
Journal of Functional Analysis 257 (2009) 610–640

www.elsevier.com/locate/jfa

On topological centre problems and SIN quantum
groups ✩

Zhiguo Hu a, Matthias Neufang b,∗, Zhong-Jin Ruan c

a Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
b School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

c Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

Received 3 December 2008; accepted 3 February 2009

Available online 25 February 2009

Communicated by N. Kalton

Abstract

Let A be a Banach algebra with a faithful multiplication and 〈A∗A〉∗ be the quotient Banach algebra
of A∗∗ with the left Arens product. We introduce a natural Banach algebra, which is a closed subspace of
〈A∗A〉∗ but equipped with a distinct multiplication. With the help of this Banach algebra, new characteriza-
tions of the topological centre Zt (〈A∗A〉∗) of 〈A∗A〉∗ are obtained, and a characterization of Zt (〈A∗A〉∗)

by Lau and Ülger for A having a bounded approximate identity is extended to all Banach algebras. The
study of this Banach algebra motivates us to introduce the notion of SIN locally compact quantum groups
and the concept of quotient strong Arens irregularity. We give characterizations of co-amenable SIN quan-
tum groups, which are even new for locally compact groups. Our study shows that the SIN property is
intrinsically related to topological centre problems. We also give characterizations of quotient strong Arens
irregularity for all quantum group algebras. Within the class of Banach algebras introduced recently by the
authors, we characterize the unital ones, generalizing the corresponding result of Lau and Ülger. We study
the interrelationships between strong Arens irregularity and quotient strong Arens irregularity, revealing the
complex nature of topological centre problems. Some open questions by Lau and Ülger on Zt (〈A∗A〉∗) are
also answered.
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1. Introduction

Let A be a Banach algebra. As is well known, on the bidual A∗∗ of A, there are two Banach
algebra multiplications, called the left and the right Arens products, respectively, each extending
the multiplication on A (cf. Arens [1]). By definition, the left Arens product � is induced by the
left A-module structure on A. That is, for m,n ∈ A∗∗, f ∈ A∗, and a, b ∈ A, we have

〈f · a, b〉 = 〈f,ab〉, 〈n � f,a〉 = 〈n,f · a〉, and 〈m � n,f 〉 = 〈m,n � f 〉.

The right Arens product ♦ is defined by considering A as a right A-module. It is known that

m � n = w∗- lim
α

lim
β

aαbβ and m ♦ n = w∗- lim
β

lim
α

aαbβ

whenever (aα) and (bβ) are nets in A converging to m and n, respectively, in σ(A∗∗,A∗). The
algebra A is said to be Arens regular if � and ♦ coincide on A∗∗. Every operator algebra,
in particular, every C∗-algebra, is Arens regular. However, Banach algebras studied in abstract
harmonic analysis are typically far from being Arens regular. For example, for a locally compact
group G, the group algebra L1(G) is Arens regular if and only if G is finite (cf. Young [47]).

In the study of Arens irregularity, the left and the right topological centres Zt (A
∗∗,�) and

Zt (A
∗∗,♦) of A∗∗ are considered (see Section 2 for the definition). In general, Zt (A

∗∗,�) and
Zt (A

∗∗,♦) are norm closed subalgebras of A∗∗ when A∗∗ is equipped with either Arens product.
It is obvious that A is Arens regular if and only if Zt (A

∗∗,�) = Zt (A
∗∗,♦) = A∗∗. The left Arens

product on A∗∗ induces naturally a Banach algebra multiplication on 〈A∗A〉∗, also denoted by �,
such that (〈A∗A〉∗,�) ∼= (A∗∗,�)/〈A∗A〉⊥. The topological centre Zt (〈A∗A〉∗) of (〈A∗A〉∗,�)

is defined in a similar fashion as Zt (A
∗∗,�). As observed by several authors, there exists a close

connection between the topological centres Zt (A
∗∗,�) and Zt (〈A∗A〉∗).

Under the canonical embedding A ↪→ A∗∗, we have A ⊆ Zt (A
∗∗,�) ⊆ A∗∗ and A ⊆

Zt (A
∗∗,♦) ⊆ A∗∗. In [6], Dales and Lau introduced the following concepts of Arens irregularity:

A is said to be left strongly Arens irregular if Zt (A
∗∗,�) = A, right strongly Arens irregular if

Zt (A
∗∗,♦) = A, and strongly Arens irregular if A is both left and right strongly Arens irregu-

lar. When A has a bounded right approximate identity, one has RM(A) ⊆ Zt (〈A∗A〉∗) ⊆ 〈A∗A〉∗,
where RM(A) is the opposite right multiplier algebra of A. In general, RM(A) and 〈A∗A〉∗ can be
compared via their canonical images in BA(A∗), the Banach algebra of bounded right A-module
homomorphisms on A∗ (see Fact 2 in Section 4). In the spirit of the terminology of Dales and
Lau, we say that A is left quotient strongly Arens irregular if Zt (〈A∗A〉∗) ⊆ RM(A). Then, when
A has a bounded right approximate identity, A is left quotient strongly Arens irregular if and
only if Zt (〈A∗A〉∗) = RM(A). The right quotient strong Arens irregularity is defined similarly
by comparing the topological centre Zt (〈AA∗〉∗) of 〈AA∗〉∗ with the left multiplier algebra of A,
where 〈AA∗〉∗ is the Banach algebra with the multiplication induced by ♦. There have been a
number of extensive studies of strong Arens irregularity and quotient strong Arens irregularity
over the last three decades. The reader is referred to Dales [5], Dales and Lau [6], Dales, Lau
and Strauss [7], Lau [25], Lau and Losert [26,27], Lau and Ülger [28], and Palmer [35] for more
information on Arens products, topological centres, and related topics.

The present work is mainly motivated by the intriguing interrelationships between strong
Arens irregularity and quotient strong Arens irregularity of general Banach algebras. The pa-
per is organized as follows. In Section 2, we start with notation conventions, definitions, and
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preliminary results on Arens products and topological centres. We then introduce the Banach al-
gebra 〈A∗A〉∗R , which is a norm closed subspace of the quotient algebra (〈A∗A〉∗,�) on the one
hand, but on the other hand its multiplication is induced by the right Arens product ♦ on A∗∗.
The topological centre Zt (〈A∗A〉∗R) of 〈A∗A〉∗ is thereby defined, since 〈A∗A〉∗R is a left topo-
logical semigroup under the relative weak∗-topology. It will be seen that the Banach algebras
〈A∗A〉∗R and Zt (〈A∗A〉∗R) help reveal the intrinsic structure of 〈A∗A〉, 〈A∗A〉∗, and A∗∗.

In Section 3, we present a new characterization of the topological centre Zt (〈A∗A〉∗) (Theo-
rem 2). In the case where A is the group algebra L1(G) of a locally compact group G, we use
LUC(G)∗R to replace the Banach algebra (ZU(G),∗), which was defined via the group action
of G on LUC(G) and was used by Lau [25, Lemma 2] to characterize Zt (LUC(G)∗) (see Sec-
tion 3 for details, and see Dales and Lau [6, Proposition 11.6] for the extension of [25, Lemma 2]
to convolution Beurling algebras). Therefore, Theorem 2 is a Banach algebraic version of [25,
Lemma 2]. Our investigation of the SIN property and other problems shows that LUC(G)∗R has
its advantages over ZU(G) in certain aspects. As a consequence of Theorem 2, we extend to all
Banach algebras a characterization of Zt (〈A∗A〉∗) by Lau and Ülger [28, Lemma 3.1c)], where
they assumed that A has a bounded approximate identity (Corollary 3). The exploration of a Ba-
nach algebraic version of another characterization of Zt (LUC(G)∗) given by Neufang [34] leads
to the concept of a strong identity of 〈A∗A〉∗, that is proven to be important for studying locally
compact quantum groups.

Section 4 has initially been inspirited by the natural question of when 〈A∗A〉∗ has a strong
identity. Generalizing the concept of SIN locally compact groups, we introduce the notion of
SIN locally compact quantum groups. We characterize co-amenable SIN quantum groups G in
terms of the Banach algebras RM(L1(G)), Zt (LUC(G)∗R), and LUC(G)∗R , and the existence of
a strong identity of LUC(G)∗, respectively (Theorem 18), where we note that RM(L1(G)) =
RMcb(L1(G)) (the completely bounded opposite right multiplier algebra of L1(G)), since G is
co-amenable. In particular, we prove that a quantum group G is co-amenable and SIN if and
only if the Banach algebra LUC(G)∗R is unital. It is interesting to compare this result with
[3, Theorem 3.1], where Bédos and Tuset showed that a quantum group G is co-amenable if
and only if the algebra C0(G)∗ is unital, which is also shown to be equivalent to LUC(G)∗ being
unital (Theorem 15). The characterizations of SIN quantum groups obtained in this section are
original even for locally compact groups. In the course of this investigation, we also obtain some
other new characterizations of SIN-groups (Theorem 19). Results in this section illustrate that
the SIN property is intrinsically related to topological centre problems.

Section 5 is devoted to the study of interrelationships between strong Arens irregularity
and quotient strong Arens irregularity. First, using the connection between the Banach alge-
bras RM(A) and Zt (〈A∗A〉∗), we extend a characterization of unital Banach algebras by Lau
and Ülger [28] to the larger class of Banach algebras introduced recently by the authors [16]
(Theorem 22). We prove a characterization of left quotient strong Arens irregularity in terms
of Zt (A

∗∗,�) (Theorem 23). Then, for the class of Banach algebras studied in [16], we give
sufficient conditions to ensure the equivalence between (left, respectively, right) strong Arens ir-
regularity and (left, respectively, right) quotient strong Arens irregularity. For involutive Banach
algebras A from this class, we obtain some criteria for determining when the quotient strong
Arens irregularity of A implies the strong Arens irregularity of A (Theorem 29). We prove that if
the left quotient strong Arens irregularity of A is strengthened by replacing RM(A) with the mul-
tiplier algebra M(A), then the left strong Arens irregularity of A can be determined by testing
elements of Zt (A

∗∗,�) against one particular element of A∗∗ (Theorem 30). In this situation,
we have one test point in A∗∗ to characterize A inside Zt (A

∗∗,�). In this context, note that
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in [7, Definition 12.3], Dales, Lau, and Strauss introduced the concept of a dtc set in A∗∗ (stand-
ing for “determining the topological centre”) to characterize A inside A∗∗ through a topological
centre condition. We close Section 5 with characterizations of quotient strong Arens irregular-
ity for all quantum group algebras as well as a characterization of quantum groups G satisfying
Zt (LUC(G)∗R) = RM(L1(G)) (Theorems 32 and 33). The study in this section shows the com-
plex nature of topological centre problems in certain aspects, noticing that Banach algebras like
RM(A), LM(A), Zt (〈A∗A〉∗), Zt (〈AA∗〉∗), Zt (A

∗∗,�), and Zt (A
∗∗,♦) all play a rôle even when

only a one-sided topological centre is considered.
The paper concludes in Section 6 with some examples of Arens irregular Banach algebras,

complementing some assertions in Section 5. Some open questions in Lau and Ülger [28] are
answered there in the negative.

The authors are grateful to the referee for valuable suggestions.

2. Preliminaries

Let B be an algebra equipped with a topology σ such that B is a topological linear space.
Assume that B is also a right topological semigroup under the multiplication. That is, for any
fixed y ∈ B, the map x �−→ xy is continuous on B (cf. Berglund, Junghenn and Milnes [4]). The
topological centre Zt (B) of B is defined to be the set of y ∈ B such that the map x �−→ yx is
continuous on B. If B is a left topological semigroup under the multiplication, the topological
centre Zt (B) of B is defined analogously. In the rest of the paper, if B is a subspace of a given
dual Banach space, the topology σ on B is taken to be the relative weak∗-topology.

Throughout this paper, A denotes a Banach algebra with a faithful multiplication; that is,
for any a ∈ A, we have a = 0 if aA = {0} or Aa = {0}. We use 〈A∗A〉 and 〈AA∗〉 to denote the
closed linear spans of the module products A∗A and AA∗, respectively. By Cohen’s factorization
theorem, 〈A∗A〉 = A∗A if A has a bounded right approximate identity (BRAI), and 〈AA∗〉 =
AA∗ if A has a bounded left approximate identity (BLAI).

For any fixed m ∈ A∗∗, the maps n �−→ n�m and n �−→ m♦n are weak∗–weak∗ continuous
on A∗∗. Then with the weak∗-topology, (A∗∗,�) is a right topological semigroup and (A∗∗,♦)

is a left topological semigroup. Their topological centres

Zt (A
∗∗,�) = {m ∈ A∗∗: the map n �−→ m � n is weak∗–weak∗ continuous on A∗∗}

and

Zt (A
∗∗,♦) = {m ∈ A∗∗: the map n �−→ n ♦ m is weak∗–weak∗ continuous on A∗∗}

are called the left and the right topological centres of A∗∗, respectively. It is seen that

Zt (A
∗∗,�) = {m ∈ A∗∗: m � n = m ♦ n for all n ∈ A∗∗},

and

Zt (A
∗∗,♦) = {m ∈ A∗∗: n ♦ m = n � m for all n ∈ A∗∗}.

Therefore, A is Arens regular if and only if Zt (A
∗∗,�) = Zt (A

∗∗,♦) = A∗∗.
Clearly, A ⊆ Zt (A

∗∗,�) ∩ Zt (A
∗∗,♦). The algebra A is left strongly Arens irregular (LSAI)

if Zt (A
∗∗,�) = A, right strongly Arens irregular (RSAI) if Zt (A

∗∗,♦) = A, and strongly Arens



614 Z. Hu et al. / Journal of Functional Analysis 257 (2009) 610–640
irregular if A is both LSAI and RSAI (cf. Dales and Lau [6]). In contrast to the situation for
Arens regularity, there are LSAI Banach algebras which are not RSAI (cf. Section 6).

The Banach space 〈A∗A〉 is a closed A-submodule of A∗. It is also left introverted in A∗; that
is, m � x ∈ 〈A∗A〉 for all x ∈ 〈A∗A〉 and m ∈ 〈A∗A〉∗, where m � x = m̃ � x for any extension
m̃ ∈ A∗∗ of m. This is equivalent to that 〈A∗A〉 is a left (A∗∗,�)-submodule of A∗ (cf. Dales and
Lau [6, Proposition 5.2]). Then 〈A∗A〉∗ is a Banach algebra under the multiplication defined by

〈m � n,x〉 = 〈m,n � x〉 (
x ∈ 〈A∗A〉, m,n ∈ 〈A∗A〉∗).

The multiplication � on 〈A∗A〉∗ is induced by the left Arens product on A∗∗. That is, if m,
n ∈ 〈A∗A〉∗ and m̃, ñ ∈ A∗∗ are extensions of m, n to A∗, respectively, then m̃� ñ is an extension
of m � n to A∗. In fact, for x ∈ A∗, n ∈ 〈A∗A〉∗, and w ∈ A∗∗, n � x ∈ A∗ and w � n ∈ A∗∗ can
be defined analogously. Then m̃� n = m̃� ñ for all m, n ∈ 〈A∗A〉∗. The canonical quotient map
π : A∗∗ −→ 〈A∗A〉∗ gives the isometric algebra isomorphism

(〈A∗A〉∗,�) ∼= (A∗∗,�)/〈A∗A〉⊥,

where 〈A∗A〉⊥ = {m ∈ A∗∗: m|〈A∗A〉 = 0} is a closed ideal in (A∗∗,�). For any fixed
m ∈ 〈A∗A〉∗, the map n �−→ n�m is weak∗–weak∗ continuous on 〈A∗A〉∗. Hence, (〈A∗A〉∗,�)

with the weak∗-topology is a right topological semigroup, and its topological centre is given by

Zt

(〈A∗A〉∗) = {
m ∈ 〈A∗A〉∗: n �−→ m � n is weak∗–weak∗ continuous on 〈A∗A〉∗}.

We say that A is left quotient Arens regular if Zt (〈A∗A〉∗) = 〈A∗A〉∗.
Since 〈A∗A〉 is a left A-module, for x ∈ 〈A∗A〉 and m ∈ 〈A∗A〉∗, x ♦ m̃ ∈ A∗ is independent

of the choice of an extension m̃ ∈ A∗ of m. We denote x ♦ m̃ by x ♦ m. However, when 〈A∗A〉
is not right introverted in A∗, x ♦ m may not be in 〈A∗A〉. Let

〈A∗A〉∗R = {
m ∈ 〈A∗A〉∗: 〈A∗A〉 ♦ m ⊆ 〈A∗A〉}.

Then 〈A∗A〉∗R is a norm closed subspace of 〈A∗A〉∗. For m ∈ 〈A∗A〉∗R and n ∈ 〈A∗A〉∗, we define
m ♦ n ∈ 〈A∗A〉∗ by

〈x,m ♦ n〉 = 〈x ♦ m,n〉 (
x ∈ 〈A∗A〉),

and we see that m̃ ♦ ñ is an extension of m ♦ n to A∗. It is also easy to see that for all m,
n ∈ 〈A∗A〉∗R , and p ∈ 〈A∗A〉∗, we have m ♦ n ∈ 〈A∗A〉∗R as well as

‖m ♦ n‖ � ‖m‖‖n‖ and m ♦ (n ♦ p) = (m ♦ n) ♦ p.

In particular, (〈A∗A〉∗R,♦) is a Banach algebra.
It is evident that 〈A∗A〉⊥ is a right ideal in (A∗∗,♦). It is seen that 〈A∗A〉⊥ is a two-sided

ideal in (A∗∗,♦) if and only if 〈A∗A〉 is two-sided introverted in A∗ (cf. Dales and Lau [6,
Proposition 5.4] for the “only if” part). Let

A∗∗ = π−1(〈A∗A〉∗ ) = {
m ∈ A∗∗: 〈A∗A〉 ♦ m ⊆ 〈A∗A〉}.
R R
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Then A∗∗
R is a closed subalgebra of (A∗∗,♦), 〈A∗A〉⊥ is a closed two-sided ideal in (A∗∗

R ,♦),
and π |A∗∗

R
induces the isometric algebra isomorphism

(〈A∗A〉∗R,♦) ∼= (
A∗∗

R ,♦)
/〈A∗A〉⊥.

Moreover, A∗∗
R is the largest closed subalgebra B of (A∗∗,♦) such that 〈A∗A〉 is a right B-

submodule of A∗ and 〈A∗A〉⊥ is a closed ideal in B .
With the relative weak∗-topology, (〈A∗A〉∗R,♦) is a left topological semigroup. By definition,

Zt (〈A∗A〉∗R) is the set of m ∈ 〈A∗A〉∗R such that the map n �−→ n ♦ m is continuous on 〈A∗A〉∗R
with respect to the relative σ(〈A∗A〉∗, 〈A∗A〉)-topology. Since the multiplication in A is faithful,
the map A −→ 〈A∗A〉∗R , a �−→ ȧ = a|〈A∗A〉 is injective. Note that 〈A∗A〉∗ is also an A-module.
It is easy to see that for all a ∈ A and n ∈ 〈A∗A〉∗, a · n = ȧ � n = ȧ ♦ n. In the sequel, a · n will
denote both ȧ � n ∈ 〈A∗A〉∗ and a � n ∈ A∗∗. It is obvious that A ⊆ Zt (〈A∗A〉∗) ∩ Zt (〈A∗A〉∗R).
Since A ⊆ 〈A∗A〉∗ is weak∗-dense, we have

Zt

(〈A∗A〉∗R
) = {

m ∈ 〈A∗A〉∗R: n ♦ m = n � m for all n ∈ 〈A∗A〉∗R
}
,

and Zt (〈A∗A〉∗R) is a norm closed subalgebra of (〈A∗A〉∗R,♦) and of (〈A∗A〉∗,�).
Note that A∗∗

R and 〈A∗A〉∗R both contain A. Therefore, A∗∗
R (respectively, 〈A∗A〉∗R) is weak∗-

closed in A∗∗ (respectively, in 〈A∗A〉∗) if and only if A∗∗
R = A∗∗ (respectively, 〈A∗A〉∗R =

〈A∗A〉∗). On the other hand, it is clear that A∗∗ = A∗∗
R if and only if 〈A∗A〉∗ = 〈A∗A〉∗R if and

only if 〈A∗A〉 is introverted in A∗. In this situation, there are two Arens products on 〈A∗A〉∗ so
that 〈A∗A〉∗ has two topological centres: the usual topological centre is now given by

Zt

(〈A∗A〉∗) = {
m ∈ 〈A∗A〉∗: m � n = m ♦ n for all n ∈ 〈A∗A〉∗},

and the other topological centre with respect to ♦ is just Zt (〈A∗A〉∗R).
Analogously, 〈AA∗〉 is an A-module and is right introverted in A∗. As in the 〈A∗A〉 case, one

can define the Banach algebras (〈AA∗〉∗,♦), ( L〈AA∗〉∗,�), and ( LA∗∗,�), and consider the
topological centres Zt (〈AA∗〉∗) and Zt ( L〈AA∗〉∗). The right quotient Arens regularity can be
defined similarly.

We point out that for a norm closed left (respectively, right) introverted A-submodule X of A∗,
the Banach algebras (X∗,�) and (X∗

R,♦) (respectively, (X∗,♦) and ( LX∗,�)), and their topo-
logical centres can also be defined. In the present paper, however, we will focus on the case where
X is either 〈A∗A〉 or 〈AA∗〉. See Dales and Lau [6] for more information on topological centres
Zt (X

∗,�) and Zt (X
∗,♦). The reader is also referred to Grosser [12] for a systematic study of

left (respectively, right) Banach modules of the form 〈V ∗A〉 (respectively, 〈AV ∗〉), where V is a
left (respectively, right) Banach A-module.

It is well known that if A is the group algebra L1(G) of a locally compact group G, then
〈A∗A〉 = LUC(G) (respectively, 〈AA∗〉 = RUC(G)), the C∗-algebra of bounded left (respec-
tively, right) uniformly continuous functions on G. The space LUC(G) ∩ RUC(G) is denoted by
UC(G), which is the C∗-algebra of bounded uniformly continuous functions on G.

Let LM(A) and RM(A) be the left and the opposite right multiplier algebras of A, respectively.
That is,

LM(A) = {
T ∈ B(A): T (ab) = T (a)b for all a, b ∈ A

}
,
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and

RM(A) = {
T ∈ B(A)op: T (ab) = aT (b) for all a, b ∈ A

}
,

where B(A) is the Banach algebra of bounded linear operators on A. As norm closed subalgebras
of B(A) and B(A)op , respectively, LM(A) and RM(A) are Banach algebras. Let M(A) denote the
multiplier algebra of A, consisting of (μl,μr) ∈ LM(A) × RM(A) satisfying aμl(b) = μr(a)b

(a, b ∈ A). If A has a BRAI (respectively, BLAI), then A can naturally be identified with a norm
closed left (respectively, right) ideal in LM(A) (respectively, in RM(A)). Any Banach algebra
with a bounded approximate identity (BAI) has a faithful multiplication.

Some forms of the following lemma are known (cf. Dales [5, Theorem 2.9.49(iii)] and Lau
and Ülger [28, Theorem 4.4]). For convenience, we include a complete proof here. We state only
the 〈A∗A〉-version of these results.

Lemma 1. Let A be a Banach algebra with a BRAI and E be a weak∗-cluster point in A∗∗ of a
BRAI of A.

(i) The map RM(A) −→ (A∗∗,�), μ �−→ μ∗∗(E) is an injective algebra homomorphism with
range contained in A∗∗

R ∩ (E � A∗∗).
(ii) (〈A∗A〉∗,�) has an identity, and the map μ �−→ μ′ = μ∗∗(E)|〈A∗A〉 is a unital injective

algebra homomorphism from RM(A) into Zt (〈A∗A〉∗) satisfying

〈μ′, f · a〉 = 〈
μ(a), f

〉
(f ∈ A∗, a ∈ A).

Proof. It is easy to see that E is a right identity of (A∗∗,�) satisfying

n � μ∗∗(E) = μ∗∗(n) and n ♦ μ∗∗(E) = μ∗∗(n ♦ E)
(
μ ∈ RM(A), n ∈ A∗∗). (†)

(i) Let μ, ν ∈ RM(A), a ∈ A, and f ∈ A∗. By (†), we have μ∗∗(ν∗∗(E)) = ν∗∗(E)�μ∗∗(E),
(f · a) ♦ μ∗∗(E) = f · μ(a), and μ∗∗(E) = E � μ∗∗(E). Then the assertion follows.

(ii) Let μ ∈ RM(A). Note that a · μ′ = a · μ∗∗(E) = μ(a) ∈ A for all a ∈ A. Then, for all
a ∈ A, f ∈ A∗, and p ∈ 〈A∗A〉∗, we have

〈μ′, f · a〉 = 〈
μ∗∗(E),f · a〉 = 〈

μ(a), f
〉

and 〈μ′ � p,f · a〉 = 〈
p,f · μ(a)

〉
.

Thus ν �−→ ν′ maps RM(A) injectively into Zt (〈A∗A〉∗). Since ν �−→ ν′ is the composition
of the map in (i) and the canonical quotient map (A∗∗,�) −→ (〈A∗A〉∗,�), it is an algebra
homomorphism. Therefore, (〈A∗A〉∗,�) has an identity by [13, Theorem 4(i)]. Finally, it is easy
to see that the map RM(A) −→ (〈A∗A〉∗,�), μ �−→ μ′ is unital. �

Lemma 1 modifies Dales [5, Theorem 2.9.49(iii)] and Lau and Ülger [28, Theorem 4.4], where
A was assumed to have a BAI of norm 1, and an isometric embedding from M(A) into (A∗∗,�),
respectively, from RM(A) into Zt (〈A∗A〉∗), was obtained.

We note that in Lemma 1(i), though μ �−→ μ∗∗(E) maps RM(A) into A∗∗
R , it is not an algebra

homomorphism from RM(A) to (A∗∗,♦) in general.
R
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3. Topological centres of quotient algebras

Theorem 2. Let A be a Banach algebra.

(i) Zt (〈A∗A〉∗) = {m ∈ 〈A∗A〉∗R: m � n = m ♦ n for all n ∈ 〈A∗A〉∗}.
(ii) Zt (〈AA∗〉∗) = {m ∈ L〈AA∗〉∗: n ♦ m = n � m for all n ∈ 〈AA∗〉∗}.
Proof. We prove (i); the proof of (ii) follows from similar arguments.

Obviously, if m ∈ 〈A∗A〉∗R and m � n = m ♦ n for all n ∈ 〈A∗A〉∗, then the map n �−→ m � n

is weak∗–weak∗ continuous on 〈A∗A〉∗; that is, m ∈ Zt (〈A∗A〉∗).
Conversely, suppose that m ∈ Zt (〈A∗A〉∗). Let a ∈ A, n ∈ A∗∗, and p = n|〈A∗A〉. Then

〈(a · m) � n,f 〉 = 〈m � p,f · a〉 for all f ∈ A∗. It follows that a · m ∈ Zt (A
∗∗,�). Hence,

if μ ∈ Zt

(〈A∗A〉∗), then A · μ ⊆ Zt (A
∗∗,�). (‡)

It is known that

A∗ ♦ Zt (A
∗∗,�) ⊆ 〈A∗A〉 and Zt (A

∗∗,♦) � A∗ ⊆ 〈AA∗〉. (�)

(Cf. Dales and Lau [6, Proposition 2.20] and Lau and Ülger [28, Lemma 3.1a)].) By the assertions
(‡) and (�), we have

(A∗A) ♦ m ⊆ A∗ ♦ (A · m) ⊆ A∗ ♦ Zt (A
∗∗,�) ⊆ 〈A∗A〉.

Therefore, m ∈ 〈A∗A〉∗R . Since A is weak∗-dense in 〈A∗A〉∗, we have m � n = m ♦ n for all
n ∈ 〈A∗A〉∗. �

It follows from Theorem 2 that Zt (〈A∗A〉∗) is a subalgebra of (〈A∗A〉∗,�) and of
(〈A∗A〉∗R,♦), and Zt (〈AA∗〉∗) is a subalgebra of (〈AA∗〉∗,♦) and of ( L〈AA∗〉∗,�). Also, it
is seen from (�) that

Zt (A
∗∗,�) = {

m ∈ A∗∗
R : m � n = m ♦ n for all n ∈ A∗∗},

and

Zt (A
∗∗,♦) = {m ∈ LA∗∗: n ♦ m = n � m for all n ∈ A∗∗}.

Therefore, Theorem 2 shows that these descriptions of Zt (A
∗∗,�) and Zt (A

∗∗,♦) have their
analogues for Zt (〈A∗A〉∗) and Zt (〈AA∗〉∗), respectively.

The corollary below generalizes Lau and Ülger [28, Lemma 3.1c)], where they assumed that
A has a BAI.

Corollary 3. Let A be a Banach algebra.

(i) For μ ∈ 〈A∗A〉∗, μ ∈ Zt (〈A∗A〉∗) if and only if A · μ ⊆ Zt (A
∗∗,�).

(ii) For μ ∈ 〈AA∗〉∗, μ ∈ Zt (〈AA∗〉∗) if and only if μ · A ⊆ Zt (A
∗∗,♦).

Consequently, the canonical quotient algebra homomorphisms (A∗∗
R ,♦) −→ (〈A∗A〉∗R,♦) and

(A∗∗,�) −→ (〈A∗A〉∗,�) both map Zt (A
∗∗,�) into Zt (〈A∗A〉∗).
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Proof. We prove (i); the proof of (ii) is similar. Let μ ∈ 〈A∗A〉∗. By assertion (‡) above, we
suppose that A · μ ⊆ Zt (A

∗∗,�) and show that μ ∈ Zt (〈A∗A〉∗).
First, for all f ∈ A∗ and a ∈ A, from assertion (�) above, we have (f · a)♦ μ = f ♦ (a ·μ) ∈

〈A∗A〉. Thus μ ∈ 〈A∗A〉∗R . Next, let n ∈ 〈A∗A〉∗ and ñ ∈ A∗∗ be an extension of n. Then

〈μ � n,f · a〉 = 〈
(a · μ) � ñ, f

〉 = 〈
(a · μ) ♦ ñ, f

〉 = 〈f · a,μ ♦ n〉 (f ∈ A∗, a ∈ A).

Therefore, μ � n = μ ♦ n for all n ∈ 〈A∗A〉∗, and hence μ ∈ Zt (〈A∗A〉∗) by Theorem 2(i).
The final assertion follows from Theorem 2(i) and the surjectivity of the canonical quotient

map A∗∗ −→ 〈A∗A〉∗. �
By Corollary 3, we have immediately the following result, which will be needed in Sec-

tion 5. The assertion (ii) below extends [28, Corollary 3.2], where Lau and Ülger showed that
A ·Zt (A

∗∗,�) = A ·Zt (〈A∗A〉∗) if A has a BAI (see also Dales and Lau [6, Theorem 5.12]). We
note that the condition 〈A2〉 = A in (i) below is satisfied by all quantum group algebras L1(G)

(cf. Fact 1 in Section 4).

Corollary 4. Let A be a Banach algebra.

(i) If 〈A2〉 = A, then A · Zt (A
∗∗,�) ⊆ A if and only if A · Zt (〈A∗A〉∗) ⊆ A.

(ii) If A factors (that is, A2 = A), in particular, if A has a BLAI or a BRAI, then A ·Zt (A
∗∗,�) =

A · Zt (〈A∗A〉∗).

Proof. (i) Note that A · Zt (A
∗∗,�) ⊆ A · Zt (〈A∗A〉∗) since a · m = a · p for all a ∈ A and

m ∈ A∗∗ with p = m|〈A∗A〉, and p ∈ Zt (〈A∗A〉∗) if m ∈ Zt (A
∗∗,�). Then the assertion follows

from Corollary 3.
(ii) If A2 = A, then, combining Corollary 3(i) with the inclusion above, we have

A · Zt

(〈A∗A〉∗) = A2 · Zt

(〈A∗A〉∗) ⊆ A · Zt (A
∗∗,�) ⊆ A · Zt

(〈A∗A〉∗).
Therefore, A · Zt (A

∗∗,�) = A · Zt (〈A∗A〉∗). �
Let G be a locally compact group G. For m ∈ LUC(G)∗ and f ∈ LUC(G), the bounded

complex-valued function mr(f ) on G is given by mr(f )(s) = 〈m,fs〉 (s ∈ G), where fs is the
right translate of f by s. If mr(f ) ∈ LUC(G) for all f ∈ LUC(G), then, for each n ∈ LUC(G)∗,
the product m ∗ n ∈ LUC(G)∗ is defined by

〈f,m ∗ n〉 = 〈
mr(f ),n

〉 (
f ∈ LUC(G)

)
.

(Cf. Berglund, Junghenn and Milnes [4, Definition 2.2.8] and Lau [25].) We note here that for
m ∈ L∞(G)∗ and f ∈ L∞(G), the function s �−→ 〈m,fs〉 may be not even measurable on G (cf.
Rudin [39], Talagrand [43], and Wells [46]). Following the notation used in [4], we let

ZU(G) = {
m ∈ LUC(G)∗: mr(f ) ∈ LUC(G) for all f ∈ LUC(G)

}
.

Then (ZU(G),∗) is a Banach algebra (cf. [4, Lemma 2.2.9]).
We use LUC	∞(G) to denote LUC(G) when it is considered as a subspace of 	∞(G). Obvi-

ously, LUC	∞(G) is a closed 	1(G)-submodule of 	∞(G). Also, LUC	∞(G) is left introverted
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in 	∞(G) (cf. Dales and Lau [6, Theorem 7.19]). It is easy to see that for f ∈ LUC	∞(G) and
s ∈ G, we have δs · f = fs , where δs denotes the point mass at s. Let ♦	1 denote the right Arens
product on 	1(G)∗∗. Then, for all s ∈ G, m ∈ LUC	∞(G)∗, and f ∈ LUC	∞(G), we have

(f ♦	1 m)(s) = 〈δs, f ♦	1 m〉 = 〈δs · f,m〉 = 〈m,fs〉 = mr(f )(s).

It follows that

mr(f ) = f ♦	1 m and q ∗ m = q ♦	1 m
(
f ∈ LUC(G), m ∈ LUC(G)∗, q ∈ ZU(G)

)
.

Hence, we have

ZU(G) = {
m ∈ LUC(G)∗: f ♦	1 m ∈ LUC(G) for all f ∈ LUC(G)

}
,

and

(
ZU(G),∗) = (

LUC	∞(G)∗R,♦	1

)
.

Therefore, LUC(G) is two-sided introverted in 	∞(G) if and only if ZU(G) = LUC(G)∗, and
this is exactly the case when G is an SIN-group (i.e., the identity eG of G has a basis consisting
of compact sets invariant under inner automorphisms), which is also equivalent to that the left
and the right uniformities on G coincide (cf. [4, Theorem 4.4.5] and [15, (4.14g)]).

For m ∈ LUC(G)∗ and f ∈ LUC(G), let ml(f )(s) = 〈m, sf 〉 (s ∈ G), where sf is the left
translate of f by s. According to Lau [23, Lemma 3], m � f = ml(f ), or we can write it as
m � f = m �	1 f , where �	1 is the left Arens product on 	1(G)∗∗. It follows that

m � n = m �	1 n
(
m,n ∈ LUC(G)∗

)
.

Consequently, we have

(
LUC(G)∗,�

) = (
LUC	∞(G)∗,�	1

)
and Zt

(
LUC(G)∗

) = Zt

(
LUC	∞(G)∗,�	1

)
.

See Dales and Lau [6, Theorem 5.15] for the general Banach algebra case.
In [25, Lemma 2], Lau proved that

Zt

(
LUC(G)∗

) = {
m ∈ ZU(G): m � n = m ∗ n for all n ∈ LUC(G)∗

}
.

This result was extended by Dales and Lau [6, Proposition 11.6] to all convolution Beurling al-
gebras. Therefore, [25, Lemma 2] indeed characterizes Zt (LUC(G)∗) via the 	1(G)-module
structure on LUC(G) (or the group action of G on LUC(G)). More precisely, we have
Zt (LUC(G)∗) = Zt (LUC	∞(G)∗,�	1), and we even have the following description of Zt (LUC(G

in the format of Theorem 2:

Zt

(
LUC(G)∗

) = {
m ∈ LUC	∞(G)∗R: m �	1 n = m ♦	1 n for all n ∈ LUC	∞(G)∗

}
.

In Theorem 2(i) with A = L1(G), we consider LUC(G)∗R instead of ZU(G) so that the group
action on LUC(G) is replaced by the Banach L1(G)-module action. Hence, Theorem 2 is a
Banach algebraic version of [25, Lemma 2]. We point out that, in general, (LUC(G)∗ ,♦) �=
R
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(ZU(G),∗); that is, (LUC(G)∗R,♦) �= (LUC	∞(G)∗R,♦	1) (see Theorem 19 in Section 4). There-
fore, even for A = L1(G), Theorem 2 does not follow from [25, Lemma 2].

Let X be either 〈A∗A〉 or 〈AA∗〉. For x ∈ X and m ∈ X∗, we write

mL(x) = m � x, and mR(x) = x ♦ m.

When X = 〈A∗A〉 and m ∈ X∗, we have mL ∈ B(X) and mR ∈ B(X,A∗), and mR ∈ B(X) if and
only if m ∈ X∗

R . Similar assertions hold for X = 〈AA∗〉.
For brevity, for results in the rest of this section, we state only their 〈A∗A〉-versions.

Proposition 5. Let A be a Banach algebra.

(i) If m ∈ Zt (〈A∗A〉∗), then m ∈ 〈A∗A〉∗R and mRnL = nLmR for all n ∈ 〈A∗A〉∗.
(ii) If m ∈ Zt (〈A∗A〉∗R), then mLnR = nRmL for all n ∈ 〈A∗A〉∗R .

Proof. We prove (i); assertion (ii) can be proved similarly.
Let m ∈ Zt (〈A∗A〉∗). By Theorem 2(i), m ∈ 〈A∗A〉∗R and m � n = m ♦ n for all n ∈ 〈A∗A〉∗.

Let n ∈ 〈A∗A〉∗. Then, for all x ∈ 〈A∗A〉 and a ∈ A, we have

〈
mRnL(x), a

〉 = 〈
a, (n � x) ♦ m

〉 = 〈
a · (n � x),m

〉 = 〈
(a · n) � x,m

〉 = 〈
m � (a · n), x

〉
,

and

〈
nLmR(x), a

〉 = 〈
n � (x ♦ m),a

〉 = 〈x ♦ m,a · n〉 = 〈
x,m ♦ (a · n)

〉 = 〈
m � (a · n), x

〉
.

Therefore, mRnL = nLmR for all n ∈ 〈A∗A〉∗. �
Proposition 5 is motivated by [34, Proposition 1.2.13], where Neufang proved that if G is a

locally compact group and m ∈ LUC(G)∗, then

m ∈ Zt

(
LUC(G)∗

)
if and only if m ∈ ZU(G) and

mrnl = nlmr for all n ∈ LUC(G)∗.

However, we note that for m ∈ LUC(G)∗, in general, mR �= mr , though mL = ml . In fact, the
converse of Proposition 5 is not true in general. For example, if G is non-SIN and m ∈ LUC(G)∗
is non-zero but vanishing on UC(G), then mR = 0 �= mr . In this situation, m ∈ LUC(G)∗R ,
mRnL = nLmR = 0 for all n ∈ LUC(G)∗, but m �∈ Zt (LUC(G)∗), since Zt (LUC(G)∗) is equal
to the measure algebra M(G) of G (cf. Lau [25]).

We observe that the identity eG of G defines the identity δeG
of (LUC(G)∗,�) and also

gives the identity of (ZU(G),∗). That is, δeG
is both an identity of (LUC	∞(G)∗,�	1) and an

identity of (LUC	∞(G)∗R,♦	1). This fact plays a crucial rôle in the proof of the sufficiency part
of [34, Proposition 1.2.13]. We are thus led to introducing the concept below for general Banach
algebras.

Definition 6. Let A be a Banach algebra. An element e0 of 〈A∗A〉∗R is a strong identity of 〈A∗A〉∗
if e0 is a left identity of (〈A∗A〉∗,�) and a right identity of (〈A∗A〉∗R,♦). A strong identity
of 〈AA∗〉∗ is defined similarly.
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It is readily seen that if e0 is a strong identity of 〈A∗A〉∗, then e0 is both an identity
of (〈A∗A〉∗,�) and an identity of (〈A∗A〉∗R,♦).

Lemma 7. Let A be a Banach algebra such that 〈A∗A〉∗ has a strong identity. Let m ∈ 〈A∗A〉∗.

(i) m ∈ Zt (〈A∗A〉∗) if and only if m ∈ 〈A∗A〉∗R and mRnL = nLmR for all n ∈ 〈A∗A〉∗.
(ii) m ∈ Zt (〈A∗A〉∗R) if and only if mLnR = nRmL for all n ∈ 〈A∗A〉∗R .

Proof. We prove (i); the proof of (ii) is similar. By Proposition 5, we need only prove the suffi-
ciency part.

Suppose that e0 is a strong identity of 〈A∗A〉, m ∈ 〈A∗A〉∗R , and mRnL = nLmR for all n ∈
〈A∗A〉∗. Let x ∈ 〈A∗A〉 and n ∈ 〈A∗A〉∗. Then (n � x) ♦ m = n � (x ♦ m). Note that

〈m � n,x〉 = 〈m,n � x〉 = 〈m ♦ e0, n � x〉 = 〈
e0, (n � x) ♦ m

〉 = 〈
e0, n � (x ♦ m)

〉
,

and

〈m ♦ n,x〉 = 〈x ♦ m,n〉 = 〈e0 � n,x ♦ m〉 = 〈
e0, n � (x ♦ m)

〉
.

Therefore, we have m�n = m♦n for all n ∈ 〈A∗A〉∗; so m ∈ Zt (〈A∗A〉∗) by Theorem 2(i). �
From Theorem 2(i) and the proof of Proposition 5, it is seen that for m ∈ 〈A∗A〉∗R ,

mRnL = nLmR for all n ∈ 〈A∗A〉∗
⇐⇒ m � (a · n) = m ♦ (a · n) for all n ∈ 〈A∗A〉∗ and a ∈ A

⇐⇒ (m · a) � n = (m · a) ♦ n for all n ∈ 〈A∗A〉∗ and a ∈ A

⇐⇒ m · A ⊆ Zt

(〈A∗A〉∗).
Therefore, combining these equivalences with Theorem 2 and Lemma 7, we have the following
Banach algebraic extension of [34, Proposition 1.2.13].

Corollary 8. Let A be a Banach algebra such that 〈A∗A〉∗ has a strong identity. Let m ∈ 〈A∗A〉∗.
Then the following statements are equivalent.

(i) m ∈ Zt (〈A∗A〉∗).
(ii) m ∈ 〈A∗A〉∗R and m � n = m ♦ n for all n ∈ 〈A∗A〉∗.

(iii) m ∈ 〈A∗A〉∗R and mRnL = nLmR for all n ∈ 〈A∗A〉∗.
(iv) m ∈ 〈A∗A〉∗R and m � n = m ♦ n for all n ∈ A · 〈A∗A〉∗.
(v) 〈A∗A〉 ♦ m ⊆ 〈A∗A〉 and m · A ⊆ Zt (〈A∗A〉∗).

4. Quotient algebras with a strong identity and SIN quantum groups

Let A be a Banach algebra. From the discussions in Section 3, it is natural to consider the
question of when 〈A∗A〉∗ (respectively, 〈AA∗〉∗) has a strong identity. As mentioned earlier, for a
locally compact group G, the identity δeG

of (LUC(G)∗,�) is always an identity of (ZU(G),∗).
However, we will see from Theorem 19 below that δe may not be an identity of (LUC(G)∗ ,♦).
G R



622 Z. Hu et al. / Journal of Functional Analysis 257 (2009) 610–640
Lemma 9. Let A be a Banach algebra.

(i) If (〈A∗A〉∗R,♦) has a right identity, then 〈A∗A〉 = 〈AA∗A〉.
(ii) Assume that A has a BRAI. If 〈A∗A〉∗ has a strong identity, then the map μ �−→ μ′ in

Lemma 1(ii) maps RM(A) into Zt (〈A∗A〉∗) ∩ Zt (〈A∗A〉∗R).

Proof. (i) Suppose that m ∈ 〈A∗A〉∗ and m|〈AA∗A〉 = 0. Then m · a = 0 for all a ∈ A. Thus
m ∈ 〈A∗A〉∗R , and m ♦ n = 0 for all n ∈ 〈A∗A〉∗. Therefore, 〈A∗A〉 = 〈AA∗A〉 if (〈A∗A〉∗R,♦)

has a right identity.
(ii) Let e0 be a strong identity of 〈A∗A〉∗. Then e0 = E|〈A∗A〉, where E is a weak∗-cluster

point in A∗∗ of a BRAI of A. Let μ ∈ RM(A). By Lemma 1(ii), we only have to show that
μ′ = μ∗∗(E)|〈A∗A〉 ∈ Zt (〈A∗A〉∗R).

Let m ∈ 〈A∗A〉∗R and m̃ ∈ A∗∗ be an extension of m. By (†) in the proof of Lemma 1,
m̃ ♦ μ∗∗(E) = μ∗∗(m̃ ♦ E) and m̃ � μ∗∗(E) = μ∗∗(m̃). For all a ∈ A and f ∈ A∗, we have

〈
f · a, m̃ ♦ μ∗∗(E)

〉 = 〈
μ∗(f · a), m̃ ♦ E

〉 = 〈
μ∗(f ) · a,m ♦ e0

〉 = 〈
m,μ∗(f ) · a〉

,

and

〈
f · a, m̃ � μ∗∗(E)

〉 = 〈
μ∗∗(m̃), f · a〉 = 〈

m̃,μ∗(f · a)
〉 = 〈

m̃,μ∗(f ) · a〉 = 〈
m,μ∗(f ) · a〉

.

It follows that (m̃ ♦ (μ∗∗(E))|〈A∗A〉 = (m̃ � μ∗∗(E))|〈A∗A〉; that is,

m ♦ μ∗∗(E)
∣∣〈A∗A〉 = m � μ∗∗(E)

∣∣〈A∗A〉.

Therefore, μ∗∗(E)|〈A∗A〉 ∈ Zt (〈A∗A〉∗R). �
Theorem 10. Let A be a Banach algebra. Then the following statements are equivalent.

(i) 〈A∗A〉∗ has a strong identity.
(ii) (〈A∗A〉∗,�) has an identity contained in Zt (〈A∗A〉∗R).

(iii) (〈A∗A〉∗,�) has a left identity and 〈A∗A〉 = 〈AA∗A〉.

Furthermore, if A satisfies 〈A2〉 = A, then each of the following statements is equivalent to
(i)–(iii).

(iv) (〈A∗A〉∗R,♦) is right unital.
(v) A has a BRAI and 〈A∗A〉 = 〈AA∗A〉.

Proof. (i) ⇐⇒ (ii). This follows from Definition 6 and the equality

Zt

(〈A∗A〉∗R
) = {

m ∈ 〈A∗A〉∗R: n ♦ m = n � m for all n ∈ 〈A∗A〉∗R
}
.

(Cf. Section 2.)
(i) �⇒ (iii). This holds by Lemma 9(i).
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(iii) �⇒ (i). Suppose that 〈A∗A〉 = 〈AA∗A〉, and e0 is a left identity of (〈A∗A〉∗,�). Then
e0 ∈ 〈A∗A〉∗R . Let m ∈ 〈A∗A〉∗R . Then, for a ∈ A and f ∈ 〈A∗A〉,

〈a · f,m ♦ e0〉 = 〈
a · (f ♦ m), e0

〉 = 〈e0 � a,f ♦ m〉 = 〈a,f ♦ m〉 = 〈a · f,m〉.
Since 〈A∗A〉 = 〈AA∗A〉, we have m ♦ e0 = m. Therefore, e0 is a right identity of (〈A∗A〉∗R,♦)

and hence a strong identity of 〈A∗A〉∗.
Assume that 〈A2〉 = A. In this case, by [13, Theorem 4], (〈A∗A〉∗,�) is (right) unital if and

only if A has a BRAI. Clearly, (i) �⇒ (iv), and [(i) and (iii)] �⇒ (v) �⇒ (iii). So, we only have
to show that (iv) �⇒ (i).

(iv) �⇒ (i). Let e be a right identity of (〈A∗A〉∗R,♦). Since A is weak∗-dense in 〈A∗A〉∗
and A ⊆ 〈A∗A〉∗R , we see that e is also a right identity of (〈A∗A〉∗,�), and hence is an identity
of (〈A∗A〉∗,�) by the paragraph above. Therefore, e is a strong identity of 〈A∗A〉∗.

We note here that the word “right” is missing in the conclusion of [13, Theorem 4(ii)], where
it should read “A has a BRAI” rather than “A has a BAI”. �

We consider below some conditions which are closely related to the existence of a strong
identity of 〈A∗A〉∗.

(0) A is an ideal in A∗∗.
(1) A has a central approximate identity, i.e., A has an approximate identity from the algebraic

centre of A.
(2) 〈A∗A〉 = 〈AA∗〉.
(3) 〈A∗A〉 = 〈AA∗A〉.
(4) 〈A∗A〉 ⊆ 〈AA∗〉.
(5) 〈A∗A〉 is introverted in A∗.
(6) 〈AA∗〉 is introverted in A∗.

Proposition 11. Let A be a Banach algebra. The following assertions hold.

(i) 〈AA∗A〉 = 〈A∗A〉 ∩ 〈AA∗〉 in the following two cases:
(a) A has a BRAI or a BLAI;
(b) A is commutative satisfying 〈A2〉 = A.

(ii) [(0) or (1)] �⇒ [(2) and (3)], [(2) or (3)] �⇒ (4), and (2) �⇒ [(5) and (6)].
(iii) If 〈A2〉 = A, then [(0) or (1)] �⇒ (2) �⇒ (3) ⇐⇒ (4).
(iv) If A is an involutive Banach algebra, then (2) ⇐⇒ (4), and (5) ⇐⇒ (6).
(v) If A is an involutive Banach algebra satisfying 〈A2〉 = A, then

[
(0) or (1)

] �⇒ (2) ⇐⇒ (3) ⇐⇒ (4) �⇒ (5) ⇐⇒ (6).

(vi) If A is the group algebra L1(G) of a locally compact group G, then (1)–(6) are all equiva-
lent, and each of them is equivalent to that G is an SIN-group.

Proof. (i) For case (a), suppose that (eα) is a BRAI of A. Let f ∈ 〈A∗A〉 ∩ 〈AA∗〉. Then f =
‖ · ‖–limf · eα and thus f ∈ 〈AA∗A〉. Therefore, 〈AA∗A〉 = 〈A∗A〉 ∩ 〈AA∗〉. When (eα) is a
BLAI of A, one just need replace f · eα above with eα · f .

The assertion holds for case (b), since 〈AA∗A〉 = 〈A∗A2〉 = 〈A∗A〉 = 〈AA∗〉 if A is commu-
tative satisfying 〈A2〉 = A.



624 Z. Hu et al. / Journal of Functional Analysis 257 (2009) 610–640
(ii) This is clearly true.
(iii) Assume that 〈A2〉 = A. Suppose that 〈A∗A〉 ⊆ 〈AA∗〉. Then

A∗A2 ⊆ 〈A∗A〉A ⊆ 〈AA∗〉A ⊆ 〈AA∗A〉 ⊆ 〈A∗A〉.

So, 〈A∗A〉 = 〈A∗A2〉 = 〈AA∗A〉. Therefore, (4) �⇒ (3), and (2) �⇒ (3) ⇐⇒ (4) by (ii).
(iv) Suppose that A is an involutive Banach algebra. Note that, in general, the involution on A

cannot be extended to an involution on A∗∗ with either Arens product (cf. [9]). For each m ∈ A∗∗,
an element m∗ ∈ A∗∗ can be defined by m∗(f ) = m(f ∗) (f ∈ A∗), where f ∗ ∈ A∗ is given by
f ∗(a) = f (a∗) (a ∈ A). It is easy to see that (m � f )∗ = f ∗ ♦ m∗ and (f ♦ m)∗ = m∗ � f ∗
(m ∈ A∗∗, f ∈ A∗).

Note that f �−→ f ∗ maps 〈A∗A〉 onto 〈AA∗〉, and 〈AA∗〉 onto 〈A∗A〉. Therefore, we have
(2) ⇐⇒ (4).

Assume that 〈A∗A〉 is introverted in A∗. Let p ∈ 〈AA∗〉∗ and f ∈ 〈AA∗〉. Let m ∈ A∗∗ be any
extension of p. Then

p � f = m � f = (f ∗ ♦ m∗)∗ ∈ 〈AA∗〉,

since f ∗ ∈ 〈A∗A〉 and f ∗ ♦ m∗ ∈ 〈A∗A〉. Thus 〈AA∗〉 is introverted in A∗. Therefore, we have
(5) �⇒ (6). Similarly, we have (6) �⇒ (5).

(v) This follows from (ii)–(iv).
(vi) Let G be a locally compact group and A = L1(G). It is known that condition (1) is

equivalent to G being an SIN-group (cf. [33, Proposition]). By (v), we only have to show that G

is an SIN-group if condition (6) is satisfied.
Assume that RUC(G) is left introverted in L∞(G). Applying [6, Theorem 5.15] with X =

RUC(G) and B = 	1(G), we see that RUC(G) is also left introverted in 	∞(G). It follows from
[4, Theorem 4.4.5] and [31, Theorem 2] that G is an SIN-group. �
Remark 12. Let A = A(F2), where F2 is the free group with two generators. Then A is commu-
tative satisfying 〈A2〉 = A (cf. Fact 1 below). Due to Proposition 11, we have 〈A∗A〉 = 〈AA∗A〉
and 〈A∗A〉∗R = 〈A∗A〉∗. But (〈A∗A〉∗R,♦) does not have a right identity by Theorem 10. There-
fore, the converse of Lemma 9(i) is not true.

It is possible that a Banach algebra has a (not necessarily bounded) central approximate iden-
tity, but it has no bounded approximate identity. For example, as shown by De Cannière and
Haagerup [8], the Fourier algebra A(F2) is weakly amenable. That is, A(F2) has a (central) ap-
proximate identity bounded with respect to the cb-multiplier norm on McbA(F2) (the completely
bounded multiplier algebra of A(F2)). However, A(F2) has no bounded approximate identity,
since F2 is a non-amenable group. We note that there are some groups which have even weaker
approximation properties than weak amenability. For instance, it was shown by Haagerup and
Kraus [14] that the semi-direct product G = Z2 �ρ SL(2,Z) is not weakly amenable (where
ρ is the standard action of SL(2,Z) on Z2), but it has the AP, i.e., there exists a net in A(G)

converging to 1G in the weak∗ topology on McbA(G).
As shown by Losert [30, Proposition 2], span{A(G)2} = A(G) if and only if G is amenable.

However, all A(G) satisfy 〈A2〉 = A. This condition is indeed satisfied by all quantum group
algebras as stated below in Fact 1. Before seeing this, we recall briefly the notion of locally
compact quantum groups.
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Let G = (M,Γ,ϕ,ψ) be a von Neumann algebraic locally compact quantum group in the
sense of Kustermans and Vaes [21,22]. By definition, (M,Γ ) is a Hopf–von Neumann algebra, ϕ
is a normal semifinite faithful left invariant weight on (M,Γ ), and ψ is a normal semifinite faith-
ful right invariant weight on (M,Γ ). Since the co-multiplication Γ is a normal isometric unital
∗-homomorphism from M into M⊗̄M , it is well known that its pre-adjoint Γ∗ : M∗⊗̂M∗ −→ M∗
induces an associative completely contractive multiplication � on M∗ (cf. Ruan [37,38]). Here,
⊗̄ denotes the von Neumann algebra tensor product, and ⊗̂ denotes the operator space projective
tensor product. In the two classical cases where M∗ is L1(G) or A(G), � is the usual convo-
lution on L1(G) and the pointwise multiplication on A(G), respectively. The reader is referred
to Kustermans and Vaes [21,22] and van Daele [45] for more information on locally compact
quantum groups.

Following the locally compact group case, the von Neumann algebra M is written as L∞(G),
and the Banach algebra M∗ equipped with the multiplication � is denoted by L1(G). It is known
that the quantum group algebra L1(G) is an involutive Banach algebra with a faithful multipli-
cation (cf. [16]). The locally compact quantum group G is called co-amenable if L1(G) has a
BAI. It turns out that G is co-amenable if and only if L1(G) has a BRAI if and only if L1(G) has
a BLAI. We showed in [16, Theorem 2] that G is co-amenable if and only if L1(G) has a BAI
consisting of normal states on L∞(G).

Since the multiplication map Γ∗ : L1(G)⊗̂L1(G) −→ L1(G) is a complete quotient map, we
have the following

Fact 1. All quantum group algebras L1(G) satisfy 〈L1(G)2〉 = L1(G).

Therefore, by Proposition 11(v), conditions (2)–(4) are equivalent for all quantum group al-
gebras L1(G).

The Banach L1(G)-modules RUC(G) and LUC(G) are defined to be 〈L1(G) � L∞(G)〉 and
〈L∞(G) � L1(G)〉, respectively, and UC(G) denotes LUC(G) ∩ RUC(G) (cf. Hu, Neufang and
Ruan [16] and Runde [41]). It turns out that RUC(G) and LUC(G) are closed operator systems in
L∞(G) (cf. [41, Theorem 2.3]). Obviously, they are just the usual spaces LUC(G) and RUC(G)

if L1(G) is the group algebra L1(G) of a locally compact group G. By Proposition 11(i),
UC(G) = 〈L1(G) � L∞(G) � L1(G)〉 if either G is co-amenable, or G is co-commutative which
is precisely the case when L1(G) = A(G) for some locally compact group G.

Recall that a locally compact group G is SIN if and only if LUC(G) = RUC(G)

(cf. Milnes [31]).

Definition 13. Let A be a Banach algebra and X be a Banach A-module. We say that the Banach
A-module action on X is SIN if 〈A · X〉 = 〈X · A〉.

A locally compact quantum group G is called an SIN quantum group if the canonical Banach
L1(G)-module action on L∞(G) is SIN.

Note that the 〈AA∗〉-version of Theorem 10 holds. Therefore, we have the following immedi-
ate corollary of Theorem 10 and Proposition 11(v).

Corollary 14. Let A be an involutive Banach algebra satisfying 〈A2〉 = A. Let X be either 〈A∗A〉
or 〈AA∗〉. Then X∗ has a strong identity if and only if A has a BAI and the canonical Banach
A-module action on A∗ is SIN.
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For a Banach algebra A, let BA(A∗) be the Banach algebra of bounded right A-module ho-
momorphisms on A∗, and Bσ

A(A∗) be the normal part of BA(A∗) (i.e., consisting of all elements
of BA(A∗) which are weak∗–weak∗ continuous). Note that if E ∈ A∗∗ is a weak∗-cluster point
of a BRAI of A, then T = T ∗(E)L for all T ∈ BA(A∗). It can be seen that we have the following

Fact 2. Let A be a Banach algebra.

(i) The map RM(A) −→ Bσ
A(A∗), μ �−→ μ∗ is an isometric algebra isomorphism.

(ii) The map (〈A∗A〉∗,�) −→ BA(A∗), m �−→ mL is an injective contractive algebra homomor-
phism, and is a surjective isometry if A has a BRAI bounded by 1.

In the sequel, RM(A) and 〈A∗A〉∗ will be compared via their canonical images in BA(A∗).
Due to Lemma 1(ii), we have RM(A) ⊆ Zt (〈A∗A〉∗) if A has a BRAI. The opposite inclusion is
clearly equivalent to A · Zt (〈A∗A〉∗) ⊆ A. Therefore, we have

Fact 3. Zt (〈A∗A〉∗) ⊆ RM(A) if and only if A · Zt (〈A∗A〉∗) ⊆ A.

As a consequence of Facts 1, 2, and Grosser and Losert [13, Theorem 4], we obtain the follow-
ing characterizations of co-amenable locally compact quantum groups G in terms of LUC(G)∗.

Theorem 15. Let G be a locally compact quantum group. Then the following statements are
equivalent.

(i) G is co-amenable.
(ii) LUC(G)∗ ∼= BL1(G)(L∞(G)) via the isometric algebra isomorphism m �−→ mL.

(iii) RM(L1(G)) ⊆ Zt (LUC(G)∗).
(iv) idL1(G) ∈ Zt (LUC(G)∗).
(v) (LUC(G)∗,�) is unital.

(vi) (LUC(G)∗,�) is right unital.

Recall that a locally compact quantum group G is called amenable if there exists a left in-
variant mean on L∞(G); that is, there exists m ∈ L∞(G)∗ such that ‖m‖ = 〈m,1〉 = 1 and
a � m = 〈1, a〉m (a ∈ L1(G)). Right invariant means and (two-sided) invariant means on L∞(G)

are defined similarly. It is known that the existence of a right invariant mean and the existence
of an invariant mean are both equivalent to G being amenable. It is well known that all co-
commutative quantum groups are amenable.

In [24], Lau introduced and studied a large class of Banach algebras, called F -algebras,
including all preduals of Hopf–von Neumann algebras. An F -algebra is a Banach algebra A

which is the predual of a W ∗-algebra M such that the identity 1 of M is a multiplicative lin-
ear functional on A. For an F -algebra A, let A0 be the augmentation ideal in A; that is, A0 =
{a ∈ A: 〈a,1〉 = 0}.

Note that a quantum group algebra L1(G) is an involutive Banach algebra, and L1(G)0 is
closed under the involution on L1(G). Thus L1(G) (respectively, L1(G)0) has a BRAI if and
only if L1(G) (respectively, L1(G)0) has a BAI. Applying Lau [24, Theorem 4.10] to L1(G)

(see also [24, Theorem 4.1]), we obtain the following proposition. We note that the equivalence
below also follows by combining [24, Theorem 4.10] with its right-hand side version, which can
be proved by interchanging the words “left” and “right” there.
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Proposition 16. Let G be a locally compact quantum group. Then G is amenable and co-
amenable if and only if L1(G)0 has a BAI.

In particular, if G is a co-commutative quantum group, then each of (i)–(vi) in Theorem 15 is
also equivalent to

(vii) L1(G)0 has a BAI.

We point out that unlike in the case of L1(G), where L1(G) has a BAI (that is, G is co-
amenable) if and only if L1(G) has a BAI of norm 1 (even, as shown in [16], consisting of states
on L∞(G)), for any infinite-dimensional co-amenable co-commutative quantum group G (that
is, L1(G) = A(G) of an infinite amenable group G), L1(G)0 has a BAI bounded by 2, and 2 is
the best possible norm bound for any BAI of L1(G)0 (cf. Kaniuth and Lau [19, Theorem 3.4]).

Remark 17. Recall that in the case where L1(G) is L1(G) or A(G), the quantum group G is
amenable and co-amenable if and only if G is an amenable group. Therefore, for all locally
compact groups G, we have

G is amenable if and only if L1(G)0 has a BAI if and only if A(G)0 has a BAI.

It would be interesting to know whether for a general locally compact quantum group G, we have

L1(G)0 has a BAI if and only if L1(Ĝ)0 has a BAI.

It is known by Bédos and Tuset [3, Theorem 3.2] that if Ĝ is co-amenable, then G is amenable.
Therefore, to obtain the above equivalence, it suffices to know whether the amenability of G
(respectively, the amenability and the co-amenability of G) would imply the co-amenability of Ĝ.
This is still an open question, which is only known to be true if G is a locally compact group G

(i.e., L1(G) = L1(G), cf. Leptin [29]), or G is a discrete quantum group (cf. Tomatsu [44], see
also Ruan [38] for the discrete Kac algebra case).

By our definition, a locally compact quantum group G is SIN if and only if LUC(G) =
RUC(G). Therefore, by Proposition 11(v), G is SIN if and only if LUC(G) = UC(G) if and
only if RUC(G) = UC(G). It was proved recently by Runde [40] that G is compact if and only
if L1(G) is an ideal in L1(G)∗∗ (that is, L1(G) satisfies condition (0)). Thus, as in the locally
compact group case, G is an SIN quantum group whenever G is compact, or G is discrete (that
is, L1(G) has an identity), or G is co-commutative. Also, G is SIN if L1(G) has a central ap-
proximate identity (cf. Proposition 11).

As in Theorem 15, we identify RM(L1(G)) and LUC(G)∗ with their respective canonical
images in BL1(G)(L∞(G)). Then we obtain the following interesting counterpart of Theorem 15.

Theorem 18. Let G be a locally compact quantum group. Then the following statements are
equivalent.

(i) G is co-amenable and SIN.
(ii) RM(L1(G)) ⊆ Zt (LUC(G)∗R).

(iii) idL1(G) ∈ Zt (LUC(G)∗R).
(iv) (LUC(G)∗ ,♦) is unital.
R
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(v) (LUC(G)∗R,♦) is right unital.
(vi) LUC(G)∗ has a strong identity.

Proof. (vi) �⇒ (iv) �⇒ (iii) and (ii) �⇒ (iii) are trivial. (iii) �⇒ (vi) ⇐⇒ (v) follows from
Theorem 10. (i) ⇐⇒ (vi) holds by Corollary 14. And (vi) �⇒ (ii) follows from Lemma 9(ii) and
Theorem 15. �

For a general co-amenable locally compact quantum group G, we do not know whether L1(G)

has a central BAI if G is SIN, though this is true when G is commutative or co-commutative.
This is not clear even for co-amenable compact quantum groups. Also, it is not clear whether G
is SIN if G is co-amenable and LUC(G) is introverted in L∞(G) (cf. Proposition 11(vi)).

Let G be a locally compact group. It is seen that if f ∈ UC(G), then mr(f ) = mR(f ) ∈
RUC(G) for all m ∈ LUC(G)∗ (cf. Lau [23, Lemma 3]). Also, if m ∈ Zt (LUC(G)∗) = M(G),
then mr(f ) = mR(f ) and m � n = m ♦ n = m ∗ n for all f ∈ LUC(G) and n ∈ LUC(G)∗.

Suppose that LUC(G) = RUC(G). Then LUC(G)∗R = LUC(G)∗ = RUC(G)∗. As shown in
Section 3 that (LUC(G)∗,�) = (LUC	∞(G)∗,�	1), we also have

(
RUC(G)∗,♦) = (

RUC	∞(G)∗,♦	1

)
.

Recall that (ZU(G),∗) = (LUC	∞(G)∗R,♦	1) (cf. Section 3). Therefore, we have

(
LUC(G)∗R,♦) = (

RUC(G)∗,♦) = (
RUC	∞(G)∗,♦	1

) = (
LUC	∞(G)∗R,♦	1

) = (
ZU(G),∗);

i.e., (LUC(G)∗R,♦) = (ZU(G),∗), or equivalently, (LUC(G)∗R,♦) = (LUC	∞(G)∗R,♦	1).
Conversely, assume that UC(G) � LUC(G). Then there exists a non-zero m ∈ LUC(G)∗R

such that mR = 0 (see the paragraph after the proof of Proposition 5). Obviously, δeG
∈

ZU(G) ∩ LUC(G)∗R . Also, δeG
is an identity of (ZU(G),∗), and δeG

is a left but not a right
identity of (LUC(G)∗R,♦) (since m ♦ δeG

= 0). Therefore, in this situation, (LUC(G)∗R,♦) can-
not be a subalgebra of (ZU(G),∗).

Recall that RM(L1(G)) = M(G), and δeG
is an identity of (LUC(G)∗,�). From these discus-

sions together with Proposition 11(vi), Corollary 14, and Theorem 18, we obtain below several
new characterizations of SIN locally compact groups.

Theorem 19. Let G be a locally compact group. Then the following statements are equivalent.

(i) G is an SIN-group.
(ii) (LUC(G)∗R,♦) = (LUC	∞(G)∗R,♦	1).

(iii) (LUC(G)∗R,♦) is a subalgebra of (LUC	∞(G)∗R,♦	1).
(iv) M(G) ⊆ Zt (LUC(G)∗R).
(v) δeG

∈ Zt (LUC(G)∗R).
(vi) (LUC(G)∗R,♦) is unital.

(vii) (LUC(G)∗R,♦) is right unital.
(viii) LUC(G)∗ has a strong identity.

(ix) LUC(G) is two-sided introverted in L∞(G).

Remark 20. (a) The referee kindly informed us that the equivalence between (i) and (ii) in
Theorem 19 may also be obtained by [32, Theorem 7] and [36, Lemma 5].
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(b) Results obtained in this section illustrate that the SIN property is intrinsically related to
topological centre problems.

(c) The Banach algebras (LUC(G)∗R,♦) and (ZU(G),∗) are both used to describe the topo-
logical centre Zt (LUC(G)∗) and to characterize the SIN property of a locally compact group G.
The approach by using LUC(G)∗R is of Banach algebraic flavor, that can be applied to general
locally compact quantum groups. We note that (LUC(G)∗R,♦) cannot be replaced by (ZU(G),∗)

in Theorem 19(v)–(vii). We have other evidence showing advantages of LUC(G)∗R over ZU(G)

for studying problems as characterizing the equality LUC(G) = WAP(G) for general quantum
groups G, where WAP(G) is the space of weakly almost periodic functionals on L1(G). (Recall
that a bounded linear functional f on a Banach algebra A is called weakly almost periodic if the
map A −→ A∗, a �−→ f · a is weakly compact.)

(d) Suppose that G is amenable. Let RIM(LUC(G)) and TRIM(LUC(G)) be the sets of right
translation invariant and topologically right invariant means on LUC(G), respectively. Then

TRIM
(
LUC(G)

) ⊆ RIM
(
LUC(G)

) ⊆ ZU(G), and TRIM
(
LUC(G)

) ⊆ LUC(G)∗R.

It follows that if (ZU(G),∗) is a subalgebra of (LUC(G)∗R,♦), then TRIM(LUC(G)) =
RIM(LUC(G)). We do not know whether the converse holds, that would be true if the above
equality were equivalent to G being SIN. Also, it is not clear for us when we would have
LUC(G)∗R = ZU(G) as subspaces of LUC(G)∗.

Let G be a locally compact quantum group and C0(G) be the reduced C∗-algebra of G. Then
C0(G) ⊆ WAP(G) (cf. Runde [41, Theorem 4.3]), WAP(G) and C0(G) are introverted in L∞(G),
and the two Arens products on WAP(G)∗ and C0(G)∗, respectively, coincide (cf. Dales and Lau
[6, Propositions 3.11 and 5.7]). Therefore, M(G) = C0(G)∗ is a dual Banach algebra (i.e., the
multiplication on M(G) is separately weak∗–weak∗ continuous). We point out that the Arens
product on M(G) is equal to the product on C0(G)∗ as defined in Kustermans and Vaes [21], that
is induced by the co-multiplication on C0(G).

It is known that G is co-amenable if and only if C0(G)∗ is unital (cf. Bédos and Tuset [3, The-
orem 3.1]). By Theorem 15, we see that the co-amenability of G is also equivalent to WAP(G)∗
being unital. It is interesting to compare these characterizations of co-amenable locally compact
quantum groups (see also Theorem 15) with Theorem 18, where we show in particular that a
quantum group G is co-amenable and SIN if and only if (LUC(G)∗R,♦) is unital.

Among these kinds of characterizations in terms of the existence of a unit, we point out here
that Theorem 22 of the next section shows that when L1(G) is in the class of Banach algebras
introduced by the authors in [16], in particular, when L1(G) is separable with G co-amenable,
then G is discrete if and only if L1(G)∗∗ is unital under either Arens product.

5. Interrelationships between strong Arens irregularity and quotient strong Arens
irregularity

Let A be a Banach algebra. Recall that we say that A is left quotient strongly Arens irregular
if Zt (〈A∗A〉∗) ⊆ RM(A), which is equivalent to Zt (〈A∗A〉∗) = RM(A) if A has a BRAI, where
RM(A) and 〈A∗A〉∗ are identified with their respective canonical images in BA(A∗) (cf. Sec-
tion 1). In this section, we consider how the inclusion Zt (〈A∗A〉∗) ⊆ RM(A) is related to the left
strong Arens irregularity of A. For brevity, most results in this section are stated in their one-
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sided versions. We remind the reader that here RM(A) is the opposite right multiplier algebra
of A.

Recall that a Banach space X is weakly sequentially complete (WSC) if every weakly Cauchy
sequence in X is weakly convergent. It is well known that the predual of a von Neumann algebra
is WSC (cf. Takesaki [42, Corollary III.5.2]).

First, using the connection between RM(A) and Zt (〈A∗A〉∗) as shown in Lemma 1(ii), we
give the following generalization of Lau and Ülger [28, Theorem 2.6], where they proved that if
A is WSC with a sequential BAI, then 〈A∗A〉 = A∗ if and only if 〈AA∗〉 = A∗ if and only if A is
unital. Lau and Ülger asked there whether one can drop the word “sequential” above. See Baker,
Lau and Pym [2, Corollary 2.3] for some related results.

To present results in this section, we need recall the definition of the class of Banach algebras
introduced by the authors in [16].

Definition 21. (See [16].) Let A be a Banach algebra with a BAI. Then A is said to be of type
(RM) if for every μ ∈ RM(A), there is a closed subalgebra B of A with a BAI such that

(I) μ|B ∈ RM(B);
(II) f |B ∈ BB∗ for all f ∈ AA∗;

(III) there is a family {Bi} of closed right ideals in B satisfying (i) each Bi is WSC with a
sequential BAI, (ii) for all i, there exists a left Bi -module projection from B onto Bi , and
(iii) μ ∈ A if μ|Bi

∈ Bi for all i.

Similarly, Banach algebras of type (LM) are defined. A is said to be of type (M) if A is both of
type (LM) and of type (RM).

Obviously, a Banach algebra A is of type (M) if A is WSC with a sequential BAI. This is
the case when A is L1(G) of a co-amenable quantum group G over a separable Hilbert space.
It is shown in [16] that all convolution Beurling algebras L1(G,ω) with ω � 1, in particular, all
group algebras L1(G), are of type (M). And so are Fourier algebras A(G) of amenable locally
compact groups G.

Theorem 22. Let A be a Banach algebra.

(i) Suppose that A is of type (LM). Then 〈A∗A〉 = A∗ if and only if A is unital.
(ii) Suppose that A is of type (RM). Then 〈AA∗〉 = A∗ if and only if A is unital.

Consequently, if A is of type (M), then A is unital if and only if A∗∗ is unital under either Arens
product.

In particular, if G is a locally compact quantum group with L1(G) of type (M), then
LUC(G) = L∞(G) if and only if G is discrete if and only if L1(G)∗∗ is unital.

Proof. We prove assertion (i); similar arguments establish (ii).
Clearly, 〈A∗A〉 = A∗ if A is unital. Conversely, assume that 〈A∗A〉 = A∗. Then we have

(〈A∗A〉∗,�) = (A∗∗,�) and Zt (〈A∗A〉∗) = Zt (A
∗∗,�). Let (μ, ν) ∈ M(A) and E be a weak∗-

cluster point in A∗∗ of a BAI of A. By Lemma 1(ii), ν∗∗(E) ∈ Zt (〈A∗A〉∗) = Zt (A
∗∗,�). It can

be seen that ν∗∗(E) · a = μ(a) for all a ∈ A. Thus ν∗∗(E) · A ⊆ A. By [16, Theorem 32(i)],
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ν∗∗(E) = a0 for some a0 ∈ A. It follows that μ(a) = a0a and ν(a) = aa0 (a ∈ A). We conclude
that A is unital by taking (μ, ν) = (idA, idA).

By (i), (ii), and [28, Proposition 2.2], we conclude that A is unital if and only if A∗∗ is unital
under either Arens product. �

It is interesting to compare Theorem 23 below with [16, Theorem 32], where we proved that
if A is of type (LM), then

A is left strongly Arens irregular if and only if Zt (A
∗∗,�) · A ⊆ A;

and if A is of type (RM), then

A is right strongly Arens irregular if and only if A · Zt (A
∗∗,♦) ⊆ A.

Theorem 23. Let A be a Banach algebra satisfying 〈A2〉 = A.

(i) A is left quotient strongly Arens irregular if and only if A · Zt (A
∗∗,�) ⊆ A.

(ii) A is right quotient strongly Arens irregular if and only if Zt (A
∗∗,♦) · A ⊆ A.

Consequently, Zt (A
∗∗,�) ∩ Zt (A

∗∗,♦) = A in the following two cases:

(a) A is of type (RM) and Zt (〈A∗A〉∗) = RM(A);
(b) A is of type (LM) and Zt (〈AA∗〉∗) = LM(A).

Proof. Assertion (i) follows from Corollary 4(i) and Fact 3. Similarly, assertion (ii) holds.
For the final assertion, let m ∈ Zt (A

∗∗,�)∩Zt (A
∗∗,♦). In case (a), we have A ·m ⊆ A by (i),

and since m ∈ Zt (A
∗∗,♦), we have m ∈ A by [16, Theorem 32(ii)]. Therefore, Zt (A

∗∗,�) ∩
Zt (A

∗∗,♦) = A. The proof for case (b) is similar. �
Remark 24. Suppose that A has a BRAI, and 〈A∗A〉∗ has a strong identity. It is seen that

[
Zt

(〈A∗A〉∗) ∩ Zt

(〈A∗A〉∗R
) = RM(A)

] �⇒ [
A · (Zt (A

∗∗,�) ∩ Zt (A
∗∗,♦)

) ⊆ A
]
.

(Cf. Lemma 9(ii)].) Hence, the equality Zt (〈A∗A〉∗) ∩ Zt (〈A∗A〉∗R) = RM(A) implies that
Zt (A

∗∗,�) ∩ Zt (A
∗∗,♦) = A if A is of type (RM) (comparing with case (a) in Theorem 23).

In this situation, [Zt (〈A∗A〉∗) = RM(A)] �⇒ [Zt (〈A∗A〉∗) ⊆ Zt (〈A∗A〉∗R)].

Due to Theorem 23, we have the following theorem on topological centres.

Theorem 25. Let A be a Banach algebra. Consider the following statements.

(i) Zt (〈A∗A〉∗) = RM(A).
(ii) Zt (A

∗∗,�) = A.
(iii) Zt (A

∗∗,�) ⊆ Zt (A
∗∗,♦).

If A is of type (RM), then any two of (i)–(iii) imply the third.
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Proof. By Theorem 23(i), we just need to show that [(i) and (iii)] �⇒ (ii).
Assume that Zt (〈A∗A〉∗) = RM(A) and Zt (A

∗∗,�) ⊆ Zt (A
∗∗,♦). Then, by case (a) in The-

orem 23, we have Zt (A
∗∗,�) = Zt (A

∗∗,�) ∩ Zt (A
∗∗,♦) = A; that is, (ii) holds. �

Combining Theorem 23 with Theorem 25 gives the corollary below.

Corollary 26. Let A be a Banach algebra of type (M). If Zt (A
∗∗,�) = Zt (A

∗∗,♦) (e.g., A is
commutative), then the following statements are equivalent.

(i) Zt (〈A∗A〉∗) = RM(A).
(ii) Zt (〈AA∗〉∗) = LM(A).

(iii) Zt (A
∗∗,�) = A.

(iv) Zt (A
∗∗,�) · A ⊆ A.

(v) A · Zt (A
∗∗,�) ⊆ A.

Remark 27. When A is the Fourier algebra of an amenable locally compact group, Lau and
Losert proved (i) �⇒ (iii) in [27, Theorem 6.4].

Remark 28. In [28, Remark 5.2.3◦], Lau and Ülger observed the asymmetry between the equality
“A · Zt (A

∗∗,�) = A · Zt (〈A∗A〉∗)” as stated in Corollary 4(ii), and the inclusion “Zt (A
∗∗,�) ·

A ⊆ Zt (A
∗∗,�)” considered in [28, Theorem 5.1]—the topological centre Zt (A

∗∗,�) is treated
as a left A-module in the former but a right A-module in the latter. One may also compare
the condition “A · Zt (A

∗∗,�) ⊆ A” in Theorem 23(i) with the condition “Zt (A
∗∗,�) · A ⊆ A”

considered in [16, Theorem 32(i)]. These asymmetries may be explained as follows.
In the equality A · Zt (A

∗∗,�) = A · Zt (〈A∗A〉∗), the topological centre Zt (A
∗∗,�) is linked

to the opposite right multiplier algebra RM(A) through the embedding RM(A) ↪→ Zt (〈A∗A〉∗).
On the other hand, in Zt (A

∗∗,�) · A ⊆ Zt (A
∗∗,�), one relates Zt (A

∗∗,�) to the left multi-
plier algebra LM(A) via the map from LM(A) into (A∗∗,♦) as given in Lemma 1(i): the product
Zt (A

∗∗,�) · A taken here should be recognized as the product Zt (A
∗∗,�) ♦ A though they are

equal.

Assume that A is of type (M). If Zt (A
∗∗,�) = Zt (A

∗∗,♦), then, by Corollary 26, the strong
Arens irregularity of A is equivalent to the quotient strong Arens irregularity of A. However,
there do exist involutive Banach algebras A of type (M) such that Zt (A

∗∗,�) �= Zt (A
∗∗,♦) (cf.

Propositions 34 and 36 in Section 6). In this situation, Theorem 25 shows that the assertion

[
Zt

(〈A∗A〉∗) = RM(A)
] �⇒ [

Zt (A
∗∗,�) = A

]
(1)

is equivalent to

[
Zt

(〈A∗A〉∗) = RM(A)
] �⇒ [

Zt (A
∗∗,�) ⊆ Zt (A

∗∗,♦)
]
, (2)

which is also equivalent to

[
A · Zt (A

∗∗,�) ⊆ A
] �⇒ [

Zt (A
∗∗,�) · A ⊆ A

]
(3)

by Theorem 23(i) and [16, Theorem 32(i)].
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Therefore, even in order to obtain the left strong Arens irregularity of A through the left quo-
tient strong Arens irregularity of A, one may have to consider both topological centres of A∗∗ and
their relationship. As noted in Remark 28, Zt (A

∗∗,�) is intrinsically related to both LM(A) and
RM(A). In other words, LM(A) and RM(A) are each related to both Zt (A

∗∗,�) and Zt (A
∗∗,♦).

Moreover, the equivalence between (1) and (3) shows that implication (1) holds precisely when
A is not a “wrong" sided ideal in Zt (A

∗∗,�); that is, A cannot be only a right but not a left ideal
in Zt (A

∗∗,�). All of these facts (see also Remark 28) illustrate the complex nature of topological
centre problems.

Next, we consider the case where A is an involutive Banach algebra. In this situation, there
exists a closer connection between Zt (A

∗∗,�) and Zt (A
∗∗,♦) (respectively, Zt (〈A∗A〉∗) and

Zt (〈AA∗〉∗)). Let τ : A∗∗ −→ A∗∗, m �−→ m∗ be the unique weak∗–weak∗ continuous extension
of the involution on A (cf. the proof of Proposition 11(iv)). Then τ is usually not an involu-
tion on A∗∗ with either Arens product (cf. Farhadi and Ghahramani [9]) but a linear involution;
that is, τ(τ (m)) = m and τ(αm + βn) = ᾱτ (m) + β̄τ (n) (m, n ∈ A∗∗, α, β ∈ C). It can be
seen that (m � n)∗ = n∗ ♦ m∗ and (m ♦ n)∗ = n∗ � m∗ for all m,n ∈ A∗∗ (cf. Dales and Lau
[6, Chapter 2]). So, τ(Zt (A

∗∗,�)) = Zt (A
∗∗,♦) and τ(Zt (A

∗∗,♦)) = Zt (A
∗∗,�). Thus,

Zt (A
∗∗,�) = A if and only if Zt (A

∗∗,♦) = A,

and A ·Zt (A
∗∗,�) ⊆ A if and only if Zt (A

∗∗,♦) ·A ⊆ A. Therefore, when A satisfies 〈A2〉 = A,
by Theorem 23, we have

Zt

(〈A∗A〉∗) ⊆ RM(A) if and only if Zt

(〈AA∗〉∗) ⊆ LM(A).

It is routine to check that A is of type (LM) if and only if A is of type (RM), and hence if
and only if A is of type (M) (cf. [16]). The theorem below is immediate by Theorem 25 and the
relation between the assertions (1), (2), and (3).

Theorem 29. Let A be an involutive Banach algebra of type (M). Consider the following state-
ments.

(i) Zt (〈A∗A〉∗) = RM(A).
(ii) Zt (A

∗∗,�) = A.
(iii) Zt (A

∗∗,�) = Zt (A
∗∗,♦).

Then any two of (i)–(iii) imply the third. Consequently, the following statements are equivalent.

(a) [Zt (〈A∗A〉∗) = RM(A)] �⇒ [Zt (A
∗∗,�) = A].

(b) [Zt (〈A∗A〉∗) = RM(A)] �⇒ [Zt (A
∗∗,�) = Zt (A

∗∗,♦)].
(c) [A · Zt (A

∗∗,�) ⊆ A] �⇒ [A · Zt (A
∗∗,♦) ⊆ A].

(d) [Zt (A
∗∗,♦) · A ⊆ A] �⇒ [Zt (A

∗∗,�) · A ⊆ A].

Finally, we relate the multiplier algebra M(A) to topological centres. Let A be a Banach
algebra with a BAI. Since the maps (μl,μr) �−→ μl and (μl,μr) �−→ μr are unital injective
algebra homomorphisms from M(A) to LM(A) and RM(A), respectively, we have two unital
injective algebra homomorphisms

M(A) −→ Zt

(〈AA∗〉∗) and M(A) −→ Zt

(〈A∗A〉∗).
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(Cf. Lemma 1(ii).) The theorem below shows that if A is of type (LM) and Zt (〈A∗A〉∗) =
M(A) (i.e., the first embedding above is onto), then the left strong Arens irregularity of A can be
determined by testing elements of Zt (A

∗∗,�) against one particular element of A∗∗, rather than
verifying conditions like Zt (A

∗∗,�) ·A ⊆ A, or Zt (A
∗∗,�)�A∗ ⊆ 〈AA∗〉 (comparing with [16,

Theorem 18]).
We recall that an element E of A∗∗ is called a mixed identity of A∗∗ if m � E = E ♦ m = m

for all m ∈ A∗∗. It is known that E is a mixed identity of A∗∗ if and only if E is a weak∗-cluster
point of a BAI of A (cf. Dales [5, Proposition 2.9.16(iii)]).

Theorem 30. Let A be a Banach algebra with a mixed identity E of A∗∗.

(i) Assume that A is of type (LM) and Zt (〈A∗A〉∗) = M(A). Let m ∈ Zt (A
∗∗,�). Then m ∈ A

if and only if E � m = m.

(ii) Assume that A is of type (RM) and Zt (〈AA∗〉∗) = M(A). Let m ∈ Zt (A
∗∗,♦). Then m ∈ A

if and only if m ♦ E = m.

Proof. We consider only assertion (i). A similar argument shows (ii).
Obviously, E � m = E ♦ m = m if m ∈ A. Conversely, suppose that E � m = m. By the as-

sumption, M(A) ↪→ RM(A) and RM(A) ↪→ Zt (〈A∗A〉∗) are both surjective. By Theorem 23(i),
we have A · Zt (A

∗∗,�) ⊆ A. Hence, a �−→ a · m defines a μr ∈ RM(A). Then, there exists
μl ∈ LM(A) such that (μl,μr) ∈ M(A). For all a, b ∈ A, we have

b · μl(a) = μr(b) · a = (b · m) · a = b · (m · a).

Thus n · μl(a) = n � (m · a) for all n ∈ A∗∗ and a ∈ A. It follows that, for all a ∈ A,

m · a = (E � m) · a = E � (m · a) = E · μl(a) = μl(a) ∈ A;

that is, m · A ⊆ A. Therefore, m ∈ A by [16, Theorem 32(i)]. �
We have the following immediate corollary of Theorem 30, which shows that for a Banach

algebra A of type (LM), if A has a central BAI, then Zt (〈A∗A〉∗) = M(A) does imply that A is
left strongly Arens irregular without the need of any testing point.

Corollary 31. Let A be a Banach algebra with a central BAI. Assume that A is of type (LM).
If Zt (〈A∗A〉∗) = M(A), then Zt (A

∗∗,�) = A. In particular, when A satisfies RM(A) = M(A),
then Zt (〈A∗A〉∗) = M(A) if and only if Zt (A

∗∗,�) = A.

Proof. Assume that A is of type (LM) and Zt (〈A∗A〉∗) = M(A). Let E be a weak∗-cluster point
in A∗∗ of a central BAI. Then E � m = m ♦ E for all m ∈ A∗∗. Therefore, if m ∈ Zt (A

∗∗,�),
then E � m = m ♦ E = m � E = m. Hence, we have Zt (A

∗∗,�) = A by Theorem 30(i).
The second assertion follows from Theorem 23(i). �
With group algebras L1(G) and the Banach algebra given in Proposition 36 of the next sec-

tion, we see that the two conditions “Zt (A
∗∗,�) = Zt (A

∗∗,♦)” and “A has a central BAI” are
independent, which are required in Corollaries 26 and 31, respectively.
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Recall that the condition RM(A) = M(A) (cf. Corollary 31) is satisfied by convolution
Beurling algebras L1(G,ω) and Fourier algebras A(G). This condition is also satisfied by the
quantum group algebra L1(G) of any co-amenable quantum group G.

In fact, if G is a co-amenable locally compact quantum group, then we have the canonical
isometric algebra isomorphisms

M(G) ∼= M
(
L1(G)

) ∼= RM
(
L1(G)

) ∼= LM
(
L1(G)

)
.

(Cf. Hu, Neufang and Ruan [17].) As shown by Kraus and Ruan [20, Proposition 3.1] for Kac
algebras, if G is co-amenable, every left (respectively, right) multiplier on L1(G) is completely
bounded. In this situation, the subscript “cb” can be added to the above algebras of multipli-
ers and all the identifications there become completely isometric isomorphisms. We will study
multipliers on co-amenable locally compact quantum groups in the subsequent work [17]. See
Junge, Neufang and Ruan [18] for representations of cb-multipliers over general locally compact
quantum groups.

It is known that L1(G) is a two-sided ideal in M(G). We showed in [16, Proposition 1] that the
multiplication on L1(G) is faithful. By Kustermans and Vaes [21, Corollary 6.11] and modifying
the arguments used in the proof of [16, Proposition 1], one can show that the multiplication on
M(G) is also faithful. Thus M(G) can be canonically identified with a subalgebra of RM(L1(G))

via ν �−→ νr , where νr(a) = a � ν (a ∈ L1(G)). Therefore, RM(L1(G)) ⊆ Zt (LUC(G)∗) implies
that M(G) ⊆ Zt (LUC(G)∗). In general, the converse implication is not true, since when L1(G) =
A(G), the latter always holds (cf. Lau and Losert [27, Proposition 4.5]), but the former holds
precisely when G is amenable (cf. Theorem 15).

However, we show below that the two inclusions Zt (LUC(G)∗) ⊆ RM(L1(G)) and
Zt (LUC(G)∗) ⊆ M(G) are equivalent.

Theorem 32. Let G be a locally compact quantum group. Then the following statements are
equivalent.

(i) L1(G) is quotient strongly Arens irregular.
(ii) Zt (LUC(G)∗) ⊆ RM(L1(G)).

(iii) Zt (LUC(G)∗) ⊆ M(G).
(iv) L1(G) � Zt (L1(G)∗∗,�) ⊆ L1(G).
(v) L1(G) � Zt (LUC(G)∗) ⊆ L1(G).

Proof. Note that L1(G) is an involutive Banach algebra satisfying 〈L1(G)2〉 = L1(G) (cf. [16]
and Fact 1). By Corollary 4(i) and Theorem 23(i) together with the discussions before Theo-
rem 29, we see that (i), (ii), (iv), and (v) are equivalent. Clearly, (iii) �⇒ (ii). So, we only have
to show that (ii) �⇒ (iii).

Assume that Zt (LUC(G)∗) ⊆ RM(L1(G)). Let m ∈ Zt (LUC(G)∗). Then there exists μ ∈
RM(L1(G)) such that mL = μ∗; that is,

〈m,f � a〉 = 〈
f,μ(a)

〉 (
f ∈ L∞(G), a ∈ L1(G)

)
.

It is known that C0(G) ⊆ LUC(G) (cf. [41, Theorem 2.3]). Let ν = m|C0(G). Then ν ∈ C0(G)∗ =
M(G). Let a ∈ L1(G). Then, for all f ∈ C0(G), we have

〈f,a � ν〉 = 〈ν,f � a〉 = 〈m,f � a〉 = 〈
mL(f ), a

〉 = 〈
μ∗(f ), a

〉 = 〈
f,μ(a)

〉
.
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Thus 〈f,a � ν〉 = 〈f,μ(a)〉 for all f ∈ L∞(G), since C0(G) is weak∗-dense in L∞(G). It fol-
lows that μ(a) = a � ν. Therefore, μ = νr , and hence mL = μ∗ = (νr )

∗; that is, m ∈ M(G) (cf.
Fact 2). �

Finally, with Theorems 18 and 32, we are able to characterize quantum groups G satisfying
Zt (LUC(G)∗R) = RM(L1(G)).

Theorem 33. Let G be a locally compact quantum group. Then the following statements are
equivalent.

(i) Zt (LUC(G)∗R) = RM(L1(G)).
(ii) G is co-amenable and SIN, and L1(G) is quotient strongly Arens irregular.

Proof. (i) �⇒ (ii). Due to Theorem 18, G is co-amenable and SIN.
In this situation, we have LUC(G) = RUC(G) = L1(G) � L∞(G) � L1(G), and

RM(L1(G)) ∼= LM(L1(G)) (cf. [17]). Thus it can be seen that the identity map LUC(G)∗ −→
RUC(G)∗ maps Zt (LUC(G)∗R) onto Zt (RUC(G)∗) and RM(L1(G)) onto LM(L1(G)). It follows
that Zt (RUC(G)∗) = LM(L1(G)), which is equivalent to

Zt

(
LUC(G)∗

) = RM
(
L1(G)

)

(see the paragraphs before Theorem 29). Therefore, by Theorem 32, L1(G) is quotient strongly
Arens irregular.

Similar arguments will establish (ii) �⇒ (i). �
6. Some examples of Arens irregular Banach algebras

We start this section with an example related to an open question in [28]. For a Banach algebra
A with a BAI, Lau and Ülger asked whether “A ·Zt (A

∗∗,�) ⊆ A” implies that “Zt (A
∗∗,♦) ·A ⊆

A” (see [28, question 6e)]). By Theorem 23, this is equivalent to asking whether “Zt (〈A∗A〉∗) =
RM(A)” implies that “Zt (〈AA∗〉∗) = LM(A)”. This question was answered in the negative by
Ghahramani, McClure, and Meng in [11, Theorem 3]. However, the proof of [11, Theorem 3]
used an identification of Zt (K(c0)

∗∗,♦) from [28], that is incorrect as pointed out by Dales and
Lau in [6, Example 6.2].

In [6, Example 4.5], Dales and Lau constructed an LSAI Banach algebra which is not RSAI.
It is seen that this Banach algebra has a BLAI. An earlier example of an LSAI Banach algebra
with a BRAI which is not RSAI was given by Neufang (see, e.g., [6, p. 41]). Note that these two
Banach algebras are both WSC. By taking the unitization and applying [11, Lemma 1], one can
obtain a unital WSC Banach algebra A such that Zt (A

∗∗,�) = A but Zt (A
∗∗,♦) �= A.

We give below a non-unital WSC Banach algebra A with a sequential BAI which is LSAI but
far from being RSAI or right quotient strongly Arens irregular. In this situation, the two Banach
algebras A∗∗ and 〈A∗A〉∗ do not coincide, and the topological centre problems for 〈AA∗〉∗ and
〈A∗A〉∗ are distinct. Recall that for all locally compact groups G, we have Zt (L1(G)∗∗,�) =
Zt (L1(G)∗∗,♦) = L1(G) (cf. Lau and Losert [26]).

Proposition 34. There exists a non-unital WSC Banach algebra A with a sequential BAI such
that
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(i) Zt (A
∗∗,�) = A but Zt (A

∗∗,♦) �= A;
(ii) A · Zt (A

∗∗,�) = Zt (A
∗∗,�) · A = A, but Zt (A

∗∗,♦) · A � A and A · Zt (A
∗∗,♦) � A;

(iii) Zt (〈A∗A〉∗) = RM(A) but Zt (〈AA∗〉∗) �= LM(A).

Proof. As mentioned above, there exists a unital WSC Banach algebra B satisfying
Zt (B

∗∗,�) = B and Zt (B
∗∗,♦) �= B . Let C = L1(R) and A = B ⊕1 C. Then A is a WSC

Banach algebra under the usual multiplication, and is non-unital with a sequential BAI. It is clear
that

Zt (A
∗∗,�) = Zt (B

∗∗,�) ⊕ Zt (C
∗∗,�) = B ⊕ C = A,

and

Zt (A
∗∗,♦) = Zt (B

∗∗,♦) ⊕ Zt (C
∗∗,♦) = Zt (B

∗∗,♦) ⊕ C � B ⊕ C = A.

Therefore, (i) holds.
Note that B is unital and Zt (B

∗∗,♦) �= B . We have Zt (B
∗∗,♦) · B �⊆ B , and hence

Zt (A
∗∗,♦) · A = (

Zt (B
∗∗,♦) · B) ⊕ C2 = (

Zt (B
∗∗,♦) · B) ⊕ C � B ⊕ C = A.

Since A is of type (M) and Zt (A
∗∗,♦) �= A, we have A ·Zt (A

∗∗,♦) �⊆ A by [16, Theorem 32(ii)].
Therefore, (ii) holds. Finally, (iii) follows from (ii) and Theorem 23. �

For a Banach algebra as in Proposition 34, taking the opposite algebra, one obtains a non-
unital WSC Banach algebra A with a (sequential) BAI satisfying Zt (〈A∗A〉∗) �= RM(A). This
answers [28, question 6f)] in the negative, where it was asked whether Zt (〈A∗A〉∗) = RM(A) if
A is such a Banach algebra (see also [16, Proposition 34]).

The proposition below shows that the answer to [28, question 6k)] is also negative, where Lau
and Ülger asked whether Zt (〈A∗A〉∗) is a dual Banach space when A is a Banach algebra with a
BAI.

Proposition 35. There exists a Banach algebra A with a BAI such that neither 〈A∗A〉 nor
Zt (〈A∗A〉∗) is a dual Banach space.

Proof. Let B be the unitization of the group algebra L1(T). By [11, Lemma 1], we have
Zt (B

∗∗,�) = Zt (L1(T)∗∗,�) ⊕ C = L1(T) ⊕ C. Let A = L1(T) ⊕1 B . Then

A∗ = L∞(T) ⊕ B∗, 〈A∗A〉 = C(T) ⊕ B∗, and 〈A∗A〉∗ = C(T)∗ ⊕ B∗∗.

Therefore, Zt (〈A∗A〉∗) = Z(C(T)∗) ⊕ Zt (B
∗∗,�) = M(T) ⊕ (L1(T) ⊕ C). In this situation,

neither 〈A∗A〉 nor Zt (〈A∗A〉∗) is a dual Banach space, since C(T) and L1(T) are both not dual
Banach spaces. �

For an involutive Banach algebra A, as before, we let τ : A∗∗ −→ A∗∗ denote the unique
weak∗–weak∗ continuous extension of the involution on A. Note that Zt (A

∗∗,�) = Zt (A
∗∗,♦)

if and only if τ(Zt (A
∗∗,�)) = Zt (A

∗∗,�). Therefore,

Zt (A
∗∗,�) = Zt (A

∗∗,♦) if and only if
(
Zt (A

∗∗,�), τ
)

is an involutive Banach algebra.
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In [6], Dales and Lau constructed some interesting involutive Banach algebras C with
Zt (C

∗∗,�) �= Zt (C
∗∗,♦), where either a convolution Beurling algebra 	1(F2,ω) or the C∗-

algebra K(c0) was used in their constructions. It is seen that these Banach algebras are either
unital or non-WSC. In the proposition below, using group algebras, we define a non-unital WSC
separable involutive Banach algebra A with a BAI such that Zt (A

∗∗,�) �= Zt (A
∗∗,♦).

Proposition 36. There exists a non-unital WSC separable involutive Banach algebra A with a
central BAI such that Zt (A

∗∗,�) �= Zt (A
∗∗,♦), Zt (〈A∗A〉∗) �= RM(A), and A∗ is a von Neu-

mann algebra.

Proof. We will combine and modify some constructions provided in [6, Examples 4.4 and 4.5].
Take B = 	1(Z) ⊕1 	1(Z) with the multiplication given by

(f1, g1)(f2, g2) = (f1 ∗ f2, f1 ∗ g2)
(
f1, f2, g1, g2 ∈ 	1(Z)

)
.

Then B is a WSC Banach algebra satisfying B = Zt (B
∗∗,�) �= Zt (B

∗∗,♦) (cf. [6, Exam-
ple 4.5]). Obviously, the multiplication on B is not faithful.

For (f, g) ∈ B , let (f, g) = (f , g), where f (x) = f (x) (the complex conjugate of f (x)).
This defines a linear involution on B satisfying b1b2 = b1 b2 (b1, b2 ∈ B). Replacing B by its
unitization, we can obtain a unital WSC Banach algebra B with a linear involution as above such
that B = Zt (B

∗∗,�) �= Zt (B
∗∗,♦).

Following the same arguments as used in [6, Example 4.4], we let C = B ⊕1 Bop with the
usual multiplication, and define (b1, b2)

∗ = (b2, b1) (b1, b2 ∈ B). Then C is a unital WSC invo-
lutive Banach algebra such that

B ⊕ Zt (B
∗∗,♦) = Zt (C

∗∗,�) �= Zt (C
∗∗,♦) = Zt (B

∗∗,♦) ⊕ B,

since Zt (B
∗∗,♦) �= B .

Finally, as in the proof of Proposition 34, we let A = C ⊕1 L1(R). Clearly, A∗ is a von
Neumann algebra. Under the canonical multiplication and involution, A is a non-unital WSC
separable involutive Banach algebra with a central BAI such that Zt (A

∗∗,�) �= Zt (A
∗∗,♦). Since

B is unital and Zt (B
∗∗,♦) �= B , it can be seen that A ·Zt (A

∗∗,�) �⊆ A. Therefore, Zt (〈A∗A〉∗) �=
RM(A) by Theorem 23(i). �
Remark 37. Comparing with Theorem 29 and Proposition 36, we note that if A is taken
to be A(SU(3) × Z), then we have Zt (A

∗∗,�) = Zt (A
∗∗,♦) �= A, and Zt (〈A∗A〉∗) �= RM(A)

(cf. [16, Proposition 34]).

Recall that we say that a Banach algebra A is left quotient Arens regular if Zt (〈A∗A〉∗) =
〈A∗A〉∗ (see Section 2). It is seen that if A is left quotient Arens regular, and B is a closed
subalgebra of A such that the restriction map A∗ −→ B∗ maps 〈A∗A〉 onto 〈B∗B〉, then B is
also left quotient Arens regular. Clearly, if A is Arens regular, then A is quotient Arens regular.
Examples below illustrate that the converse does not hold even for the two classical quantum
group algebras.
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Example 38. Let G be a locally compact group.
(i) It is known that L1(G) has a BAI, and L1(G) is not Arens regular unless G is finite

(cf. Young [47]). Note that Zt (LUC(G)∗) = Zt (RUC(G)∗) = M(G) = C0(G)∗ (cf. Lau [25]).
Therefore, L1(G) is quotient Arens regular if and only if G is compact. In particular, L1(G) is
quotient Arens regular but not Arens regular precisely when G is infinite and compact.

(ii) It is also known that Bρ(G) ⊆ Zt (UC(Ĝ)∗) ⊆ UC(Ĝ)∗, and Bρ(G) = UC(Ĝ)∗ if and
only if G is discrete, where Bρ(G) is the reduced Fourier–Stieltjes algebra of G and UC(Ĝ) =
〈A(G)V N(G)〉 is the C∗-algebra of uniformly continuous functionals on A(G) (cf. Lau and
Losert [27]). Then A(F2) is quotient Arens regular since F2 is discrete. However, A(F2) is not
Arens regular (cf. Forrest [10]). Let L be a non-amenable second countable connected group,
and let H = R × L. By Lau and Losert [27, Corollary 5.9], we have Zt (UC(Ĥ )∗) = Bρ(H).
However, Bρ(H) � UC(Ĥ )∗ since H is non-discrete. Therefore, A(H) is not quotient Arens
regular, and hence is not Arens regular. Note that the Fourier algebras A(F2) and A(H) both do
not have a BAI.
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