column space over E is defined as COLðEÞ :¼ MinðmaxðEÞÞ:
(b) The row space over E is defined as ROWðEÞ :¼ MaxðminðEÞÞ:

Recall that an operator space E is called homogeneous if CBðEÞ ¼ BðM1ðEÞÞ
holds isometrically.

Theorem 3.5. Let E be a Banach space. Then COLðEÞ and ROWðEÞ are homogeneous

operator spaces such that

COLðEÞ� ¼ ROWðE�Þ and ROWðEÞ� ¼ COLðE�Þ: ð9Þ

Proof. Since

BðEÞ ¼ SBðmaxðEÞÞ ¼ CBðMinðmaxðEÞÞÞ;

the homogeneity of COLðEÞ is clear (and similarly for ROWðEÞ).
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The dualities (9) follow immediately from Theorems 2.7 and 3.3. &

Remark. It is immediate from Definition 3.4 that, for a Banach space E;

Mn;1ðCOLðEÞÞ ¼ maxðEÞn
_

¼ Mn;1ðMAXðEÞÞ

and

M1;nðCOLðEÞÞ ¼ minðEÞn
_

¼ M1;nðMINðEÞÞ

holds isometrically for all nAN: It follows from [Math] that, for a Hilbert space H;
the operator space COLðHÞ in the sense of Definition 3.4 is the usual column Hilbert
space [E–R, 3.4]. An analogous statement is true for ROWðHÞ:

4. Amplifying operators on Lp-spaces

The following definition is from [Her1]:

Definition 4.1. Let pAð1;NÞ: A Banach space E is called a p-space if, for any two
measure spaces X and Y ; the amplification map

BðLpðXÞ;LpðYÞÞ-BðLpðX ;EÞ;LpðY ;EÞÞ; T/T#idE ð10Þ

is an isometry.

Remark. By [Kwa, Section 4, Theorem 2], a Banach space E is a p-space if and only
if it is a subspace of a quotient of an Lp-space. We shall, however, not require this
fairly deep result, and only use Definition 4.1 and two facts from [Her1]:

* Let qA½1;N�: Then an Lq-space is a p-space if ppqp2 or 2pqpp

[Her1, Theorem 1].
* A Banach space E is a p-space if and only if E� is a p0-space [Her1, Proposition 4].

In this section, we shall see that, for a p-space E; (10) is even a complete
isometry—provided that all Banach spaces involved are equipped with their
respective column space structures.

We start with a proof that (10) is a sequential isometry if the spaces involved are
both equipped with their minimal or maximal operator sequence space structure,
respectively.

Lemma 4.2. Let E; F ; and X be Banach spaces. For xAX ; define

pF
x :BðE;BðX ;FÞÞ-BðE;FÞ by letting

pF
x ðTÞðyÞ :¼ ðTyÞðxÞ ðTABðE;BðX ;FÞÞ; yAE; xAX Þ:
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Then the following are true:

(i) The equality

jjT jj ¼ supfjjpF
x ðTÞjj : xAX ; jjxjjp1g ðTABðE;BðX ;FÞÞÞ

holds.
(ii) For xAX with norm one, px is a quotient map.

Proof. We have

jjT jj ¼ supfjjTyjj : yAE; jjyjjp1g

¼ supfjjðTyÞðxÞjj : yAE; jjyjjp1; xAX ; jjxjjp1g

¼ supfjjpF
x ðTÞjj : xAX ; jjxjjp1g;

which proves (i).
To prove (ii), we define an isometric right inverse of px in case jjxjj ¼ 1: Fix fAX �

with jjfjj ¼ /x;fS ¼ 1: For TABðE;FÞ; define T̃ABðE;BðX ;FÞÞ by letting

T̃y :¼ f#TyAX �#lFCBðX ;FÞ ðyAEÞ:

The map BðE;FÞ{T/T̃ is then the desired right inverse of px: &

Corollary 4.3. Let pAð1;NÞ; let X and Y be measure spaces, let E be a p-space, and

let nAN: Then the amplification map

BðLpðX Þ;minðLpðYÞÞn
_

Þ-BðLpðX ;EÞ;minðLpðY ;EÞÞn
_

Þ; T/T#idE

is an isometry.

Proof. Let TABðLpðX Þ;Bðc2n;LpðY ÞÞÞ; and fix xAc2n with jjxjjp1: It follows that

pLpðYÞ
x 3TABðLpðXÞ;LpðY ÞÞ: Since E is a p-space, we have the norm equalities

jjpLpðYÞ
x 3T jj ¼ jjðpLpðYÞ

x 3TÞ#idE jj ¼ jjpLpðY ;EÞ
x 3ðT#idEÞjj:

The claim then follows from Lemma 4.2(i). &

Proposition 4.4. Let pAð1;NÞ; let X and Y be measure spaces, and let E be a p-space.

Then

jjTm
_

jj
BðminðLpðX ÞÞm

_

;minðLpðYÞÞmn
_

Þ
¼ jjðT#idEÞ

m
_

jj
BðminðLpðX ;EÞm

_

Þ;minðLpðY ;EÞÞmn
_

Þ
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holds for all m; nAN and for all TASBðminðLpðXÞÞ;minðLpðY ÞÞn
_

Þ: In particular, the

amplification map

SBðminðLpðXÞÞ;minðLpðYÞÞÞ-SBðminðLpðX ;EÞÞ;minðLpðY ;EÞÞÞ; T/T#idE

is a sequential isometry.

Proof. Clearly, the first assertion implies the second one.

Let m; nAN: First, note that we have for all TASBðminðLpðXÞÞ;minðLpðY ÞÞn
_

Þ:

jjTm
_

jjBðBðc2m;LpðXÞÞ;Bðc2m#gc2n;L
pðYÞÞÞ

¼ jjidc2m#T jjBðc2m#lLpðXÞ;c2m#lBðc2n;LpðYÞÞÞ;

¼ jjT jjBðLpðXÞ;Bðc2n;LpðY ÞÞÞ; by the mapping property of #l;

¼ jjT#idE jjBðLpðX ;EÞ;Bðc2n;LpðY ;EÞÞÞ; by Corollary 4:3;

¼ jjidc2m#T#idE jjBðc2m#lLpðX ;EÞ;c2m#lBðc2n;LpðY ;EÞÞÞ;

again by the mapping property of #l;

¼ jjðT#idEÞ
m
_

jjBðBðc2m;LpðX ;EÞÞ;Bðc2m#gc2n;L
pðY ;EÞÞÞ:

Since

pLpðY Þ
x ðTm

_

Þ ¼ 0 3 pLpðY ;EÞ
x ððT#idEÞ

m
_

Þ ¼ 0

for all xAc2m#c2n and for all TASBðminðLpðX ÞÞ;minðLpðYÞÞn
_

Þ; we conclude from
Lemma 4.2(ii) that

jjpLpðYÞ
x ðTm

_

Þjj ¼ jjpLpðY ;EÞ
x ððT#idEÞ

m
_

Þjj ð11Þ

for all TASBðminðLpðXÞÞ;minðLpðY ÞÞn
_

Þ and for all xAc2m#c2n with

jjxjjc2m#gc2n
¼ 1—and hence for all xAc2m#c2n: It follows, for TASBðminðLpðX ÞÞ;

minðLpðY ÞÞn
_

Þ; that

jjTm
_

jjBðBðc2m;LpðX ÞÞ;Bðc2mn;L
pðY ÞÞÞ

¼ supfjjpLpðYÞ
x ðTm

_

Þjj : xAc2m#c2n; jjxjjc2mn
p1g; by Lemma 4:2ðiÞ;
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¼ supfjjpLpðY ;EÞ
x ððT#idEÞ

m
_

Þjj : xAc2m#c2n; jjxjjc2mn
p1g; by ð11Þ;

¼ jjðT#idEÞ
m
_

jjBðBðc2m;LpðX ;EÞÞ;Bðc2mn;L
pðY ;EÞÞÞ; again by Lemma 4:2ðiÞ:

This completes the proof. &

Together with [Her1, Proposition 4], Theorem 2.6, and the min2max duality,
Proposition 4.4 yields:

Corollary 4.5. Let pAð1;NÞ; let X and Y be measure spaces, and let E be a p-space.

Then

jjTm
_

jj
BðmaxðLpðX ÞÞm

_

;maxðLpðYÞÞmn
_

Þ
¼ jjðT#idEÞ

m
_

jj
BðmaxðLpðX ;EÞm

_

Þ;maxðLpðY ;EÞÞmn
_

Þ

holds for all m; nAN and for all TABðmaxðLpðXÞÞ;maxðLpðY ÞÞn
_

Þ: In particular, the

amplification map

SBðmaxðLpðXÞÞ;maxðLpðY ÞÞÞ-SBðmaxðLpðX ;EÞÞ;maxðLpðY ;EÞÞÞ; T/T#idE

is a sequential isometry.

We can now state and prove the main result of this section:

Theorem 4.6. Let pAð1;NÞ; let X and Y be measure spaces, and let E be a p-space.

Then the amplification map

CBðCOLðLpðX ÞÞ;COLðLpðYÞÞÞ-CBðCOLðLpðX ;EÞÞ;COLðLpðY ;EÞÞÞ;

T/T#idE ð12Þ

is a complete isometry.

Proof. Let m; nAN; and let TACBðCOLðLpðX ÞÞ;MnðCOLðLpðY ÞÞÞÞ: We can

amplify T to an operator T
m
_

from maxðLpðX ÞÞm
_

to Bðc2n;maxðLpðYÞÞmn
_

Þ: From
Lemma 4.2 and the first part of Corollary 4.5, we conclude that

jjTm
_

jj
BðmaxðLpðXÞÞm

_

;Bðc2n;maxðLpðYÞÞmn
_

ÞÞ

¼ jjðT#idEÞ
m
_

jj
BðmaxðLpðX ;EÞÞm

_

;Bðc2n;maxðLpðY ;EÞÞmn
_

ÞÞ
:
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An almost verbatim copy of the argument used to prove Proposition 4.4 yields
that

jjT ðmÞjj
BðBðc2m;maxðLpðXÞÞm

_

Þ;Bðc2mn;maxðLpðYÞÞmn
_

ÞÞ

¼ jjðT#idEÞðmÞjj
BðBðc2m;maxðLpðX ÞÞm

_

Þ;Bðc2mn;maxðLpðYÞÞmn
_

ÞÞ
:

Consequently,

jjT jjcb ¼ jjT#idE jjcb

holds, so that (12) is a complete isometry. &

Even though we won’t need it in the sequel, we note the following analog of
Theorem 4.6 for row spaces: It follows immediately from the theorem due to the
COL-ROW duality.

Corollary 4.7. Let pAð1;NÞ; let X and Y be measure spaces, and let E be a p-space.

Then the amplification map

CBðROWðLpðX ÞÞ;ROWðLpðYÞÞÞ-CBðROWðLpðX ;EÞÞ;ROWðLpðY ;EÞÞÞ;

T/T#idE

is a complete isometry.

5. Column and row space norms on tensor products

Let pA½1;N�; let X be a measure space, and let E be a Banach space. Then the
algebraic tensor product LpðXÞ#E embeds canonically into LpðX ;EÞ: The norm of
LpðX ;EÞ restricted to LpðX Þ#E is a cross norm.

In this section, we want to prove an operator space analog of this fact for column
and row spaces.

Definition 5.1. Let E and F be operator spaces, and let CX0: A matricial norm on
E#F is called a matricial C-subcross norm if

jjx#yjjMmnðE#FÞpCjjxjjMmðEÞjjyjjMnðFÞ ðm; nAN; xAMmðEÞ; yAMnðFÞÞ:

If C ¼ 1; we simply speak of a matricial subcross norm.

There is an analog of Definition 5.1 in the category of operator sequence spaces
[Lam, Chapter 3]:
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Definition 5.2. Let E and F be operator sequence spaces, and let CX0: A sequential
norm on E#F is called a sequential C-subcross norm if

jjx#yjj
ðE#FÞmn

_pCjjxjj
E

m
_ jjyjj

F
n
_ ðm; nAN; xAE

m
_

; yAF
n
_

Þ:

If C ¼ 1; we simply speak of a sequential subcross norm.

For the definition of Grothendieck’s constant, which we will denote by KG; see
[D–F, 14.4].

Our next lemma is a consequence of [D–F, 26.3, Proposition 1] (see the following
remark on [D–F, p. 347]):

Lemma 5.3. Let p; qA½1;N�; let X and Y be measure spaces, and let H be a Hilbert

space. Then the amplification map

BðLpðX Þ;LqðY ÞÞ-BðLpðX ;HÞ;LqðY ;HÞÞ; T/T#idH

is bounded and has norm at most KG:

Proposition 5.4. Let pAð1;NÞ; let X be a measure space, and let E be a Banach space.

Then minðLpðX ;EÞÞ yields a sequential KG-subcross norm on LpðX Þ#E:

Proof. Let m; nAN; let xAminðLpðXÞÞm
_

and let yAminðEÞn
_

: Let SABðc2m;LpðXÞÞ
and TABðc2n;EÞ represent x and y; respectively. We have to show that

jjS#T jjBðc2mn;L
pðX ;EÞÞpKGjjSjjBðc2m;LpðXÞÞjjT jjBðc2n;EÞ:

By Lemma 5.3, we have

jjS#idc2n jjBðc2mn;L
pðX ;c2nÞÞpKGjjSjjBðc2m;LpðXÞÞ;

and, by [D–F, 7.3],

jjidLpðXÞ#T jjBðLpðX ;c2nÞ;LpðX ;EÞÞ ¼ jjT jjBðc2n;EÞ

holds. Consequently,

jjS#T jjBðc2mn;L
pðX ;EÞÞ

pjjS#idc2n jjBðc2mn;L
pðX ;c2nÞÞjjidLpðXÞ#T jjBðLpðX ;c2nÞ;LpðX ;EÞÞ

pKGjjSjjBðc2m;LpðXÞÞjjT jjBðc2n;EÞ

holds, which completes the proof. &
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Remark. For pX2; we even obtain a sequential subcross norm on LpðX ;EÞ: This
follows from [D–F, 7.2, Proprosition, and 7.3].

Theorem 5.5. Let pAð1;NÞ; let X be a measure space, and let E be a Banach space.

Then ROWðLpðX ;EÞÞ yields a matricial KG-subcross norm on LpðXÞ#E:

Proof. Let m; nAN; and let xAMmðLpðXÞÞ and yAMnðEÞ: Let kx; lx; kyAN; and let:

* axAMm;kxlx ; bxAMkx;m; and v1;y; vkx
belonging to the closed unit ball of

minðLpðX ;EÞÞlx
_

such that

x ¼ ax diagðv1;y; vkx
Þbx; ð13Þ

* ayAMn;kyly ; byAMky;n; and u1;y; uky
belonging to the closed unit ball of

minðLpðX ;EÞÞ
ly
_

such that

y ¼ ay diagðu1;y; uky
Þby: ð14Þ

It follows that ax#ayAMmn;ðkxkyÞðcxcyÞ and that bx#byAMkxky;mn: From Proposition

5.4, it follows that K	1
G ðvm#unÞ belong to the closed unit ball of minðLpðX ;EÞÞ

lxly
_

for

m ¼ 1;y; kx and n ¼ 1;y; ky: Consequently,

K	1
G ðx#yÞ ¼ ðax#ayÞ diagðK	1

G ðvm#unÞ : m ¼ 1;y; kx; n ¼ 1;y; kyÞðbx#byÞ

is a representation of K	1
G ðx#yÞ as in the definition of MaxðminðLpðX ;EÞÞÞ; i.e. of

ROWðLpðX ;EÞÞ; so that

jjK	1
G ðx#yÞjjMmnðROWðLpðX ;EÞÞÞpjax#ayjjbx#byj ¼ jaxjjbxjjayjjbyj

holds. Since (13) and (14) are representations of x and y as the occur in the definition
of MaxðminðLpðX ;EÞÞÞ; we conclude that

jjx#yjjMmnðROWðLpðX ;EÞÞÞpKGjjxjjMmðROWðLpðX ÞÞÞjjyjjMnðROWðEÞÞ:

This yields the claim. &

We now turn to proving the analog of Theorem 5.5 for column spaces.
First, we need two more lemmas:

Lemma 5.6. Let p; qA½1;N�; let X and Y be a measures space, and let H be a Hilbert

space. Then the amplification map

SBðmaxðLpðXÞÞ;maxðLqðYÞÞÞ-SBðmaxðLpðX ;HÞÞ;maxðLqðY ;HÞÞÞ; T/T#idH

is sequentially bounded with sb-norm at most KG:
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Proof. As the proof of Corollary 4.5, except that Lemma 5.3 instead of
Definition 4.1 is invoked. &

Lemma 5.7. Let pAð1;NÞ; let X be a measure space, and let E and F be Banach

spaces. Then the amplification map

SBðmaxðEÞ;maxðFÞÞ-SBðmaxðLpðX ;EÞÞ;maxðLpðX ;FÞÞÞ; T/idLpðXÞ#T

is a sequential isometry.

Proof. As the proof of Corollary 4.5, except that [D–F, 7.3] instead of Definition 4.1
is invoked. &

Theorem 5.8. Let pAð1;NÞ; let X be a measure space, and let E be a Banach space.

Then COLðLpðX ;EÞÞ yields a matricial KG-subcross norm on LpðXÞ#E:

Proof. Let m; nAN; and let xAMmðLpðXÞÞ and yAMnðEÞ: Let the operators

SABðc2m;maxðLpðXÞÞm
_

Þ and TABðc2n;maxðEÞn
_

Þ represent x and y; respectively. We

need to show that

jjS#T jj
Bðc2mn;maxðLpðX ;EÞÞmn

_

Þ
pKGjjSjj

Bðc2m;maxðLpðXÞÞm
_

Þ
jjT jj

Bðc2n;maxðEÞ n
_

Þ
: ð15Þ

First note that

KGjjSjj
Bðc2m;maxðLpðXÞÞm

_

Þ

¼ KGjjSjj
SBðmaxðc2mÞ;maxðLpðX ÞÞm

_

Þ
; by ð4Þ;

XjjS#idc2n jjSBðmaxðc2mðc2nÞÞ;maxðLpðX ;c2nÞÞ
m
_

Þ
; by Lemma 5:6;

¼ jjS#idc2n jjBðc2mn;maxðLpðX ;c2nÞÞ
m
_

Þ
; again by ð4Þ: ð16Þ

On the other hand, the following holds:

jjT jj
Bðc2n;maxðEÞ n

_

Þ

¼ jjT jj
SBðmaxðc2nÞ;maxðEÞ n

_

Þ

¼ jjidLpðXÞ#T jj
SBðmaxðLpðX ;c2nÞÞ;maxðLpðX ;EÞÞ n

_

Þ
; by Lemma 5:7

¼ jjðidLpðXÞ#TÞm
_

jj
BðmaxðLpðX ;c2nÞ

m
_

Þ;maxðLpðX ;EÞÞmn
_

Þ
: ð17Þ

Combined, (16) and (17) yield (15). &
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6. An operator space structure for Figà-Talamanca–Herz algebras

We now use the work done in the previous sections in order to define, for
pAð1;NÞ and a locally compact group G; a canonical operator space structure
on ApðGÞ:

Definition 6.1. Let G be a locally compact group, and let pAð1;NÞ:

(a) The canonical operator space structure on PMp0 ðGÞ is the one it inherits as a

closed subspace of CBðCOLðLp0 ðGÞÞÞ:
(b) The canonical operator space structure on ApðGÞ is the one it inherits as the

predual of PMp0 ðGÞ:

Remark. From this definition, it is immediate that

ROWðLpðGÞÞ ##COLðLp0 ðGÞÞ-ApðGÞ; x#Z/x � $Z ð18Þ

is a complete quotient map.

Let G be a locally compact group, and let p; qAð1;NÞ: Then

lp0;q0 : G-BðLp0 ðG;Lq0 ðGÞÞÞ; x/lp0 ðxÞ#lq0 ðxÞ

is a strongly continuous representation of G and thus yields a representation of

L1ðGÞ; which we denote likewise by lp0;q0 : Let the w�-closure of lp0;q0 ðL1ðGÞÞ in

BðLp0 ðG;Lq0 ðGÞÞÞ be denoted by PMp0;q0 ðG � GÞ: Then PMp0;q0 ðG � GÞ inherits a

canonical operator space structure from CBðCOLðLp0 ðG;Lq0 ðGÞÞÞ: Consequently, its
predual, which we denote by Ap;qðG � GÞ has a canonical operator space structure as
well. In analogy with (18), we have a complete quotient map

ROWðLpðG;LqðGÞÞÞ ##COLðLp0 ðG;Lq0 ðGÞÞÞ-Ap;qðG � GÞ; x#Z/x � $Z:

Lemma 6.2. Let G be a locally compact group, and let p; qAð1;NÞ: Then there is

a canonical completely bounded map from ApðGÞ ##AqðGÞ into Ap;qðG � GÞ with

cb-norm at most K2
G:

Proof. We have a completely isometric isomorphism

ðROWðLpðGÞÞ ##COLðLp0 ðGÞÞÞ ##ðROWðLqðGÞÞ ##COLðLq0 ðGÞÞÞ

D ðROWðLpðGÞÞ ##ROWðLqðGÞÞÞ ##ðCOLðLp0 ðGÞÞ ##COLðLq0 ðGÞÞÞ ð19Þ
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by [E–R, Proposition 7.1.4]. Let the left-hand side of (19) be denoted by E; and
consider the diagram

E - ROWðLpðG;LqðGÞÞÞ ##COLðLp0 ðG;Lq0 ðGÞÞÞ
k k

ApðGÞ ##AqðGÞ - Ap;qðG � GÞ;

where the top row is the composition of (19) with the canonical completely bounded
maps

ROWðLpðGÞÞ ##ROWðLqðGÞÞ-ROWðLpðG;LqðGÞÞÞ ð20Þ

and

COLðLp0 ðGÞÞ ##COLðLq0 ðGÞÞ-COLðLp0 ðG;Lq0 ðGÞÞÞ; ð21Þ

which exist according to Theorems 5.5 and 5.8 and the universal property of ##:
From Theorems 5.5 and 5.8, it is also clear that both (20) and (21) have cb-norm at
most KG:

Clearly, going along the top row and down the second column is a completely

bounded map with cb-norm at most K2
G that factors through the kernel of the first

column. Since the first column is a complete quotient map by [E–R, Proposition
7.1.7], we obtain the bottom row, which yields a completely bounded map whose

cb-norm is at most K2
G and which makes the diagram commutative. &

Lemma 6.3. Let G be a locally compact group, and let p; qAð1;NÞ be such that

ppqp2 or 2pqpp: Then restricting functions on G � G to the diagonal subgroup

yields a complete quotient map from Ap;qðG � GÞ onto ApðGÞ:

Proof. Due to the particular choice of p and q; the space Lq0 ðGÞ is a p0-space by
[Her1, Theorem 1]. Consequently, by Theorem 4.6, the amplification map

CBðCOLðLp0 ðGÞÞÞ-CBðCOLðLp0 ðG;Lq0 ðGÞÞÞÞ; T/T#idLq0 ðGÞ

is a complete isometry. Define W : Lp0 ðG;Lq0 ðGÞÞ-Lp0 ðG;Lq0 ðGÞÞ by letting

ðWxÞðx; yÞ :¼ xðx; xyÞ ðxALp0 ðG;Lq0 ðGÞÞ; x; yAGÞ:

Then W is an invertible isometry whose inverse is given by

ðW	1xÞðx; yÞ :¼ xðx; x	1yÞ ðxALp0 ðG;Lq0 ðGÞÞ; x; yAGÞ:

Since COLðLp0 ðG;Lq0 ðGÞÞÞ is a homogeneous operator space, both W and W	1 are

complete isometries on COLðLp0 ðG;Lq0 ðGÞÞÞ: Consequently,

r :CBðCOLðLp0 ðGÞÞÞ-CBðCOLðLp0 ðG;Lq0 ðGÞÞÞÞ; T/W	1ðT#idLq0 ðGÞÞW
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is a complete isometry. A routine calculation reveals that

rðlp0 ðxÞÞ ¼ lp0 ðxÞ#lq0 ðxÞ ¼ lp0;q0 ðx; xÞ: ð22Þ

It follows that rðPMp0 ðGÞÞCPMp0;q0 ðG � GÞ: Moreover, rjPMp0 ðGÞ is clearly w�-

continuous, and thus has a preadjoint D : Ap;qðG � GÞ-ApðGÞ: From (22), it is

immediate that D is the restriction to the diagonal. Finally, since rjPMp0 ðGÞ is a

complete isometry, D is a complete quotient map. &

Forming the composition of the completely bounded maps in Lemmas 6.2 and 6.3,
we obtain the main result of this section:

Theorem 6.4. Let G be a locally compact group, and let p; qAð1;NÞ be such that

ppqp2 or 2pqpp: Then pointwise multiplication induces a completely bounded map

of cb-norm at most K2
G from ApðGÞ ##AqðGÞ into ApðGÞ:

Letting q ¼ p in Theorem 6.4, we obtain immediately:

Corollary 6.5. Let G be a locally compact group, and let pAð1;NÞ: Then ApðGÞ is a

quantized Banach algebra.

If G is amenable, then ApðGÞ has an approximate identity bounded by one [Pie,

Theorem 4.10]. Hence, we obtain the operator space version of [Her1, Theorem C]:

Corollary 6.6. Let G be an amenable, locally compact group, and let p; qAð1;NÞ be

such that ppqp2 or 2pqpp: Then AqðGÞCApðGÞ such that the inclusion is

completely bounded with cb-norm at most K2
G:

7. Operator amenability for Figà-Talamanca–Herz algebras

We conclude this paper with an extension of [Rua1, Theorem 3.6] to Figà-
Talamanca–Herz algebras.

Let A be a quantized Banach algebra. A quantized Banach A-bimodule is an
A-bimodule equipped with an operator space structure such that the module
operations are completely bounded. Let E be a quantized Banach A-bimodule. Then
the dual space E� of E is a quantized Banach A-bimodule in a canonical fashion via

/x; a 
 fS :¼ /x 
 a;fS and /x;f 
 aS :¼ /a 
 x;fS ðaAA;fAE�; xAEÞ:

A derivation from a quantized Banach algebra A into a quantized Banach A-
bimodule E is a completely bounded map D :A-E such that

DðabÞ ¼ a 
 Db þ ðDaÞ 
 b ða; bAAÞ:

ARTICLE IN PRESS
A. Lambert et al. / Journal of Functional Analysis 211 (2004) 245–269266



The derivation is called inner if there is xAE such that

Da ¼ a 
 x 	 x 
 a ðaAAÞ:

The following definition was introduced by Ruan in [Rua1] (for completely
contractive Banach algebras) and adds operator space overtones to Johnson’s
definition of an amenable Banach algebra [Joh1]:

Definition 7.1. A quantized Banach algebra A is called operator amenable if, for
every quantized Banach A-bimodule E; every (completely bounded) derivation
D :A-E� is inner.

The classical analog of the following lemma is well known [Run1, Proposition
2.3.1], and the proof carries over to the quantized setting with only standard
modifications. (It was formulated for completely contractive Banach algebras as
[Rua2, Propositon 2.2], but nowhere in the proof, complete contractivity of the
multiplication is actually required.)

Lemma 7.2. Let A and B be quantized Banach algebras such that A is operator

amenable, and let y :A-B be a completely bounded algebra homomorphism with

dense range. Then B is operator amenable.

For Figà-Talamanca–Herz algebras with their canonical operator space structure,
we eventually obtain:

Theorem 7.3. The following are equivalent for a locally compact group G:

(i) G is amenable.
(ii) AðGÞ is operator amenable.
(iii) ApðGÞ is operator amenable for each pAð1;NÞ:
(iv) There is pAð1;NÞ such that ApðGÞ is operator amenable.

Proof. (i) 3 (ii) is [Rua1, Theorem 3.6].
(ii) ) (iii): Let pAð1;NÞ: If AðGÞ is operator amenable, then G is amenable, so

that AðGÞCApðGÞ; where the inclusion is completely bounded and has dense range

(by Corollary 6.6). By Lemma 7.2, this yields the operator amenability of ApðGÞ:
(iii) ) (iv) is trivial.
(iv) ) (i): Let pAð1;NÞ be such that ApðGÞ is operator amenable. By [Rua1,

Proposition 2.3], ApðGÞ then has a bounded approximate identity. This is enough to

guarantee the amenability of G [Pie, Theorem 4.10]. &

Remarks. 1. Virtually all concepts from Banach homology can be provided with
operator space overtones. For the Fourier algebra AðGÞ of a locally compact group,
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this quantized Banach homology seems to be the appropriate one when it comes to
characterizing properties of G in terms of cohomological properties of AðGÞ:

* AðGÞ is always operator weakly amenable [Spr];
* AðGÞ is operator biprojective if and only if G is discrete [Ari], [Woo];
* For many locally compact groups—among them all [SIN]-groups—, AðGÞ is

operator biflat [R–X]. The operator biflatness of AðGÞ is systematically
investigated in [A–R–S].

It would be interesting to know which of these results extend to general Figà-
Talamanca–Herz algebras.

2. In [Run3], the third-named author showed that the Fourier algebra of a locally
compact group G is amenable (in the classical sense) if and only if G has an abelian
subgroup of finite index. The proof is mostly operator space theoretic. It is easy to
see that, if G has an abelian subgroup of finite index, then ApðGÞ is amenable for

each pAð1;NÞ: In view of [Run3] and Theorem 7.3, it is plausible to conjecture that
ApðGÞ can be amenable for some pAð1;NÞ only for such G: It is an intriguing

question, whose answer seems to be far from obvious, whether the canonical
operator space structure on ApðGÞ—combined with the methods from [Run3]—can

be used to affirm this conjecture.
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