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Abstract

Let ðM;NÞ be a pair of von Neumann algebras, or of dual operator spaces with at least one

of them having property Ss; and let F be an arbitrary completely bounded mapping on M: We

present an explicit construction of an amplification of F to a completely bounded mapping on

M#N: Our approach is based on the concept of slice maps as introduced by Tomiyama, and

makes use of the description of the predual of M %#N given by Effros and Ruan in terms of

the operator space projective tensor product (cf. Effros and Ruan (Internat. J. Math. 1(2)

(1990) 163; J. Operator Theory 27 (1992) 179)).

We further discuss several properties of an amplification in connection with the

investigations made in May et al. (Arch. Math. (Basel) 53(3) (1989) 283), where the special

case M ¼ BðHÞ and N ¼ BðKÞ has been considered (for Hilbert spaces H and K). We

will then mainly focus on various applications, such as a remarkable purely algebraic

characterization of w�-continuity using amplifications, as well as a generalization of the so-

called Ge–Kadison Lemma (in connection with the uniqueness problem of amplifications).

Finally, our study will enable us to show that the essential assertion of the main result in May

et al. (1989) concerning completely bounded bimodule homomorphisms actually relies on a

basic property of Tomiyama’s slice maps.

r 2003 Elsevier Inc. All rights reserved.

MSC: 46L06; 46L07; 46L10; 47L10; 47L25

Keywords: Completely bounded operator; Amplification; Tomiyama’s slice maps; von Neumann algebra;

Dual operator space; Property Ss; Projective operator space tensor product

ARTICLE IN PRESS

E-mail address: mneufang@math.ualberta.ca.
1 The author is currently a PIMS Postdoctoral Fellow at the University of Alberta, Edmonton, where

this work was accomplished. The support of PIMS is gratefully acknowledged.

0022-1236/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jfa.2002.04.002



1. Introduction

The initial aim of this article is to present an explicit construction of the
amplification of an arbitrary completely bounded mapping on a von Neumann

algebra M to a completely bounded mapping on M#N; where N denotes another
von Neumann algebra, and to give various applications.

Of course, an amplification of a completely bounded mapping on a von Neumann
algebra is easily obtained if the latter is assumed to be normal (i.e., w�-w�-
continuous); cf., e.g., [DEC–HAA85], Lemma 1.5(b). Our point is that we are
dealing with not necessarily normal mappings and nevertheless even come up with an
explicit formula for an amplification.

We further remark that, of course, as already established by Tomiyama, it is
possible to amplify completely positive mappings on von Neumann algebras [STR81,
Proposition 9.4]. One could then think of Wittstock’s decomposition theorem to
write an arbitrary completely bounded mapping on the von Neumann algebra M as
a sum of four completely positive ones and apply Tomiyama’s result—but the use of
the decomposition theorem requires M to be injective. Moreover, we wish to stress
that this procedure would be highly non-constructive: first, the proof of Tomiyama’s
result uses Banach limits in an essential way, and the decomposition theorem as well
is an abstract existence result.

We even go on further to show that the same construction can actually be carried
out in case M and N are only required to be dual operator spaces, where at least one
of them shares property Ss (the latter is satisfied, e.g., by all semidiscrete von
Neumann algebras). In this abstract situation, we do not even have a version of the
above-mentioned result of Tomiyama at hand.

Furthermore, our approach yields, in particular, a new and elegant construction
of the usual amplification of an operator FACBðBðHÞÞ to an operator in

CBðBðH#2KÞÞ ¼ CBðBðHÞ#BðKÞÞ; i.e., of the mapping

F/FðNÞ

introduced in [EFF–KIS87, p. 265] and studied in detail in [MAY–NEU–WIT89] (cf.
also [EFF–RUA88, p. 151, Theorem 4.2], where instead of BðHÞ; an arbitrary dual
operator space is considered as the first factor). But of course, the main interest of
our approach lies in the fact that it yields an explicit and constructive description of
the amplification in a much more general setting—where the second factor BðKÞ is
replaced by an arbitrary von Neumann algebra or even a dual operator space. In this

case, the very definition of the mapping F/FðNÞ does not make sense, since it is

based on the representation of the elements in BðHÞ#BðKÞ as infinite matrices
with entries from BðHÞ:

The crucial idea in our construction is to use the concept of slice maps as
introduced by Tomiyama, in connection with the explicit description of the predual

ðM#NÞ�; given by Effros and Ruan—cf. [EFF–RUA90], for the case of von

Neumann algebras, and [RUA92], for dual operator spaces with the first factor
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enjoying property Ss: In these two cases, one has a canonical complete isometry

ðM#NÞ� ¼cb
M� ##N�; ð1Þ

where the latter denotes the projective operator space tensor product. The
dichotomic nature of our statements precisely arises from this fact; at this point,
we wish to emphasize that, as shown in [RUA92, Corollary 3.7], for a dual operator
space M; (1) holding for all dual operator spaces N; is actually equivalent to M
having property Ss:

Hence, the combination of operator space theory and the classical operator
algebraic tool provided by Tomiyama’s slice maps enables us to show that the latter
actually encodes all the essential properties of an amplification. Summarizing the
major advantages of our approach to the amplification problem, we stress the
following:

(a) The use of Tomiyama’s slice maps gives rise to an explicit formula for the
amplification of arbitrary completely bounded mappings with a simple structure.

(b) In particular, the approach is constructive.
(c) In various cases, it is easier to handle amplifications using our formula, since the

construction does not involve any (w�-)limits. As we shall see, the investigation
of the amplification mapping is thus mainly reduced to purely algebraic
considerations—in contrast to the somehow delicate analysis used in [EFF–
RUA88] or [MAY–NEU–WIT89].

(d) Our framework—especially concerning the class of objects allowed as ‘‘second
factors’’ of amplifications—is by far more general than what can be found in the
literature.

We would finally like to point out that, in view of the above-mentioned
characterization of dual operator spaces fulfilling Eq. (1), via property Ss

[RUA92, Corollary 3.7], our approach of the amplification problem seems ‘‘best
possible’’ among the approaches satisfying (a)–(d).

The paper is organized as follows. First, we provide the necessary terminological
background from the theory of operator algebras and operator spaces. We further
give the exact definition of what we understand by an ‘‘amplification’’. The
construction of the latter in our general situation is presented in Section 3.

Section 4 contains a discussion of this amplification mapping under various
aspects, e.g., relating it to results from [DEC–HAA85,MAY–NEU–WIT89]. We
derive a stability result concerning the passage to von Neumann subalgebras or dual
operator subspaces, respectively. Furthermore, an alternative (non-constructive)
description of our amplification mapping is given, which, in particular, immediately
implies that the latter preserves complete positivity.

In Section 5, we introduce an analogous concept of ‘‘amplification in the first
variable’’ which leads to an interesting comparison with the usual tensor product of
operators on Hilbert spaces. The new phenomenon we encounter here is that the
amplifications, one in the first, the other in the second variable, of two completely
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bounded mappings FACBðMÞ and CACBðNÞ do not commute in general. They
do, though, if F or C happens to be normal (cf. Theorem 5.1 below). But our main
result of this section, which may even seem a little astonishing, states that for most
von Neumann algebras M and N; the converse holds true. This means that the
apparently weak—and purely algebraic!—condition of commutation of the
amplification of F with every amplified C already suffices to ensure that F is
normal (Theorem 5.4). The proof of the latter assertion is rather technical and
involves the use of countable spiral nebulas, a concept first introduced by Hofmeier–
Wittstock in [HOF–WIT97].

In the section thereafter, we turn to the uniqueness problem of amplifications. Of
course, an amplification which only meets the obvious algebraic condition is far from
being unique; but we shall show that with some (weak) natural assumptions, one can
indeed establish uniqueness. One of our two positive results actually yields a
considerable generalization (Proposition 6.2) of a theorem which has proved useful
in the solution of the splitting problem for von Neumann algebras (cf. [GE–
KAD96,STR–ZSI99]), and which is sometimes referred to as the Ge–Kadison
Lemma.

Finally, Section 7 is devoted to a completely new approach to a theorem of May,
Neuhardt and Wittstock regarding a module homomorphism property of the
amplified mapping. We prove a version of their result in our context, which reveals
that the essential assertion in fact relies on a fundamental and elementary module
homomorphism property shared by Tomiyama’s slice maps.

2. Preliminaries and basic definitions

Since a detailed account of the theory of operator spaces, as developed by
Blecher–Paulsen, Effros–Ruan, Pisier et al., is by now available via different sources
[EFF–RUA00,PIS00,WIT et al. 99], as for its basic facts, we shall restrict ourselves
to fix the terminology and notation we use.

Let X and Y be operator spaces. We denote by CBðX ;YÞ the operator space of
completely bounded maps from X to Y ; endowed with the completely bounded
norm jj � jjcb: We further write CBðX Þ for CBðX ;X Þ: If M and R are von Neumann

algebras with RDM; then we denote by CBRðMÞ the space of all completely
bounded R-bimodule homomorphisms on M: If two operator spaces X and Y are

completely isometric, then we write X ¼cb
Y :

An operator space Y is called a dual operator space if there is an operator space X

such that Y is completely isometric to X �: In this case, X is called an operator

predual, or predual, for short, of the operator space Y : In general, the predual of a
dual operator space is not unique (up to complete isometry); see [RUA92, p. 180], for
an easy example.

For a dual operator space Y with a given predual X ; we denote by CBsðYÞ the
subspace of CBðYÞ consisting of normal (i.e., sðY ;XÞ-sðY ;XÞ-continuous)
mappings.
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If H is a Hilbert space, then, of course, every w�-closed subspace Y of BðHÞ is a
dual operator space with a canonical predual BðHÞ�=Y>; where Y> denotes the

preannihilator of Y in BðHÞ�: We denote this canonical predual by Y�: Conversely,

if Y is a dual operator space with a given predual X ; there is a w�-homeomorphic

complete isometry of Y onto a w�-closed subspace Ỹ of BðHÞ; for some suitable
Hilbert space H (see [EFF–RUA90, Proposition 5.1]). Following the terminology of
[EFF–KRA–RUA92, p. 3], we shall call such a map a w�-embedding. In this case,

X is completely isometric to the canonical predual Ỹ�; and we shall identify Y with Ỹ

(cf. the discussion in [RUA92, p. 180]).
We denote by H#2K the Hilbert space tensor product of two Hilbert spaces H

and K: For operator spaces X and Y ; we write X3#Y and X ##Y for the injective
and projective operator space tensor product, respectively. We recall that, for
operator spaces X and Y ; we have a canonical complete isometry:

ðX ##YÞ� ¼cb
CBðX ;Y �Þ:

If M and N are von Neumann algebras, we denote as usual by M#N the von
Neumann algebra tensor product. More generally, let V � and W � be dual operator
spaces with given w�-embeddings V �DBðHÞ and W �DBðKÞ: Then the w�-spatial

tensor product of V� and W �; still denoted by V �#W �; is defined to be the w�-
closure of the algebraic tensor product V �#W � in BðH#2KÞ: The corresponding

w�-embedding of V �#W � determines a predual ðV�#W �Þ�: Since we have

ðV�#W �Þ� ¼cb
V#nucW

completely isometrically (where #nuc denotes the nuclear operator space tensor
product), the w�-spatial tensor product of dual operator spaces does not depend on
the given w�-embedding (cf. [EFF–KRA–RUA93, p. 127]).

In the following, whenever we are speaking of ‘‘a dual operator space’’, we always
mean ‘‘a dual operator space M with a given (operator) predual, denoted by M�’’.

We will now present, in the general framework of dual operator spaces, the
construction of left and right slice maps, following the original concept first
introduced by Tomiyama for von Neumann algebras ([TOM70, p. 4]; cf. also
[KRA91, p. 119]). Let M and N be dual operator spaces. For any tAN� and any

uAM#N; the mapping

M�{r//u; r#tS

is a continuous linear functional on M�; hence defines an element LtðuÞ of M: As is

easily verified, Lt is the unique w�-continuous linear map from M#N to M such
that

LtðS#TÞ ¼ /t;TSS ðSAM; TANÞ;

it will be called the left slice map associated with t: In a completely analogous
fashion, we see that for every rAM�; there is a unique w�-continuous linear map Rr
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from M#N to N such that

RrðS#TÞ ¼ /r;SST ðSAM;TANÞ;
which we call the right slice map associated with r:

We note that, as an immediate consequence, we have for every rAM�; tAN� and

uAM#N:

/LtðuÞ; rS ¼ /u; r#tS and /RrðuÞ; tS ¼ /u; r#tS:

Let us now briefly recall the definition of property Ss for dual operator spaces,
as introduced by Kraus [KRA83, Definition 1.4]. To this end, consider two dual
operator spaces M and N with w�-embeddings MDBðHÞ and NDBðKÞ: Then
the Fubini product of M and N with respect to BðHÞ and BðKÞ is defined through

FðM;N;BðHÞ;BðKÞÞ :¼fuABðH#2KÞ j LtðuÞAM;RrðuÞAN

for all rABðHÞ�; tABðKÞ�g:

By the important result [RUA92, Proposition 3.3], we have

FðM;N;BðHÞ;BðKÞÞ ¼cbðM� ##N�Þ�;

which in particular shows that the Fubini product actually does not depend on the
particular choice of Hilbert spaces H and K (cf. also [KRA83, Remark 1.2]). Hence,
we may denote the Fubini product simply by FðM;NÞ: Now, a dual operator space
M is said to have property Ss if

FðM;NÞ ¼cb
M#N

holds for every dual operator space N:
The question of whether every von Neumann algebra has property Ss has been

answered in the negative by Kraus [KRA91, Theorem 3.3]; in fact, there exist even
separably acting factors without property Ss [KRA91, Theorem 3.12].

But every semidiscrete von Neumann algebra—and hence, every type I von
Neumann algebra [EFF–LAN77, Proposition 3.5]—has property Ss; as shown by
Kraus in [KRA83, Theorem 1.9]. We finally refer to the very interesting results
obtained by Effros et al. showing that property Ss is actually equivalent to various
operator space approximation properties (cf. [KRA91, Theorem 2.6; EFF–KRA–
RUA93, Theorem 2.4]).

To avoid long paraphrasing, let us now introduce some terminology suitable for
the statement of our results.

Definition 2.1. Let M and N be either

(i) arbitrary von Neumann algebras, or
(ii) dual operator spaces such that at least one of them has property Ss:

Then, in both cases, we call (M; N) an admissible pair.
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If (M; N) is an admissible pair, then we have a canonical complete isometry:

ðM#NÞ� ¼cb
M� ##N�:

In case M and N are both von Neumann algebras or dual operator spaces with M
having property Ss; this follows from [RUA92, Corollaries 3.6 and 3.7], respectively.

If M and N are dual operator spaces with N enjoying property Ss; the above
identification is seen as follows. (We remark that the argument below, together with
[RUA92, Corollary 3.7], shows that property Ss of a dual operator space M—resp.
N—is actually characterized by the equality ðM#NÞ� ¼cb

M� ##N� holding for all
dual operator spaces N—resp. M:)

Let V be an arbitrary operator space. Then, by [KRA91, Theorem 2.6], V � has

property Ss if and only if it has the weak� operator approximation property (in the
terminology of [EFF–KRA–RUA93]). Owing to [EFF–KRA–RUA93, Theorem
2.4(6)], this is equivalent to

V ##W ¼cb
V#nucW

holding for all operator spaces W : But since both the projective and the injective
operator space tensor product are symmetric, this in turn is equivalent to the
canonical mapping

F : W ##V-W 3# V

being one-to-one for all operator spaces W : But this is the case if and only if we have

W#nucV ¼cb
W ##V

for all operator spaces W ; which finally is of course equivalent to

ðW �#V �Þ� ¼cb
W ##V

holding for all operator spaces W :
We shall now make precise what we mean by an amplification, in particular, which

topological requirements it should meet beyond the obvious algebraic ones.

Definition 2.2. Let (M; N) be an admissible pair. A completely bounded linear
mapping

w : CBðMÞ-CBðM#NÞ;

satisfying the algebraic amplification condition (AAC)

wðFÞðS#TÞ ¼ FðSÞ#T
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for all FACBðMÞ; SAM; TAN; will be called an amplification, if in addition it
enjoys the following properties:

(i) w is a complete isometry,
(ii) w is multiplicative (hence, by (i), an isometric algebra isomorphism onto the

image),
(iii) w is w�-w�-continuous,
(iv) wðCBsðMÞÞDCBsðM#NÞ; i.e., normality of the mapping is preserved.

Remark 2.3. In particular, w is unital. For wðidMÞ coincides with idM#N on all

elementary tensors S#TAM#N due to ðAACÞ; furthermore, by (iv), it is normal,

whence we obtain wðidMÞ ¼ idM#N on the whole space M#N:

In [MAY–NEU–WIT89]—cf. also [EFF–KIS87, p. 265]—for every FACBðBðHÞÞ;
the authors obtain a mapping FðNÞACBðBðH#2KÞÞ ¼ CBðBðHÞ#BðKÞÞ
which obviously fulfills the algebraic amplification condition (AAC). The definition

of FðNÞ is carried out in detail in [MAY–NEU–WIT89, p. 284, Section 2] (there, the
Hilbert space K is written in the form c2ðIÞ for some suitable set I). We restrict
ourselves to recall that, given a representation of uABðH#2KÞ by an infinite
matrix ½ui;j
i;j; where ui;jABðHÞ; one has:

FðNÞð½ui;j 
i;jÞ ¼ ½Fðui;jÞ
i;j :

In fact, as is well known, more than only (AAC) is satisfied. Indeed, we have

Theorem 2.4. The mapping

CBðBðHÞÞ-CBðBðHÞ#BðKÞÞ

F/FðNÞ

fulfills the above requirements of an amplification.

Proof. This follows from [MAY–NEU–WIT89, p. 284, Section 2, Proposition 2.2];
condition (iv) in Definition 2.2 is shown in [HOF95, Theorem 3.1]. &

We close this section by remarking that several properties of the mapping

F/FðNÞ are studied in a more general situation by Effros and Ruan in [EFF–
RUA88], see p. 151 and Theorem 4.2.

3. The main construction

We now come to our central result concerning the existence of an amplification in
the sense of Definition 2.2 and, which is most important, presenting its explicit form.
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Theorem 3.1. Let (M; N) be an admissible pair. Then there exists an amplification

w : CBðMÞ-CBðM#NÞ

in the sense of Definition 2.2. The amplification is explicitly given by

/wðFÞðuÞ; r#tS ¼ /FðLtðuÞÞ; rS;

where FACBðMÞ; uAM#N; rAM�; tAN�: Here, Lt denotes the left slice map

associated with t:

Proof. We construct a complete quotient mapping

k : CBðM#NÞ�-CBðMÞ�

in such a way that w :¼ k� will enjoy the desired properties.
We first note that

CBðMÞ� ¼cb
M� ##M ð2Þ

and, analogously,

CBðM#NÞ� ¼cb ðM#NÞ� ##ðM#NÞ ð3Þ

with completely isometric identifications.
We further write

W : CBðM#N;CBðN�;MÞÞ-CBðN� ##ðM#NÞ;MÞ

for the canonical complete isometry. For tAN�; let us consider the left slice map

Lt : M#N-M;

where

LtðS#TÞ ¼ /t;TSS

for SAM; TAN: In [RUA92, Theorem 3.4] (and Corollaries 3.6, 3.7), Ruan
constructs a complete isometric isomorphism (cf. also [EFF-RUA90, Theorem 3.2])

y : M� ##N�-ðM#NÞ�;

where for elementary tensors we have (SAM; TAN; rAM�; tAN�):

/yðr#tÞ;S#TS ¼ /r;SS/t;TS: ð4Þ

Thus for all rAM� and tAN�; we see that yðr#tÞ ¼ r#t on the algebraic tensor

product M#N; but since yðr#tÞ; r#tAðM#NÞ� are normal functionals, on the
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whole space M#N we obtain for all rAM�; tAN�:

yðr#tÞ ¼ r#t: ð5Þ

Hence, in the sequel, we shall not explicitly note y when applied on elementary
tensors, except for special emphasis.

We now obtain a complete isometry:

y� : M#N-CBðN�;MÞ:

For each tAN�; we define a linear continuous mapping

jt : M#N-M

through

jtðuÞ :¼ y�ðuÞðtÞ

for uAM#N: One immediately deduces from the definition that jt is normal.
Furthermore, jt satisfies

jtðS#TÞ ¼ /t;TSS

for all SAM; TAN: For if rAM�; we have:

/jtðS#TÞ; rS ¼/y�ðS#TÞðtÞ; rS

¼/y�ðS#TÞ; r#tS

¼/yðr#tÞ;S#TS

¼ð4Þ/r;SS/t;TS:

Hence, jt coincides with the left slice map Lt on all elementary tensors in

M#N; and since both mappings are normal, we finally see that jt ¼ Lt: Thus we
obtain

y�ðuÞðtÞ ¼ LtðuÞ

for all uAM#N; tAN�: We note that, of course,

y�ACBðM#N;CBðN�;MÞÞ:

Hence, by definition of W ; we have:

Wðy�ÞACBðN� ##ðM#NÞ;MÞ:
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Thanks to the functorial property of the projective operator space tensor product, we
now get a completely bounded mapping

idM�
##Wðy�Þ : M� ##N� ##ðM#NÞ-M� ##M:

What remains to be done, is the passage from ðM#NÞ� ##ðM#NÞ to

M� ##N� ##ðM#NÞ: This is accomplished by the complete quotient mapping

y�1 ##idM#N : ðM#NÞ� ##ðM#NÞ-M� ##N� ##ðM#NÞ:

Now, defining

k :¼ ðidM�
##Wðy�ÞÞ3ðy�1 ##idM#NÞ : ðM#NÞ� ##ðM#NÞ-M� ##M;

we obtain a completely bounded mapping which has the desired properties, as we
shall now prove.

In view of (2) and (3), we see that we have indeed constructed a completely
bounded mapping

k : CBðM#NÞ�-CBðMÞ�;

and it remains to verify the properties of the mapping

w :¼ k� : CBðMÞ-CBðM#NÞ:

First, we remark the following:

ð�Þ Since the mapping y : M� ##N�-ðM#NÞ� is a complete isometry, it is

readily seen that yðM�#N�Þ#ðM#NÞ is norm dense in ðM#NÞ� ##ðM#NÞ:
Every element of the space CBðM#NÞ ¼cbððM#NÞ� ##ðM#NÞÞ� is thus

completely determined by its values on yðM�#N�Þ#ðM#NÞ:
By construction, we see that for all FACBðMÞ; uAM#N; rAM� and tAN�:

/wðFÞ; yðr#tÞ#uS ¼/F; kðyðr#tÞ#uÞS

¼/F; r#Wðy�Þðt#uÞS

¼/F; r#y�ðuÞðtÞS

¼/F; r#LtðuÞS:

Hence we have:

/wðFÞ; yðr#tÞ#uS ¼ /F; r#LtðuÞS;
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and following ð�Þ; by this wðFÞ is completely determined. Taking into account (5), we

thus have that for all rAM�; tAN�; uAM#N:

/wðFÞ; r#t#uS ¼ /F; r#LtðuÞS; ð6Þ

which determines wðFÞ completely.
Now, let us verify the condition (AAC) and properties (i)–(iv).
(AAC) Fix FACBðMÞ; SAM; TAN; rAM� and tAN�: We obtain:

/r#t; wðFÞðS#TÞS ¼/wðFÞ; r#t#ðS#TÞS

¼ð6Þ/F; r#LtðS#TÞS

¼/t;TS/F; r#SS

¼/r;FðSÞS/t;TS

¼/r#t;FðSÞ#TS:

Hence, for all FACBðMÞ; SAM and TAN; we have:

wðFÞðS#TÞ ¼ FðSÞ#T ;

as desired.
(i) To prove that w is a complete isometry, we show that k ¼ w� is a complete

quotient mapping. But this follows from the fact that Wðy�Þ is a complete quotient

mapping. (For if this is established, then the mapping idM�
##Wðy�Þ

ACBðM� ##N� ##ðM#NÞ;M� ##MÞ is a complete quotient map, and of course

this is also the case for y�1 ##idM#NACBððM#NÞ� ##ðM#NÞ;M�
##N� ##ðM#NÞÞ:) This in turn is easily seen. Fix nAN: Let S ¼ ½Si;j 
i;jAMnðMÞ;
jjSjjo1: We are looking for an element jAMnðN� ##ðM#NÞÞ; such that jjjjjo1

and Wðy�ÞðnÞðjÞ ¼ S; where Wðy�ÞðnÞ denotes the nth amplification of the mapping

Wðy�Þ:
Let us choose tAN� with jjtjj ¼ 1: Then there exists TAN; jjT jj ¼ 1; such

that /t;TS ¼ 1: Now j :¼ ½t#ðSi;j#TÞ
i;jAMnðN� ##ðM#NÞÞ satisfies all our

requirements. For we have:

jjjjjMnðN� ##ðM#NÞÞ ¼ jjtjj jj½Si;j#T 
i;jjjMnðM#NÞ

¼ jjtjj jj½Si;j#T 
i;jjjMnðM3#NÞ

¼ jjtjj jj½Si;j
i;jjjMnðMÞjjT jj

o 1:
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Furthermore, we see that:

Wðy�ÞðnÞðjÞ ¼Wðy�ÞðnÞð½t#ðSi;j#TÞ
i;jÞ

¼ ½Wðy�Þðt#ðSi;j#TÞÞ
i;j

¼ ½y�ðSi;j#TÞðtÞ
i;j

¼ ½LtðSi;j#TÞ
i;j

¼ ½/t;TSSi;j
i;j

¼S;

which establishes the claim.
(ii) We show that w is an algebra homomorphism. To this end, let F;CACBðMÞ:

We have to show that

wðFCÞ ¼ wðFÞwðCÞ;

as elements in

CBðM#NÞ ¼cbðM� ##N� ##ðM#NÞÞ�:

Fix TAM#N; rAM� and tAN�: It suffices to show that

/wðFCÞ; r#t#TS ¼ /wðFÞwðCÞ; r#t#TS:

On the left side, we obtain

/wðFCÞ; r#t#TS ¼ð6Þ/FC; r#LtðTÞS

¼ /FðCðLtðTÞÞÞ; rS

¼ /F; r#CðLtðTÞÞS:

On the right, we have

/wðFÞwðCÞ; r#t#TS ¼/wðFÞ½wðCÞðTÞ
; r#tS

¼/wðFÞ; r#t#wðCÞðTÞS

¼ð6Þ/F; r#LtðwðCÞðTÞÞS:

Thus we have to show that

LtðwðCÞðTÞÞ ¼ CðLtðTÞÞ;
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as elements in M: To this end, let rAM�: We then have

/LtðwðCÞðTÞÞ; rS ¼/wðCÞðTÞ; r#tS

¼/wðCÞ; r#t#TS

¼ð6Þ/C; r#LtðTÞS

¼/CðLtðTÞÞ; rS;

which yields the desired equality.
(iii) Being an adjoint mapping, w is clearly w�-w�-continuous.

(iv) Fix FACBsðMÞ: We wish to prove that wðFÞACBsðM#NÞ: So let

ðTaÞDBallðM#NÞ be a net such that Ta !w
�

0: We claim that wðFÞðTaÞ-0

(sðM#N;M� ##N�Þ). It suffices to show that we have for arbitrary rAM� and
tAN�:

/wðFÞðTaÞ; r#tS-0:

We obtain for all indices a:

/wðFÞðTaÞ; r#tS ¼/wðFÞ; r#t#TaS

¼ð6Þ/F; r#LtðTaÞS

¼/FðLtðTaÞÞ; rS:

Since F is normal, it thus remains to show that LtðTaÞ !w
�

0; but this follows in turn

from the normality of the slice map Lt: &

4. Discussion of the amplification mapping

In the sequel, for a mapping FACBðMÞ; we shall consider amplifications with
respect to different von Neumann algebras or dual operator spaces N: We will show
that all of these amplifications are compatible with each other in a very natural way.
For this purpose, we introduce the following

Notation 4.1. If (M; N) is an admissible pair, we will denote by wN the
amplification with respect to N as constructed in Theorem 3.1.

Taking the restriction of the mapping wN : CBðMÞ-CBðM#NÞ to the
subalgebra CBsðMÞ; by condition (iv) in Definition 2.2, we obtain a mapping

w0 : CBsðMÞ-CBsðM#NÞ; which of course satisfies the algebraic condition
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(AAC) on CBsðMÞ: But this is the case as well for the amplification

H : CBsðMÞ-CBsðM#NÞ

considered, for von Neumann algebras M and N; by de Cannière and Haagerup in
[DEC–HAA85, Lemma 1.5(b)]. Note that H is completely determined by (AAC),
since the image of H consists of normal mappings. Hence we deduce that w0 ¼ H;
thus showing that wN is indeed a (w�-w�-continuous) extension of H to CBðMÞ;
where M and N are von Neumann algebras (cf. also [KRA91, p. 123], for a
discussion of the mapping H in a more general setting).

Remark 4.2. Theorem 3.1 implies in particular (cf. (iv) in Definition 2.2) that
whenever ðM;NÞ is an admissible pair, then for every FACBsðMÞ; the mapping

wNðFÞ is the unique normal map in CBsðM#NÞ which satisfies (AAC). This
entails that the last assumption made in [KRA83, Proposition 1.19] is always fulfilled
(and even true in greater generality than actually needed there), which besides
slightly simplifies the proof of [KRA83, Theorem 2.2].

Let us now briefly return to the special case where M ¼ BðHÞ and N ¼ BðKÞ:
We already noted in Theorem 2.4 that the mapping F/FðNÞ; where
FACBðBðHÞÞ; is an amplification in the sense of Definition 2.2. Since BðHÞ
trivially is an injective factor, we conclude by Proposition 6.1 that

wBðKÞðFÞ ¼ FðNÞ ð7Þ

for all FACBðBðHÞÞ: Thus, restricted to that special case, Theorem 3.1 provides a

new construction of the mapping F/FðNÞ and for the first time shows the intimate
relation to Tomiyama’s slice maps.

We finally stress that our construction of wBðKÞðFÞ is coordinate free—in contrast

to the definition of FðNÞ in [MAY–NEU–WIT89]: since our approach does not rely

on an explicit representation of operators in BðHÞ#BðKÞ as infinite matrices, we
do not have to choose a basis in the Hilbert space K; whereas in [MAY–NEU–
WIT89], the latter is represented as c2ðIÞ for some suitable I : The equality

wBðKÞðFÞ ¼ FðNÞ ðFACBðBðHÞÞÞ;

obtained above, now immediately implies that the definition of the mapping FðNÞ in
[MAY–NEU–WIT89] does not depend on the particular choice of a basis. (This fact

of course can also be obtained intrinsically from the construction of FðNÞ; but it
comes for free in our approach.)

We now come to the result announced above which establishes the compatibility
of our amplification with respect to different von Neumann algebras or dual
operator spaces N; respectively.
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Theorem 4.3. Let (M;N) be an admissible pair. Let further N0DN be such that (M;
N0) is admissible as well. Then, for all FACBðMÞ; we have:

wNðFÞjM#N0
¼ wN0

ðFÞ:

Proof. Denote by i : M#N0+M#N the canonical embedding, and write
q : N�7ðN0Þ� for the restriction map. Obviously, the pre-adjoint mapping

i� : M� ##N�7M� ##ðN0Þ� satisfies i� ¼ idM�
##q:

We shall prove that the following diagram commutes:

M N0
N0

M N0

M N M N

� (�)

N
� (�)

i i

This yields the desired equality (and shows at the same time that wNðFÞjM#N0

indeed leaves the space M#N0 invariant).

To this end, fix uAM#N0: We have to show that

wNðFÞðiðuÞÞ ¼ iðwN0
ðFÞðuÞÞ:

Let rAM� and tAN�: It is sufficient to verify that

/wNðFÞðiðuÞÞ; r#tS ¼ /iðwN0
ðFÞðuÞÞ; r#tS:

For the left-hand expression, we get:

/wNðFÞðiðuÞÞ; r#tS ¼ /wNðFÞ; r#t#iðuÞS ¼ /F; r#LtðiðuÞÞS:

On the right-hand side, we find:

/iðwN0
ðFÞðuÞÞ; r#tS ¼/wN0

ðFÞðuÞ; r#qðtÞS

¼/wN0
ðFÞ; r#qðtÞ#uS

¼/F; r#LqðtÞðuÞS:

It thus remains to be shown that

LtðiðuÞÞ ¼ LqðtÞðuÞ:
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But for jAM�; we obtain:

/LtðiðuÞÞ;jS ¼/iðuÞ;j#tS

¼/u;j#qðtÞS

¼/LqðtÞðuÞ;jS;

which yields the claim. &

We shall now present another very natural, though highly non-constructive,
approach to the amplification problem, and discuss its relation to our concept. Let
(M; N) be an admissible pair, with MDBðHÞ and NDBðKÞ: An element
FACBðMÞ may be considered as a completely bounded mapping from M with
values in BðHÞ: Hence we can assign to F a Wittstock–Hahn–Banach extension
*FACBðBðHÞÞ: Then the mapping

*FðNÞjM#N : M#N-BðHÞ#BðKÞ

is completely bounded and of course satisfies the algebraic amplification condition
(AAC). As we shall now see, this (non-constructive) abstract procedure yields indeed

a mapping which takes values in M#N and does not depend on the choice of the

Wittstock–Hahn–Banach extension—namely, *FðNÞjM#N is nothing but wNðFÞ:
This will be proved in a similar fashion as Theorem 4.3.

Theorem 4.4. Let (M; N) be an admissible pair, where MDBðHÞ and NDBðKÞ:
Let further FACBðMÞ: Then for an arbitrary Wittstock–Hahn–Banach extension
*FACBðBðHÞÞ obtained as above, we have:

*FðNÞjM#N ¼ wNðFÞ:

Proof. We write i : M#N+BðHÞ#BðKÞ for the canonical embedding. It is
sufficient to show that the following diagram commutes:

M

B(H) B(K)

N

B(H) B(K)

M N
N

� (�)

i i

�
~(∞)

Fix uAM#N; rABðHÞ�; tABðKÞ�: We have only to show that

/i½wNðFÞðuÞ
; r#tS ¼ / *FðNÞðiðuÞÞ; r#tS;
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which by Eq. (7) is equivalent to

/i½wNðFÞðuÞ
; r#tS ¼ /wBðKÞð *FÞðiðuÞÞ; r#tS: ð8Þ

On the left-hand side, we obtain

/i½wNðFÞðuÞ
; r#tS ¼/wNðFÞðuÞ; rjM#tjNS

¼/F; rjM#LtjNðuÞS:

Now, writing i0 : M+BðHÞ for the canonical embedding, we note that

/LtðiðuÞÞ; rS ¼/iðuÞ; r#tS

¼/u; rjM#tjNS

¼/LtjNðuÞ; rjMS

¼/i0ðLtjNðuÞÞ; rS;

whence we have

LtðiðuÞÞ ¼ i0ðLtjNðuÞÞ:

Thus, we see that

*F½LtðiðuÞÞ
 ¼ *F½i0ðLtjNðuÞÞ
 ¼ i0½FðLtjNðuÞÞ
: ð9Þ

Now we find for the right-hand side term of Eq. (8):

/wBðKÞð *FÞðiðuÞÞ; r#tS ¼/ *F; r#LtðiðuÞÞS

¼/ *F½LtðiðuÞÞ
; rS

¼ð9Þ/i0½FðLtjNðuÞÞ
; rS

¼/FðLtjNðuÞÞ; rjMS

¼/F; rjM#LtjNðuÞS;

whence we deduce the desired equality. &

Remark 4.5. If MDBðHÞ; NDBðKÞ are von Neumann algebras and FACPðMÞ
is completely positive, then, using an arbitrary Arveson extension of F to a

completely positive map *FACPðBðHÞÞ; we obtain by the same reasoning as above

that *FðNÞjM#N ¼ wNðFÞ: But it is easy to see from the definition of the mapping

*F/ *FðNÞ (cf. [MAY–NEU–WIT89, p. 284, Section 2]) that *FðNÞ still is completely
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positive, whence wNðFÞ also is. This shows that our amplification wN preserves
complete positivity.

5. An algebraic characterization of normality

In the following, let still (M; N) be an admissible pair. Using Tomiyama’s
left slice map, for every completely bounded mapping FACBðMÞ; we have

constructed an amplification wNðFÞ ¼: F#idNACBðM#NÞ: In an analogous
fashion, replacing in the above construction Tomiyama’s left by the appro-
priate right slice maps, we obtain—mutatis mutandis—an amplification of
completely bounded mappings CACBðNÞ ‘‘in the left variable’’. This yields an

amplification idM#CACBðM#NÞ; which is completely determined by the
equation:

/idM#C; r#t#uS ¼ /C; t#RrðuÞS; ð10Þ

where uAM#N; rAM� and tAN� are arbitrary. Of course, idM#C shares
analogous properties to those of F#idN:

It is natural to ask for some relation between the operators in CBðM#NÞ
which arise by the two different kinds of amplification. Let us briefly compare our
situation with the classical setting of amplification of operators on Hilbert spaces H
and K: For operators SABðHÞ and TABðKÞ; we consider the amplifications

S#idK and idH#T in BðHÞ#BðKÞ ¼ BðH#2KÞ: Then it is evident that
we have

ðS#idKÞðidH#TÞ ¼ ðidH#TÞðS#idKÞ; ð11Þ

and the tensor product of S and T is defined precisely to be this operator.
Back in our situation, for FACBðMÞ and CACBðNÞ; the corresponding

amplifications F#idN and idM#C will commute provided at least one of the
involved mappings F or C is normal—but not in general. In fact, we will
even show that for most von Neumann algebras M and N; FACBðMÞ satisfying
this innocent looking commutation relation for all CACBðNÞ forces F to be
normal! This phenomenon, which may be surprising at first glance, is due to the fact
that, in contrast to the multiplication in a von Neumann algebra R (in our case

R ¼ M#N), the multiplication in CBðRÞ is not w�-continuous in both variables,
but only in the left one. In fact, the subset of CBðRÞ � CBðRÞ on which the product
is w�-continuous is precisely CBðRÞ � CBsðRÞ: This is reflected in the following
result which parallels relation (11) in our context.

Theorem 5.1. Let (M; N) be an admissible pair. If CACBsðNÞ is a normal mapping,
then we have for every FACBðMÞ:

ðF#idNÞðidM#CÞ ¼ ðidM#CÞðF#idNÞ:
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Proof. Fix uAM#N; rAM� and tAN�: We first remark that

/idM#C; r#t#uS ¼ð10Þ
/C; t#RrðuÞS

¼ /CðRrðuÞÞ; tS

¼ /RrðuÞ;C�ðtÞS

¼ /u; r#C�ðtÞS; ð12Þ

where C� denotes the pre-adjoint mapping of C:
To establish the claim, it suffices to prove that

/ðF#idNÞðidM#CÞ; r#t#uS ¼ /ðidM#CÞðF#idNÞ; r#t#uS:

The left side takes on the following form:

/ðF#idNÞðidM#CÞ; r#t#uS ¼/wNðFÞ; r#t#ðidM#CÞðuÞS

¼/F; r#Lt½ðidM#CÞðuÞ
S;

whereas on the right side, we obtain

/ðidM#CÞðF#idNÞ; r#t#uS ¼/ðidM#CÞðwNðFÞðuÞÞ;r#tS

¼ð12Þ
/wNðFÞðuÞ; r#C�ðtÞS

¼/wNðFÞ; r#C�ðtÞ#uS

¼/F; r#LC�ðtÞðuÞS:

Hence, it remains to be shown that

Lt½ðidM#CÞðuÞ
 ¼ LC�ðtÞðuÞ:

But for arbitrary r0AM�; we get:

/Lt½ðidM#CÞðuÞ
; r0S ¼/ðidM#CÞðuÞ; r0#tS

¼ð12Þ
/u; r0#C�ðtÞS

¼/LC�ðtÞðuÞ; r0S;

which yields the claim. &

We now come to the main result of this section, which establishes a converse of the
above theorem for a very wide class of von Neumann algebras. It may be interpreted
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as a result on ‘‘automatic normality’’, i.e., some simple, purely algebraic condition—
namely commuting of the associated amplifications—automatically implies the
strong topological property of normality. Besides one very mild technical condition,
the first von Neumann algebra, M; can be completely arbitrary, the second one, N;
is only assumed to be properly infinite; we will show by an example that without the
latter condition, the conclusion does not hold in general. The weak technical
assumption mentioned says, roughly speaking, that the von Neumann algebras
involved should not be acting on Hilbert spaces of pathologically large dimension.
We remark that for separably acting von Neumann algebras M and N; or, more

generally, in case M#N is countably decomposable, our assumption is trivially
satisfied. In order to formulate the condition precisely, we use the following natural
terminology which has been introduced in [NEU02].

Definition 5.2. Let RDBðHÞ be a von Neumann algebra. Then we define the
decomposability number of R; denoted by decðRÞ; to be the smallest cardinal number
k such that every family of non-zero pairwise orthogonal projections in R has at
most cardinality k:

Remark 5.3. Of course, a von Neumann algebra R is countably decomposable if and
only if decðRÞp@0:

We are now ready to state the main theorem of this section.

Theorem 5.4. Let M and N be von Neumann algebras such that decðM#NÞ is a

non-measurable cardinal, and suppose N is properly infinite. If FACBðMÞ is such that

ðF#idNÞðidM#CÞ ¼ ðidM#CÞðF#idNÞ

for all CACBðNÞ; then F must be normal.

Remark 5.5. The assumption that the decomposability number of M#N be non-
measurable, is very weak and in fact just excludes a set-theoretic pathology. We
briefly recall that a cardinal k is said to be (real-valued) measurable if for every set G
of cardinality k; there exists a diffused probability measure on the power set PðGÞ:
Measurability is a property of ‘‘large’’ cardinals (@0 is of course not measurable). In
order to demonstrate how weak the restriction to non-measurable cardinals is, let us
just mention the fact (cf. [KAN–MAG78, Section 1, p. 106, 108]) that the existence
of measurable cardinals cannot be proved in ZFC (¼ the axioms of Zermelo–
Fraenkel + the axiom of choice), and that it is consistent with ZFC to assume
the non-existence of measurable cardinals [GAR–PFE84, Section 4, Theorem 4.14,
p. 972]. For a further discussion, we refer to [NEU02], and the references
therein.

We begin now with the preparations needed for the proof of Theorem 5.4. We first
note that, even though requiring a non-measurable decomposability number means
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only excluding exotic von Neumann algebras, it is already enough to ensure a very
pleasant property of the predual. The latter is actually of great (technical)
importance in the proof of Theorem 5.4 and is therefore stated explicitly in the
following.

Proposition 5.6. Let R be a von Neumann algebra. Then decðRÞ is non-measurable if

and only if the predual R� has Mazur’s property (i.e., w�-sequentially continuous

functionals on R are w�-continuous—and hence belong to R�).

Proof. This is Theorem 3.11 in [NEU02]. &

The crucial idea in the proof of Theorem 5.4 is to use a variant of the concept of a
countable spiral nebula, which has been introduced in [HOF–WIT97, Section 1.1]
(cf. ibid., Lemma 1.5).

Definition 5.7. Let R be a von Neumann algebra. A sequence ðan; enÞnAN of �-
automorphisms an on R and projections en in R will be called a countable reduced

spiral nebula on R if the following holds true:

enpenþ1; WOT � lim
n

en ¼ 1; amðemÞ>anðenÞ for all m; nAN0; man:

The following proposition is the crucial step in order to establish Theorem 5.4. It
shows that a countable reduced spiral nebula may be used to derive a result on
automatic normality—and not only on automatic boundedness, as is done in
[HOF–WIT97, Lemma 1.5].

Proposition 5.8. Let R be a von Neumann algebra such that decðRÞ is non-measurable,
and suppose that there is a countable reduced spiral nebula ðan; enÞ on R:

(i) Put lk :¼ kðkþ1Þ
2

; and let F be a free ultrafilter on N: Then the operators

Cn :¼ w� � lim
k-F

a�1
lkþn

are completely positive and unital.
(ii) If FABðRÞ commutes with all elements of the set S :¼ fa�1

n j nAN0g
w�

DCPðRÞ;
then F is normal.

Proof. Statement (i) is clear. In order to prove (ii), in view of Proposition 5.6, we
only have to show that if ðxnÞnAN0

DBallðRÞ converges w� to 0; then the same is true

for the sequence ðFðxnÞÞn: It suffices to prove that if ðFðxni
ÞÞi is a w�-convergent

subnet, then its limit must be 0:
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The projections anðenÞ being pairwise orthogonal, noting that lkþ1 ¼ lk þ kþ 1; we
see that

x̃ :¼
XN
k¼0

Xk
n¼0

alkþnðelkþnxnelkþnÞAR:

Now we deduce (cf. the proof of [HOF–WIT97, Lemma 1.5]) that

Cnðx̃Þ ¼ xn for all nAN0: ð13Þ

Let C :¼ w� � limj Cnij
ABallðCBðRÞÞ be a w�-cluster point of the net ðCni

Þi: Then

CAS; and we obtain, using (13):

lim
i

Fðxni
Þ ¼ lim

i
FðCni

ðx̃ÞÞ ¼ lim
i

Cni
ðFðx̃ÞÞ

¼ lim
j

Cnij
ðFðx̃ÞÞ ¼ CðFðx̃ÞÞ

¼FðCðx̃ÞÞ ¼ F lim
j

Cnij
ðx̃Þ

� �

¼F lim
j

xnij

� �
¼ Fð0Þ ¼ 0;

which finishes the proof. &

We are now sufficiently prepared for Theorem 5.4.

Proof. Since N is properly infinite, it is isomorphic to N#Bðc2ðZÞÞ; cf., e.g.,
Appendix C, ‘‘Theorem’’, in [VAN78]. By applying the argument in the first part of
the proof of Proposition 2.2 in [HOF–WIT97], we can construct a countable reduced
spiral nebula ðan; enÞ on Bðc2ðZÞÞ: Hence, ð*an; ẽnÞ :¼ ðidM#idN#an; 1M#1N#enÞ
is a countable reduced spiral nebula on M#N#Bðc2ðZÞÞ ¼ M#N: We will now

apply Proposition 5.8 to the von Neumann algebra M#N and the mapping

F#idNACBðM#NÞ to show that the latter, and hence F itself, is normal. To this
end, we only have to prove that F#idN commutes with all elements of the set

S :¼ f*a�1
n j nAN0g

w�

: But the amplification in the first variable, wM; is w�-w�-
continuous (this is established in the same fashion as we did for wM in Theorem 3.1),
and this entails that every element of S is of the form idM#C for some
CACBðNÞ: &

Remark 5.9. The assumption of N being properly infinite may be interpreted as a
certain richness condition which is necessary to be imposed on the second von
Neumann algebra. Indeed, if in contrast N is, e.g., a finite type I factor, the
statement is wrong in general. This is easily seen as follows: In this case, CBðNÞ ¼
CBsðNÞ: Now let M be an arbitrary von Neumann algebra such that the singular
part of the Tomiyama–Takesaki decomposition of CBðMÞ is non-trivial, i.e.,
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CBsðMÞað0Þ: Then by Theorem 5.1, every FACBsðMÞ will satisfy the commuta-
tion relation in Theorem 5.4 for all CACBðNÞ ¼ CBsðNÞ; even though it is
singular.

We finish our discussion by considering again an arbitrary admissible pair
(M; N). In view of Theorem 5.1, it would be natural, following the model of the
tensor product of bounded operators on Hilbert spaces, to define a tensor product
of FACBðMÞ and CACBsðNÞ by setting:

F#C :¼ ðF#idNÞðidM#CÞ ¼ ðidM#CÞðF#idNÞ;

which defines an operator in CBðM#NÞ: It would be interesting to go even further
and consider, for arbitrary FACBðMÞ and CACBðNÞ; the two ‘‘tensor products’’

F *#1C and F *#2C; defined respectively through

F *#1C :¼ ðF#idNÞðidM#CÞACBðM#NÞ

and

F *#2C :¼ ðidM#CÞðF#idNÞACBðM#NÞ:

By Theorem 5.4, we know that these are different in general, even in the case of von
Neumann algebras M and N: We wish to close this section by stressing the
resemblance of these considerations to the well-known construction of the two Arens
products on the bidual of a Banach algebra, which in general are different. From this
point of view, the subalgebra CBsðNÞ could play the role of what in the context of
Banach algebras is known as the topological centre (for the latter term, see, e.g.,
[DAL00, Definition 2.6.19]).

6. Uniqueness of the amplification and a generalization of the

Ge–Kadison Lemma

In the following, we will show that under different natural conditions, an algebraic
amplification is uniquely determined. This leads in particular to a remarkable
generalization of the so-called Ge–Kadison Lemma (see Proposition 6.2), which is
obtained as an application of our Theorem 5.1.

But before establishing positive results, we briefly point out why in general, an
algebraic amplification is highly non-unique. In [TOM70, p. 28], Tomiyama states, in
the context of von Neumann algebras, that the ‘‘product projection’’ of two
projections of norm one ‘‘might not be unique’’ (of course, in our case, the second
projection of norm one would be the identity mapping). The following simple
argument shows that whenever M and N are infinite-dimensional dual operator
spaces, there are uncountably many different algebraic amplifications of a map

FACBðMÞ to a completely bounded map on M#N; regardless of F being normal

or not. Namely, for any non-zero functional jAðM#NÞ� which vanishes on
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M3#N; and any non-zero vector vAM#N;

wj;vN ðFÞ :¼ wNðFÞ �/j; wNðFÞð�ÞSv

defines such an algebraic amplification. Furthermore, the amplification wj;vN can of

course be taken arbitrarily close to an isometry: for every e40; an obvious choice of

j and v yields an algebraic amplification wj;vN : CBðMÞ-CBðM#NÞ such that

ð1 � eÞjjFjjcbpjjwj;vN ðFÞjjcbpð1 þ eÞjjFjjcb

for all FACBðMÞ:
We begin our investigation by noting a criterion which establishes the uniqueness

of amplification for a large class of von Neumann algebras, though only assuming
part of the requirements listed in Definition 2.2.

Proposition 6.1. Let M and N be von Neumann algebras, where M is an injective

factor. If w0 : CBðMÞ-CBðM#NÞ is a bounded linear mapping which satisfies the

algebraic amplification condition (AAC) and properties (iii) and (iv) in Definition 2.2,
then w0 ¼ wN:

Proof. Owing to [CHA–SMI93, Theorem 4.2], we have the density relation:

CBsðMÞw�

¼ CBðMÞ:

Hence, due to their w�-w�-continuity (condition (iii)), wN and w0 will be identical if
they only coincide on CBsðMÞ: But if FACBsðMÞ; by condition (iv), the mappings
wNðFÞ and w0ðFÞ are normal, so that to establish their equality, it suffices to show

that they coincide on all elementary tensors S#TAM#N: But this is true since
they both fulfill condition (AAC). &

We will now present our generalization of the Ge–Kadison Lemma which was first
obtained in [GE–KAD96, Lemma F] and used in the solution of the splitting
problem for tensor products of von Neumann algebras (in the factor case).
Furtheron, a version of the lemma was again used by Strătilă and Zsidó in [STR–
ZSI99] in order to derive an extremely general commutation theorem which extends
both Tomita’s classical commutant theorem and the above mentioned splitting result
[STR–ZSI99, Theorem 4.7]. The result we give below generalizes the lemma in the
version as stated (and proved) in [STR–ZSI99, Section 3.4], which the authors refer
to as a ‘‘smart technical device’’. In [STR–ZSI99], it is applied to normal conditional
expectations of von Neumann algebras [STR–ZSI99, Section 3.5]; of course, these
are in particular completely positive. Our generalization yields an analogous result
which in turn can be applied to arbitrary completely bounded mappings. This fact
may be of interest in the further development of the subject treated in [GE–
KAD96,STR–ZSI99]. Furthermore, we prove that the lemma not only holds for von
Neumann algebras but for arbitrary admissible pairs, a situation which is not
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considered in the latter articles. Hence, our version is likely to prove useful in the
interesting problem of obtaining a splitting theorem in the more general context of
w�-spatial tensor products of ultraweakly closed subspaces—a question which is
actually hinted at in [GE–KAD96, p. 457].

Proposition 6.2. Let ðM;NÞ be an admissible pair, and FACBðMÞ an arbitrary

completely bounded operator. Suppose Y : M#N-M#N is any map which

satisfies, for some non-zero element nAN:

(i) Y commutes with the slice maps idM#tn (tAN�)
(ii) Y coincides with F#idN on M#n:

Then we must have Y ¼ F#idN:
In particular, if FACBðMÞ and ðFaÞaDCBðMÞ is a bounded net converging w� to

F; then Fa#idN !w
�
F#idN:

Remark 6.3. (i) The known version of the lemma supposes that M and N are von
Neumann algebras, and that the mapping F is normal and completely positive. As
shown by the above, all these assumptions can be either weakened or even just
dropped.

(ii) The last statement in the proposition is even true without assuming the net
ðFaÞa to be bounded, and in this generality follows directly from our Theorem 3.1

(property (iii) in Definition 2.2). Nevertheless, this ‘‘unbounded’’ version does not
appear in the literature. (We remark that the assumption of boundedness is missing
in the statement of Lemma 3.4 in [STR–ZSI99], though needed in the proof
presented there.) We shall point out below how the ‘‘bounded’’ version can be easily
obtained by using the first part of the Proposition (cf. [STR–ZSI99, Section 3.4]).

Proof. Using the first result of the last section, our argument follows the same lines
as the one given in [STR–ZSI99]; we present the proof because of its brevity. Fix a

non-zero element mAM: We obtain for every uAM#N; rAM� and tAN�:

/YðuÞ; r#tSm#n ¼ ½ðrm#idNÞðidM#tnÞY
ðuÞ

¼ ½ðrm#idNÞYðidM#tnÞ
ðuÞ by ðiÞ

¼ ½ðrm#idNÞðF#idNÞðidM#tnÞ
ðuÞ by ðiiÞ

¼ ½ðrm#idNÞðidM#tnÞðF#idNÞ
ðuÞ by Theorem 5:1

¼/ðF#idNÞðuÞ; r#tSm#n;

which proves the first statement in the proposition. In order to prove the second
assertion, we only have to show that if Y is any w�-cluster point of the net
ðFa#idNÞa; then Y ¼ F#idN: But Y trivially satisfies condition (ii) in our

ARTICLE IN PRESS
M. Neufang / Journal of Functional Analysis 207 (2004) 300–329 325



proposition, and using the normality of the mappings idM#tn; another application
of Theorem 5.1 shows that Y also meets condition (i), whence the first part of the
proposition finishes the proof. &

7. Completely bounded module homomorphisms and Tomiyama’s slice maps

The main objective of [MAY–NEU–WIT89] was to establish the following
remarkable property of the amplification mapping

CBðBðHÞÞ{F/FðNÞACBðBðHÞ#BðKÞÞ:

If RDBðHÞ is a von Neumann subalgebra, and if FACBRðBðHÞÞ is an R-

bimodule homomorphism, then FðNÞ is an R#BðKÞ-bimodule homomorphism,

i.e., FðNÞACBR#BðKÞðBðHÞ#BðKÞÞ; see [MAY–NEU–WIT89, Proposition 2.2]

(and [EFF–RUA88, Theorem 4.2], for a generalization).
An important special situation, which nevertheless shows the strength and encodes

the essential statement of the result, is the case where R ¼ C 1BðHÞ: Then the above

theorem reads as follows:
ð��Þ Every FACBðBðHÞÞ can be amplified to an 1BðHÞ#BðKÞ-bimodule

homomorphism FðNÞACBðBðHÞ#BðKÞÞ:
The aim of this section is to prove an analogous result where now BðHÞ and

BðKÞ are replaced by arbitrary von Neumann algebras M and N; using our
amplification wN: In this section, M and N will always denote von Neumann
algebras.

The proofs of [MAY–NEU–WIT89, Proposition 2.2] and [EFF–RUA88,
Theorem 4.2] use either the Wittstock decomposition theorem or a corresponding
result by Paulsen [PAU86, Lemma 7.1] to reduce to the case of a completely positive
mapping, where the assertion is then obtained by a fairly subtle analysis involving
the Schwarz inequality. In contrast to this, the explicit form of wN provides us with a
direct route to the above announced goal; indeed, as we shall see, the statement
asserting the module homomorphism property of the amplified mapping reduces to a
corresponding statement about Tomiyama’s slice maps which in turn can be verified
in an elementary fashion (see Lemma 7.1 below).

In order to prove our result, a little preparation is needed. In the sequel, we restrict
ourselves to left slice maps; analogous statements hold of course in the case of right
slice maps. As is well-known (and easy to see), Tomiyama’s left slice maps satisfy the
following module homomorphism property:

Ltðða#1NÞuðb#1NÞÞ ¼ aLtðuÞb;

where uAM#N; a; bAM; tAN�: In the following (elementary) lemma, we shall
establish an analogous property involving elementary tensors of the form 1M#a and
1M#b for a; bAN: To this end, we briefly recall that for every von Neumann
algebra N; the predual N� is an N-bimodule in a very natural manner, the actions
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being given by

/t � a; bS ¼ /t; abS and /a � t; bS ¼ /t; baS;

for a; bAN; tAN�: For later purposes, we note the (easily verified) equation:

ð1M#aÞ � ðr#tÞ � ð1M#bÞ ¼ r#ða � t � bÞ; ð14Þ

where a; bAN; rAM�; tAN�: We now come to

Lemma 7.1. Let M and N be von Neumann algebras. Then Tomiyama’s left slice map

satisfies:

Ltðð1M#aÞuð1M#bÞÞ ¼ Lb�t�aðuÞ;

where uAM#N; a; bAN; tAN�:

Proof. Due to the normality of left slice maps, it suffices to prove the statement for

elementary tensors u ¼ S#TAM#N: But in this case, we obtain:

Ltðð1M#aÞuð1M#bÞÞ ¼LtðS#aTbÞ

¼/t; aTbSS

¼/b � t � a;TSS

¼Lb�t�aðuÞ;

whence the desired equality follows. &

The above statement will now be used to derive a corresponding module
homomorphism property shared by the amplification of a completely bounded
mapping, as announced at the beginning of this section.

Theorem 7.2. Let M and N be von Neumann algebras. Then for every FACBðMÞ;
the amplified mapping wNðFÞACBðM#NÞ is an 1M#N-bimodule homomorphism.

Proof. As in the proof of Theorem 3.1, we denote by k the pre-adjoint mapping

of wN: Fix uAM#N; a; bAN; rAM� and tAN�: We write a0 :¼ 1M#a;
b0 :¼ 1M#b:

We first note that

kðr#t#ða0ub0ÞÞ ¼ kðr#ðb � t � aÞ#uÞ: ð15Þ
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For by Eq. (6), in order to establish (15), we only have to show that

Ltða0ub0Þ ¼ Lb�t�aðuÞ;

which in turn is precisely the statement of Lemma 7.1.
Now we obtain for FACBðMÞ:

/wNðFÞða0ub0Þ; r#tS ¼/F; kðr#t#ða0ub0ÞÞS

¼ð15Þ
/F; kðr#ðb � t � aÞ#uÞS

¼ð14Þ
/F; k½ðb0 � ðr#tÞ � a0Þ#u
S

¼/wNðFÞðuÞ; b0 � ðr#tÞ � a0S

¼/a0wNðFÞðuÞb0; r#tS;

which finishes the proof. &

We finish by remarking that Theorem 7.2 yields in particular the statement ð��Þ
given above; for if FACBðBðHÞÞ; we have wBðKÞðFÞ ¼ FðNÞ; as noted in Section 4,

Eq. (7).
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