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A unified approach to the topological centre problem for certain
Banach algebras arising in abstract harmonic analysis

By

Matthias Neufang

Abstract. Let G be a locally compact group. Consider the Banach algebra L1(G)∗∗, equipped
with the first Arens multiplication, as well as the algebra LUC(G)∗, the dual of the space of bounded
left uniformly continuous functions on G, whose product extends the convolution in the measure
algebra M(G). We present (for the most interesting case of a non-compact group) completely
different - in particular, direct - proofs and even obtain sharpened versions of the results, first
proved by Lau-Losert in [9] and Lau in [8], that the topological centres of the latter algebras
precisely are L1(G) and M(G), respectively. The special interest of our new approach lies in the
fact that it shows a fairly general pattern of solving the topological centre problem for various kinds
of Banach algebras; in particular, it avoids the use of any measure theoretical techniques. At the
same time, deriving both results in perfect parallelity, our method reveals the nature of their close
relation.

1. Introduction. In this note, we wish to present a new and, for the first time, unified
approach to two theorems which may be considered as the fundamental results, known
by now, concerning the topological centre problem for concrete Banach algebras studied
in abstract harmonic analysis. Namely, for a period of nearly 15 years (beginning in the
seventies with [17]), research in the topological centre question was centred around the
Banach algebras L1(G)∗∗, endowed with the first Arens product, and its quotient algebra
LUC(G)∗, where G denotes a locally compact group. Here, we write LUC(G) for the space
of complex-valued bounded left uniformly continuous functions on G; the definition of the
product on the dual LUC(G)∗ will be briefly recalled below. The questions were eventually
answered in full generality by the decisive work of Lau [8] and Lau-Losert [9]. In the present
note, we will derive both these results (see Theorems 1.1 and 1.2 below) by organizing the
arguments in a parallel fashion, which at the same time not only will yield direct proofs,
but even sharpenings of the statements.
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Theorem 1.1. The topological centre Zt(L1(G)∗∗) of the Banach algebra L1(G)∗∗ is
precisely L1(G).

P r o o f. This is the main result, Thm. 1, in [9]. �

We shall restrict ourselves to the most interesting situation where G is non-compact.
In case G is compact, the above assertion may be obtained by a very short argument
([9, Thm. 1]; also cf. [6, Thm. 3.3 (vi)]).

The second theorem even is only of interest in the non-compact case – for in case G
is compact, LUC(G)∗ equals the measure algebra M(G), and the assertion is immediately
verified.

Theorem 1.2. The topological centre Zt(LUC(G)∗) of the Banach algebra LUC(G)∗ is
M(G).

P r o o f. This is the main result, Thm. 1, in [8]. �

In the sequel, we will have to distinguish between the two Arens products on the bidual
L1(G)∗∗. We denote by � the first (= left) and by . the second (= right) Arens product,
and use these symbols as well for the various module operations linking L1(G), its dual
and bidual, as follows. Let m, n ∈ L1(G)∗∗, h ∈ L1(G)∗, f, g ∈ L1(G). Denoting by ∗ the
convolution product of functions (whenever it is defined), we write:

〈h � f, g〉 := 〈h, f ∗ g〉
〈n � h, f 〉 := 〈n, h � f 〉
〈m � n, h〉 := 〈m, n � h〉

and, following a completely symmetric pattern:

〈f.h, g〉 := 〈h, g ∗ f 〉
〈h.m, f 〉 := 〈m, f.h〉
〈m.n, h〉 := 〈n, h.m〉.

We note that, in particular, h�f = f̃ ∗h ∈ LUC(G); here, as usual, we write f̃ := 1
�

f̌ ,

where � denotes the modular function of G and f̌ (x) := f (x−1) for all x ∈ G. We refer
to [15, §1.4], for a discussion of basic properties of Arens multiplication in the framework
of general Banach algebras.

Whenever we consider L1(G)∗∗ as a Banach algebra, we regard it as equipped with the
first Arens product. We recall that the topological centre of L1(G)∗∗ is defined to be the set of
functionals m ∈ L1(G)∗∗ which satisfy m�n = m.n for all n ∈ L1(G)∗∗. Equivalently, the
topological centre consists of all the functionals m ∈ L1(G)∗∗ such that left multiplication
by m is w∗-w∗-continuous on L1(G)∗∗. A detailed analysis of topological centres in the
general context of biduals of Banach algebras can be found, e.g., in [11].
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There is an analogous notion of topological centre for the Banach algebra LUC(G)∗. First,
let us recall the natural construction of the product in the latter space. If n ∈ LUC(G)∗ and
f ∈ LUC(G), then it is classical that the function n · f , defined through

(n · f )(x) := 〈n, lxf 〉 (x ∈ G)

still belongs to LUC(G); i.e., LUC(G) is left introverted. This operation gives rise to the
product on the space LUC(G)∗:

〈m · n, f 〉 := 〈m, n · f 〉 (m, n ∈ LUC(G)∗, f ∈ LUC(G))

under which the latter indeed becomes a Banach algebra, and LUC(G) becomes a left
LUC(G)∗-module with the action introduced above. In analogy to the case of L1(G)∗∗, one
defines the topological centre of LUC(G)∗ to be the set of elements m ∈ LUC(G)∗ such
that left multiplication by m is w∗-w∗-continuous on LUC(G)∗.

We shall also consider the natural (left) module operation of LUC(G)∗ on L∞(G) given
by 〈m ♦ h, g〉 := 〈m, h � g〉, where m ∈ LUC(G)∗, h ∈ L∞(G), g ∈ L1(G). At this
point, we note that, as is easily seen, one has m ♦ h = m̃ � h, where m̃ is an arbitrary
Hahn-Banach extension of the functional m to L∞(G)∗.

The main interest of the approach presented here consists in the following:
• We obtain a sharpening of the non-trivial inclusion in the statements of both

Theorem 1.1 and 1.2. Namely, as for Theorem 1.1, we shall see that for an element
m ∈ L∞(G)∗ in order to belong to L1(G), it is sufficient to have m � n = m.n only for all

n ∈ L∞(G)∗ that are Hahn-Banach extensions of functionals in δG
w∗

� Ball(LUC(G)∗)
– instead of requiring the latter equality for all n ∈ L∞(G)∗, as does the definition of
the topological centre. Here, we denote by δG the set of all point evaluations δx(x ∈
G). Analogously, in the situation of Theorem 1.2, we will prove that an element m ∈
LUC(G)∗ already belongs to M(G) if left multiplication by m is only w∗-w∗-continuous

on δG
w∗

� Ball(LUC(G)∗), instead of demanding this continuity on the whole unit ball of
LUC(G)∗.

• The only proof known so far of the topological centre theorem for LUC(G)∗ is indirect
(see Thm. 1 in [8]), and all proofs given for the corresponding theorem for L1(G)∗∗ either
heavily rely on the latter ([11], [2]) or are also indirect (see [9, Thm. 1]). Our proofs of
the two results are independent, and in both cases direct. We remark en passant that the
proofs of Thm. 5.4 and Cor. 5.5 in [11] are correct only under the additional set-theoretic
assumption that the compact covering number k(G) of the group G is a non-measurable
cardinal, since the argument is based on ibid., Lemma 5.3, which in turn has to be read with
a similar set-theoretic assumption; we refer to [13] and [5] for a detailed discussion of these
and related problems. The tool which enables us to overcome precisely those set-theoretic
difficulties is provided by Lemma 2.1 below.

• The procedure we present shows a perfect analogy between the two topological centre
theorems. Besides one additional structural result for LUC(G)∗, the prerequisites are the
same, and the proofs themselves follow completely parallel lines.

• The method of proof follows a purely Banach algebraic procedure and does not, in
particular, rely on any measure theoretic argument, so that it might be applied equally well
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in other situations. At this point, we only mention that in [5], we obtained an analogue
of Lemma 2.1 below in the “dual” setting, i.e., with L∞(G) replaced by the group von
Neumann algebra VN(G), and with k(G) replaced by b(G), the smallest cardinality of an
open basis at the neutral element of G. For Proposition 2.3 as well, a dual version is
known at least in the case of amenable groups G – here, the algebras UCB(Ĝ)∗ and Bρ(G)

take over the place of LUC(G)∗ and M(G), respectively. Thus, if we are able to prove
a factorization result, for bounded families in VN(G) of cardinality at most b(G) · ℵ0,
corresponding to Lemma 2.2, then our method of proof would immediately yield an
affirmative answer (for the most interesting case of non-discrete groups G) of two long-
standing conjectures at once – namely, the topological centre of the bidual of the Fourier
algebra A(G) being just A(G), i.e., Zt(A(G)∗∗) = A(G), and, for amenable groups G,
Zt(UCB(Ĝ)∗) = Bρ(G).

2. Preliminaries. For both proofs we will use the following two lemmata, which are of
interest in their own right.

Lemma 2.1. For an arbitrary locally compact group G, the space L1(G) enjoys Mazur’s
property of level k(G) · ℵ0, where k(G) denotes the compact covering number of G (i.e., the
least cardinality of a compact covering of G). This means that a functional m ∈ L1(G)∗∗
actually belongs to L1(G) if it carries bounded w∗-converging nets of cardinality at most
k(G) · ℵ0 into converging nets.

P r o o f. This is Thm. 4.4 in [13]. �

Next we present our crucial tool, which is a general factorization theorem for bounded
families in L∞(G). It has already been used (cf. [14])

• to answer (in the affirmative) a question raised by Hofmeier-Wittstock in [4] concerning
the automatic boundedness of left L∞(G)∗-module homomorphisms on L∞(G);

• to give an alternative approach to the result on automatic w∗-w∗-continuity of the latter
mappings, as first shown by Ghahramani-McClure in [2].

Lemma 2.2. Let G be a locally compact non-compact group with compact covering
number k(G). Let further (hα)α∈I � L∞(G) be a bounded family of functions where

|I | � k(G). Then there exist a family (ψα)α∈I of functionals in δG
w∗

� Ball(LUC(G)∗)
and a function h ∈ L∞(G) such that the factorization formula

hα = ψα ♦ h

holds for all α ∈ I . (Moreover, the functionals ψα , α ∈ I , do not depend, except for the
index set, on the given family (hα)α∈I ; they are universal in the sense that they are obtained
intrinsically from the group G.)

P r o o f. See [12, Satz 3.6.2] (or [14]). �
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In order to arrange the proof of Thm. 1.2 in a completely parallel manner to the one
of Thm. 1.1, we only require the following proposition, whose first part is a classical
structural result about the algebra LUC(G)∗ going back to the pioneering work of Curtis-
Figà-Talamanca ([1, Thm. 3.3]). We write Bσ (L∞(G)) for the space of normal (i.e., w∗-
w∗-continuous) operators on L∞(G).

Proposition 2.3. The mapping

φ : LUC(G)∗ −→ B(L∞(G))

defined through

φ(m)(h) := m ♦ h (m ∈ LUC(G)∗, h ∈ L∞(G))

is an isometric representation of LUC(G)∗ in B(L∞(G)) such that

φ(M(G)) = φ(LUC(G)∗) ∩ Bσ (L∞(G)).(1)

P r o o f. The first assertions are well-known (see, e.g., [7, Thm. 1], together with
Lemma 1 and Remark 3; or [1, Thm. 3.3], for a proof in the unimodular case). The relation (1)
is seen as follows (cf. [12, Prop. 3.1.1]). In order to prove the inclusion “�”, let µ ∈ M(G).
We have to show that φ(µ) ∈ B(L∞(G)) is normal. Consider a net (hα)α � Ball(L∞(G))

such that hα
w∗−→ 0. Fix g ∈ L1(G). We claim that

〈φ(µ)(hα), g〉 −→ 0.

But we have:

〈φ(µ)(hα), g〉 = 〈µ ♦ hα, g〉 = 〈µ, g̃ ∗ hα〉 =
∫
G
(g̃ ∗ hα)(t) dµ(t),

where (as is readily checked) the net (g̃ ∗ hα)α � LUC(G) is equicontinuous, bounded and
converges pointwise to 0. It thus converges uniformly on compact subsets of G, whence we
conclude that the above integrals converge to 0, as desired.

Turning to the inclusion “�”, let us consider an arbitrary element φ(m) of the set on the
right side, where m ∈ LUC(G)∗. We denote by C0(G) the space of all complex-valued
continuous functions on G vanishing at infinity, and by C0(G)⊥ its annihilator in LUC(G)∗.
Then we obviously have LUC(G)∗ = M(G) ⊕ C0(G)⊥ (the latter is actually an �1-direct
sum – cf. Lemma 1.1 in [3] –, but we will not need this fact). Write m = µ + n with
µ ∈ M(G) and n ∈ C0(G)⊥ according to this decomposition. It suffices to show that
φ(n) = 0.

First, using the inclusion proved above, we see that φ(n) = φ(m) − φ(µ) is nor-
mal. Fix h ∈ L∞(G). We have h = σ(L∞(G), L1(G)) − limα hα for an appropriate net
(hα)α � C0(G). Hence we obtain:

φ(n)(h) = σ(L∞(G), L1(G)) − lim
α

φ(n)(hα) = 0,

which finishes the proof. For the last equality, note that for all α and arbitrary g ∈ L1(G):

〈φ(n)(hα), g〉 = 〈n, g̃ ∗ hα〉 = 0,

since g̃ ∗ hα ∈ L1(G) ∗ C0(G) = C0(G). �
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R e m a r k 2.4. We only stated the specific properties of φ for the sake of completeness. In
the sequel, we shall just use the fact that φ is bounded and injective, as well as the relation (1).

3. Application to the topological centre problem. We first present the proof of
Theorem 1.1, for non-compact groups G. To establish the non-trivial inclusion, let m ∈
Zt(L1(G)∗∗). The group G being non-compact, we infer from Lemma 2.1 that L1(G) has
Mazur’s property of level k(G). So to prove m ∈ L1(G), let (hα)α∈I � L∞(G) be a bounded
net converging w∗ to 0, where |I | � k(G). Thanks to Lemma 2.2, we have the factorization

hα = ψα ♦ h = ψ̃α � h (α ∈ I )

with ψα ∈ δG
w∗

� Ball(LUC(G)∗) and h ∈ L∞(G). Here, ψ̃α denotes some arbitrarily
chosen Hahn-Banach extension of ψα to L∞(G)∗. We have to show that aα := 〈m, hα〉

α−→ 0. Due to the boundedness of (hα)α , it suffices to prove that every convergent subnet
of (aα)α tends to 0. Let (〈m, hαβ 〉)β be such a convergent subnet. Furthermore, let

E := (w∗ − lim
γ

ψαβγ
)̃ ∈ Ball(L∞(G)∗)

be an arbitrarily chosen Hahn-Banach extension, denoted by (. . .)̃, of some w∗-cluster point
of the net (ψαβ )β in Ball(LUC(G)∗).

We first note that E � h = 0, since for arbitrary g ∈ L1(G) we obtain:

〈E � h, g〉 = 〈E, h � g〉 = lim
γ

〈ψαβγ
, h � g〉

= lim
γ

〈ψαβγ
♦ h, g〉 = lim

γ
〈hαβγ

, g〉 = 0.

Now we conclude that (using twice the assumption m ∈ Zt(L1(G)∗∗) and in particular the
fact that h.m ∈ L1(G)∗ � L1(G) = LUC(G), cf. Lemma 3.1 a) in [11])

lim
β

〈m, hαβ 〉 = lim
β

〈m, ψ̃αβ � h〉 = lim
β

〈m � ψ̃αβ , h〉
= lim

β
〈m.ψ̃αβ , h〉 = lim

β
〈ψ̃αβ , h.m〉

= lim
β

〈ψαβ , h.m〉 = lim
γ

〈ψαβγ
, h.m〉

= 〈w∗ − lim
γ

ψαβγ
, h.m〉 = 〈E, h.m〉

= 〈m.E, h〉 = 〈m � E, h〉 = 〈m, E � h〉 = 0,

which gives the desired convergence.
We now turn to the proof of Theorem 1.2. The inclusion M(G) � Zt(LUC(G)∗) being

immediate and classical (cf. [16, Lemma 3.1]), we restrict our attention to the reverse
inclusion, where in order to avoid trivialities, we assume the group G to be non-compact. Fix
m ∈ Zt(LUC(G)∗). Then, according to Proposition 2.3, we only have to prove that φ(m) ∈
B(L∞(G)) is w∗-w∗-continuous. To this end, consider a bounded net (hα)α∈I � L∞(G),
where |I | � k(G), which converges w∗ to 0. Lemma 2.2 yields the factorization

hα = ψα ♦ h (α ∈ I )



170 Matthias Neufang arch. math.

with ψα ∈ δG
w∗

� Ball(LUC(G)∗) and h ∈ L∞(G). By Lemma 2.1, we only have to show
that φ(m)(hα) tends w∗ to 0. The latter net being bounded, it suffices to prove that every
convergent subnet tends to 0. Let (φ(m)(hαβ ))β be such a convergent subnet. Furthermore,
let

E := w∗ − lim
γ

ψαβγ
∈ δG

w∗
� Ball(LUC(G)∗)

be a w∗-cluster point of the net (ψαβ )β in Ball(LUC(G)∗).
We remark that E ♦ h = 0, since for arbitrary g ∈ L1(G) we obtain:

〈E ♦ h, g〉 = 〈E, h � g〉 = lim
γ

〈ψαβγ
, h � g〉

= lim
γ

〈ψαβγ
♦ h, g〉 = lim

γ
〈hαβγ

, g〉 = 0.

In order to conclude, we will only require the following fact concerning the compatibility
of our various module operations, which is easy to verify (cf. §2 in [10]): For ψ ∈ LUC(G)∗,
h ∈ L∞(G) and g ∈ L1(G), we have

(ψ ♦ h) � g = ψ · (h � g).

Now we obtain:

lim
β

〈φ(m)(hαβ ), g〉 = lim
β

〈m ♦ hαβ , g〉 = lim
β

〈m, hαβ � g〉
= lim

β
〈m, (ψαβ ♦ h) � g〉 = lim

β
〈m, ψαβ · (h � g)〉

= lim
β

〈m · ψαβ , h � g〉 = lim
γ

〈m · ψαβγ
, h � g〉

= 〈m · E, h � g〉 since m ∈ Zt(LUC(G)∗)
= 〈m, E · (h � g)〉 = 〈m, (E ♦ h) � g〉 = 0,

which finishes the proof.
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[1] P. C. Curtis and A. Figà-Talamanca, Factorization theorems for Banach algebras. In: Function
algebras. Proceedings of an International Symposium on Function Algebras held at Tulane University, 1965.
F. T. Birtel ed., 169–185.

[2] F. Ghahramani and J. P. McClure, Module homomorphisms of the dual modules of convolution Banach
algebras. Canad. Math. Bull. 35(2), 180–185 (1992).

[3] F. Ghahramani, A. T.-M. Lau and V. Losert, Isometric isomorphisms between Banach algebras related
to locally compact groups. Trans. Amer. Math. Soc. 321, 273–283 (1990).

[4] H. Hofmeier and G. Wittstock, A bicommutant theorem for completely bounded module
homomorphisms. Math. Ann. 308(1), 141–154 (1997).

[5] Z. Hu and M. Neufang, Mazur’s property and property (X) of higher level for preduals of von Neumann
algebras. Preprint.
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