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ABSTRACT

This thesis investigates control and optimization of distributed stochastic systems

motivated by current wireless applications. In wireless communication systems, power

control is important at the user level in order to minimize energy requirements and

to maintain communication Quality of Service (QoS) in the face of user mobility and

fading channel variability. Clever power allocation provides an efficient means to

overcome in the uplink the so-called near-far effect, in which nearby users with higher

received powers at the base station may overwhelm signal transmission of far away

users with lower received powers, and to compensate for the random fluctuations

of received power due to combined shadowing and possibly fast fading (multipath

interference) effects.

With the wireless uplink power control problem for dynamic lognormal shadow

fading channels as an initial paradigm, a class of stochastic control problems is for-

mulated which includes a fading channel model and a power adjustment model. For

optimization of such a system, a cost function is proposed which reflects the QoS

requirements of mobile users in wireless systems. For the resulting stochastic control

problem, existence and uniqueness of the optimal control is established.

By dynamic programming, a Hamilton-Jacobi-Bellman (HJB) equation is derived

for the value function associated with the stochastic power control problem. However,

due to the degenerate nature of the HJB equation, the value function cannot be in-

terpreted as a classical solution, which hinders the solution of explicit control laws or

even the reliance on numerical methods. In the next step, a perturbation technique is

applied to the HJB equation and a suboptimal control law using a classical solution
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to the perturbed HJB equation is derived. Control computation via numerical meth-

ods becomes possible and indicates an interesting equalization phenomenon for the

dynamic power adjustment under an i.i.d. channel dynamics assumption. Analysis

of the suboptimal control reveals an interesting bang-bang control structure which

indicates simple manipulation in power adjustment. However, in view of the partial

differential equations involved, implementation for systems with more than two users

appears elusive.

The above stochastic power control problem suggests an investigation of a wider

class of degenerate stochastic control problems which are characterized both by a

weak coupling condition for the components of the involved diffusion process, and by

a particular rapid growth condition in the cost function. We analyze viscosity solu-

tions to the resulting HJB equations. We develop a localized semiconvex/semiconcave

approximation technique to deal with the rapid growth condition. A maximum prin-

ciple is established for the viscosity subsolution/supersolution of the HJB equation

and it is used to prove uniqueness of the viscosity solution. The theoretical tools

thus developed serve as a mathematical foundation for our stochastic power control

problem.

At this point, with the aim of constructing an analytically more tractable solution

to the wireless power control problem, we consider a linear quadratic optimization

approach in which the power attenuation is treated as a random parameter. In this

setup, the value function is expressed as a quadratic form of the vector of individual

user powers, and the optimal feedback control is proved to be affine in the power.

Unfortunately, the resulting control law remains too formidable to compute in large

systems. However, based on the obtained analytic solution, we are able to develop

local polynomial approximations for the value function and seek approximate solu-

tions to the HJB equation by an algebraic approach under small noise conditions.

Suboptimal control laws are also constructed using the approximate solutions. Re-

markably, here the scheme for approximation solutions can be combined with a single

user based design to construct a localized control law for each user in systems with

iv



ABSTRACT

large populations. The single user based design substantially reduces the complexity

of determining the power control law.

It is of significant interest to consider the asymptotics of power optimization

for large population systems. In such systems, it may be unrealistic to apply the

standard stochastic optimal control approach due to the complexity of implementing

the centralized control law. Suboptimal but distributed control laws may be more

desirable. Before proceeding to investigate this challenging issue, we first consider a

large-scale linear quadratic Gaussian (LQG) model for which the agents contained in

the system interact with each other either via a global cost or via related individual

costs. We study both the optimal control problem based on the global cost, and the

LQG game based on individual costs. For the LQG game, we develop an aggregation

technique based on examining individual and mass behaviour; highly localized control

strategies for all agents are obtained and a so-called ε-Nash equilibrium property for

these strategies is proved. Finally, we evaluate the loss incurred by opting for the the

distributed game theoretic solution, versus the centralized optimal control solution,

as measured by the associated costs differential.

For the large population power control problem, apart from the centralized sto-

chastic control approach, we also consider optimization in a game theoretic context

by generalizing the techniques in the large-scale LQG problem. The combination of

the individual costs and state aggregation leads to decentralized power control.
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RÉSUMÉ

Cette thèse investigue la commande et l’optimisation de système stochastique dis-

tribué, ces derniers étant motivés par les applications sans fil actuelles. Dans les

systèmes de communication sans fil, il est important de régler la puissance au niveau

de l’utilisateur dans le but de minimiser l’énergie requise et pour maintenir la qualité

de service (QoS) en présence de déplacement de l’usager et de variabilité dans les voies

sujettes à évanouissement. Une allocation de puissance intelligente fournit un moyen

efficace de surmonter, dans la liaison montante, l’effet dit de proximité-éloignement

pour lequel les usagers avoisinant et disposant d’une puissance de réception plus élevée

peuvent submerger le signal de transmisson d’usagers éloignés du point d’accès sans

fil. De plus, cette allocation permet de compenser pour les fluctuations aléatoires

de la puissance reçue résultant d’ombrages combinés et, possiblement, d’effets

d’évanouissements rapides (i.e. interférences par trajet multiple).

Avec le problème de régulation de puissance dans la liaison montante sans fil

appliqué aux voies log normales dynamiques d’évanouissement d’ombrage comme

paradigme de départ, une classe de problème de commande stochastique est formulée

en incluant un modèle de voie dévanouissement et un modèle d’ajustement de puis-

sance. Pour l’optimisation de tels sytèmes, une fonction de coût est proposée reflétant

les demandes de QoS des usagers mobiles des systèmes sans fil. Pour le problème de

commande stochastique résultant, l’existence et l’unicité de la commande optimale

sont démontrées.

Par programmation dynamique, une équation de Hamilton-Jacobi-Bellman (HJB)

est dérivée pour la fonction de valeur associée avec le problème stochastique de

régulation de puissance. Toutefois, en raison de la nature dégénérée de l’équation
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HJB, la fonction de valeur ne peut pas être interprétée comme une solution classique,

ceci entrave la solution explicite de lois de contrôle et affecte même la confiance ac-

cordée aux méthodes numériques. À l’étape suivante, une technique de perturbation

est appliquée à l’équation HJB et une loi de contrôle suboptimale utilisant une solution

classique de l’équation HJB perturbée est dérivée. Des calculs contrôlés par méthode

numérique deviennent possibles et indiquent un intéressant phénomène d’égalisation

de l’ajustement dynamique de puissance sous la supposition d’une voie dynamique

i.i.d. L’analyse de la commande suboptimale révèle une intéressante structure de com-

mande de type bang-bang, i.e. indiquant une simple manipulation de l’ajustement de

puissance. Néanmoins, en raison des équations différentielles aux dérivées partielles

impliquées, l’implémentation de système avec plus que deux utilisateurs apparait il-

lusoire.

Le problème stochastique de régulation de puissance ci-dessus suggère une inves-

tigation d’une classe plus large de problème de commande stochastique dégénéré car-

actérisé à la fois par une faible condition de couplage des composants impliqués dans le

processus de diffusion et par une condition particulière de croissance rapide de la fonc-

tion de coût. Nous analysons les solutions de viscosité résultant des équations HJB.

Nous développons une technique d’approximation localisée semiconvexe/semiconcave

pour traiter la condition de croissance rapide. Un principe de maximisation est établi

pour la sous-solution/super-solution de viscosité de l’équation HJB et celui-ci est

utilisé pour prouver l’unicité de la solution de viscosité. Les outils théoriques ainsi

développés sont utilisés comme fondement mathématique de notre problème stochas-

tique de régulation de puissance.

À ce point, dans le but de construire une solution analytique avec une tractabilitée

accrue pour le problème de régulation de puissance sans fil, nous considérons une ap-

proche d’optimisation quadratique linéaire dans laquelle l’atténuation de puissance

est traitée comme un paramètre aléatoire. Dans cette configuration, la fonction de

valeur est exprimée comme un vecteur de forme quadratique des puissances individu-

elles des utilisateurs, et la commande optimdal d’asservissement est prouvée être affine
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en puissance. Malheureusement, la loi de contrôle résultante demeure trop complexe

pour le calcul de système de grande dimension. Toutefois, sur la base des solutions

analytiques obtenues, nous somme capable de développer des approximations polyno-

miales locales de la fonction de valeur et de rechercher des solutions approximatives

de l’équation HJB par une méthode algébrique soumise à des conditions de faible

bruit. Des lois de contrôle suboptimales sont aussi construites en utilisant les so-

lutions approximatives. Remarquablement, le mécanisme de solution approximative

peut aussi être combiné avec un design basé sur un usager unique pour construire

une loi de commande locale pour chacun des usagers dans les systèmes avec une pop-

ulation importante. Le design basé sur un usager unique réduit substantiellement la

complexité pour déterminer la loi de commande de puissance.

Il est d’intérêt significatif de considérer les asymptotes de l’optimisation de puis-

sance pour les systèmes avec une population importante. Pour de tels systèmes, il

peut être irréaliste d’appliquer l’approche de la commande stochastique optimale en

raison de la complexité de l’implémentation d’une loi de contrôle centralisée. Des lois

de contrôle suboptimales mais distribuées peuvent être davantages désirables. Avant

de débuter l’investigation de ce stimulant problème, nous devons d’abord considérer

le cas d’un modéle linéaire quadratique gaussien (LQG) de grande dimension pour

lequel les agents contenus dans le système interagissent entre eux soit via a un coût

global ou via des coûts reliés entre les individus. Nous étudions à la fois le problème

de commande optimale basé sur le coût global et le jeux LQG basé sur les coûts in-

dividuels. Pour le jeux LQG, nous développons une technique d’agrégation basée sur

l’examen des individus et le comportements de masse; des stratégies de commande

hautement localisées pour tous les agents sont obtenues et une propriété dite équilibre

ε-Nash est prouvée pour ces stratégies. Finallement, nous évaluons la perte induite

par le choix de solutions distribuées par théorie des jeux versus la solution centralisée

optimal sur la base de la mesure du coût différentiel associé.

Pour le problème de commande de population importante, mis à part l’approche

de la commande stochastique centralisée, nous considérons aussi l’optimisation dans

ix
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le contexte de la théorie des jeux en généralisant les techniques du problème LQG

de grande dimension. La combinaison des coûts individuels et l’agrégration des états

mènent à la commande de puissance décentralisée.
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The following original contributions are presented in this thesis:

• Formulation of code division multiple access (CDMA) uplink wireless power

adjustment as a stochastic control problem including: (1) a dynamic lognor-

mal fading channel model, (2) a bounded rate based power control model

and (3) the signal to interference based performance measure.

• Proof of existence and uniqueness of the optimal control.

• For computability, perturbation of the associated degenerate Hamilton-

Jacobi-Bellman (HJB) equation and synthesis of resulting suboptimal con-

trol laws via numerical methods.

• Consideration of a related class of degenerate stochastic control problems

with weakly coupled dynamics and rapid growth conditions; viscosity solu-

tion analysis; localized semiconvex/semiconcave approximation technique

proposed for the proof of an associated maximum principle.

• For analytic tractability, reformulation of power allocation as a linear qua-

dratic optimization problem; analysis of the classical solutions; suboptimal

approximation methods by local polynomial equation systems; a one against

the mass scheme for partially decentralized power control in systems with

large populations.

• Isolation of a new class of large-scale stochastic control problems; formula-

tion of a related linear quadratic Gaussian (LQG) optimal control and dy-

namic game for large population systems, namely, dynamically independent
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and cost-coupled systems of significance in communications and economics,

etc.

• Investigation of these large-scale LQG systems in the context of central-

ized and distributed (or decentralized) control. Explicit expression of the

feedback control law for the centralized optimal control problem. Dynamic

LQG game solution; state aggregation techniques for extracting the dy-

namics of the mass influence on a given agent; individual-mass behaviour

analysis and approximate Nash equilibria. Discrepancy between the opti-

mal control and decentralized game in terms of a cost gap, state trajectories

as well as population behaviour.

• Formulation of power control for large population systems; the optimal

control approach; initial investigation of decentralized control via a gener-

alization of the state aggregation technique in the LQG game framework

to the nonlinear power control context.

N.B. Almost all of the work above appears in articles which have been published

or are currently under review and revision for publication; see page xiii.
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RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CLAIMS OF ORIGINALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. Distributed Stochastic Systems Arising in Wireless Communications 9

2.1. The Background Systems . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. The Power Control Problem . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Dynamic Modelling for Radio Propagation under User Mobility . . . . 13

2.3.1. Traditional Modelling for Fading . . . . . . . . . . . . . . . . . . 13

2.3.2. Channel Variation Due to Outdoor User Mobility . . . . . . . . . 16

2.3.3. Spatio-Temporal Correlation of Indoor Fading . . . . . . . . . . . 17

2.3.4. The SDE modelling of Dynamic Channel Characteristics . . . . . 18

2.4. A Stochastic Optimal Control Formulation . . . . . . . . . . . . . . . 19

2.4.1. The Dynamic Lognormal Fading Channel Model . . . . . . . . . . 19

2.4.2. Rate Based Power Control . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3. Quality of Service Requirements and Criteria for Optimization . . 20

2.5. Optimal Control and the HJB Equation . . . . . . . . . . . . . . . . . 24



TABLE OF CONTENTS

CHAPTER 3. The HJB Equation and its Approximation . . . . . . . . . . . 29

3.1. The Dynamic Programming Equation . . . . . . . . . . . . . . . . . . 29

3.2. Perturbation of the HJB Equation . . . . . . . . . . . . . . . . . . . . 30

3.3. Interpretation of Bounded Rate Control . . . . . . . . . . . . . . . . . 33

3.4. Numerical Implementation of ε-Perturbation Suboptimal Control . . 34

3.4.1. Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 4. Viscosity Solution Analysis for a Class of Degenerate Stochastic

Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1. The Stochastic Power Control Example. . . . . . . . . . . . . . . 42

4.1.2. A Mathematical Finance Example. . . . . . . . . . . . . . . . . . 43

4.1.3. Organization of the Analysis . . . . . . . . . . . . . . . . . . . . 44

4.2. Optimal Control and the HJB Equations . . . . . . . . . . . . . . . . 45

4.3. Semiconvex and Semiconcave Approximations over Compact Sets . . . 51

4.4. Proof of the Maximum Principle . . . . . . . . . . . . . . . . . . . . . 57

4.5. Control with State Constraints . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 5. Linear Quadratic Optimization for Wireless Power Control . . 69

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2. The Finite Horizon Control Problem and Some Auxiliary Results . . . 71

5.3. The Infinite Horizon Optimal Cost and the HJB Equation . . . . . . . 79

5.3.1. Associated PDE’s and the Control Law . . . . . . . . . . . . . . . 82

5.3.2. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4. The Classical Solution and its Small Noise Approximation . . . . . . . 84

5.4.1. Complexity of the Local Expansion of the Matrix K(x) . . . . . 85

5.4.2. The Approximating Equation System . . . . . . . . . . . . . . . . 87

5.4.3. A Recursive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.4. The Single User Case . . . . . . . . . . . . . . . . . . . . . . . . 92

xviii



TABLE OF CONTENTS

5.5. Application of the Single User Based Design to Systems with Large

Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1. Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2. Investigation of Population Behaviour in Large Systems . . . . . . 100

5.6. Adaptation with Unknown Parameters in Channel Dynamics . . . . . 101

CHAPTER 6. LQG Optimization for Large-Scale Cost-Coupled Systems . . 107

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2. Dynamically Independent and Cost-Coupled Systems . . . . . . . . . 109

6.2.1. A Production Planning Example . . . . . . . . . . . . . . . . . . 110

6.3. The Global Cost Based Optimal Control . . . . . . . . . . . . . . . . 111

6.3.1. The Optimal Control and its Asymptotic Properties: the Individual

and the Collective . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4. The Linear Tracking Problem . . . . . . . . . . . . . . . . . . . . . . 114

6.5. Competitive Behaviour and Mass Behaviour . . . . . . . . . . . . . . 119

6.5.1. An Analytic Solution to the Equation System . . . . . . . . . . . 123

6.5.2. The Decentralized ε-Nash Equilibrium . . . . . . . . . . . . . . . 125

6.5.3. The Virtual Agent, Policy Iteration and Attraction to Mass Behaviour130

6.6. A Cost Gap between the Centralized Optimal Control and Decentralized

Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

CHAPTER 7. Individual and Mass Behaviour in Large Population Wireless

Systems: Centralized and Nash Equilibrium Solutions . . . . . 139

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2. The Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3. The Value Function and HJB Equation . . . . . . . . . . . . . . . . . 144

7.4. Game Theoretic Approach and State Aggregation . . . . . . . . . . . 146

7.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 148

CHAPTER 8. Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 151

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xix





LIST OF FIGURES

2.1 A typical cell consisting of a base station and many users . . . 12

3.1 The trajectories for the attenuation xi and power pi; Different

initial powers are used in (a) and (b); The power weight λ = 0.01 37

3.2 The trajectories for the attenuation xi and power pi; The power

weight λ = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 The trajectories for the attenuation xi and power pi; The power

weight λ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Left: the trajectories for the attenuation xi and power pi; Right:

the control input ui of two users; The power weight λ = 0.001 . 38

3.5 Left: the trajectories for the attenuation xi and power pi; Right:

the control input ui of two users; The power weight λ = 0.001 . 39

3.6 The surfaces of the value function for fixed x and varying p; The

power weight λ = 0.001 . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Semiconvex approximation with η = 0.125, (a) The curves in a

large range, (b) The curves in the local region . . . . . . . . . . 56

5.1 Simulation for system A . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Simulation for system B . . . . . . . . . . . . . . . . . . . . . . 84

5.3 At = K12(t), Bt = K
(1)
11,1(t), Ct = K

(2)
11,1(t), Dt = K

(2)
12,1(t) . . . 90

5.4 Simulation for system A using the nearly optimal control law . 92



LIST OF FIGURES

5.5 Left (a) and Right (b): The trajectories of attenuation x, power p

and control u with initial power 0 and 0.8, respectively . . . . . 96

5.6 The power adjustment of user 1 and the behaviour of the population

with the single user based control law . . . . . . . . . . . . . . 100

6.1 Top: Individual tracking based cost vind(0); Middle: Scaled global

cost v(0); Bottom: The cost gap |v(0) − vind(0)|. . . . . . . . . 134

6.2 Trajectories of players 1 and 2 . . . . . . . . . . . . . . . . . . 135

6.3 Trajectories of player 1 generated by two control laws . . . . . 137

xxii



CHAPTER 1

Introduction

There is a significant body of literature on stochastic control theory, which has been

developed for the analysis and optimization of various physical and social systems

experiencing random disturbances from their ambient environment. The existing

stochastic control theory finds its applications to a vast range of areas, including

industrial control systems, inventory theory, dynamic resource allocation, production

planning, queuing networks, mathematical finance, and many others; see [4, 5, 8,

47, 48, 65, 78] among others.

In addition to the well known stochastic system models in the above mentioned

areas, the emergence and advances of new technology give rise to new opportunities for

formulating the associated optimal control problems within the powerful framework of

stochastic control. Specifically, the rapid development of modern wireless technology

has unveiled a world of characteristically complex wireless networks with inherent

statistical properties concerning their dynamic behaviour. Typically, this kind of

systems involve service providers as well as a great number of clients, which may

be conveniently termed as agents in future analysis. Sometimes, in order to gain a

more concrete sense, we will also feel free to term various variables or objects for the

involved more general stochastic control systems by their counterparts in the wireless

communication networks.



CHAPTER 1. INTRODUCTION

In this thesis we study the control and optimization of a class of distributed

stochastic systems as well as their generalization where current mobile communication

systems serve as a motivating technological background. In such wireless systems, a

large number of mobile users are distributed in large areas and communicate with

each other through one or more base stations, and the transmitted signals are subject

to random fading. Modelling and optimization of such systems naturally resorts to

stochastic system theory.

We set out to investigate the stochastic wireless power control problem and then

investigate control problems of a more general form which are well motivated by the

underlying power control problem. A feature shared by all systems considered in this

thesis is that they involve multiple dynamic agents which can act based on individual

interests, while their dynamics interact weakly through the utility function they seek

to optimize.

Dynamic Modelling of Radio Propagation and Stochastic Power Control

There has been an extensive literature on modelling of radio propagation. Gen-

erally, radio channels experience both small-scale (short-term) fading and large-scale

(long-term) fading, and various statistical models have been proposed to model the

resulting random fluctuation of received signal power. In general, the two different

fading effects are understood as superimposed and can be treated separately due to

the different mechanisms from which they are generated. Indeed, small-scale (with

a time scale of millisecond) fading is caused by multipath replicas of the same sig-

nal which in view of their respective phase shifts, can interact either constructively,

or destructively. It is a problem which can be addressed via the so-called diversity

techniques (see [43, 63]). Large-scale (with a time scale of hundreds of milliseconds)

fading is caused by shadowing effects due to buildings and moving obstacles, such as

trucks, partially blocking or deflecting mobile or base station signals.

2
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In this thesis we only consider the modelling of the large-scale fading and inves-

tigate effective methods for mitigating its impairments on the channel; this will be

achieved by transmission power control. In a static context, for any fixed positioning

for the user and the base station, the large scale fading can be accurately modelled

by a lognormal random variable, or a normal random variable measured in decibels

(dB). Due to the idealized assumption of no relative motion between the transmitter

and the receiver, the static lognormal modelling is inadequate for applications. To

get realistic modelling for the channel condition, one has to take into account the

user mobility and environment variations in the vicinity of the user in a communi-

cation scenario. This dictates the use of dynamic channel models able to capture

the spatio-temporal correlation properties of fading channels. In some early research,

a first order auto-regressive (AR) innovation model was proposed for modelling the

large scale fading for mobile users [28, 75]. In this thesis, we adopt the continuous

time modelling for the lognormal fading by use of stochastic differential equations

introduced by Charalambous et. al. [17]. The dynamics is intended to model the

fading channels for both outdoor and indoor users where the fading effect exhibits

spatial and temporal variations.

Using the above modelling framework, in Chapter 2 we formulate the distributed

stochastic control problem. A primary issue here is to determine the way the power

should be adjusted. In this Chapter, a bounded rate based control model is proposed

for power adjustment. It is motivated by the way power control is achieved through a

sequence of fixed steps in current wireless technology. The next issue in approaching

such a problem is to set the criteria for system optimization. To this end, a cost

function is introduced which measures the performance of different control strategies.

The cost function adopted here aims at achieving the required signal to interference

ratio while limiting power usage as far as possible. The existence and uniqueness of

the optimal control is investigated in Chapter 2. The analysis is complicated by the

fact that one faces a degenerate stochastic control system.

3
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In general, the degenerate Hamilton-Jacobi-Bellman (HJB) equation derived in

Chapter 2 admits no classical solutions, and hence it is difficult to explicitly specify

the optimal control law. To circumvent this difficulty, a meaningful approach is

to consider approximating the HJB equation or the value function for the optimal

control problem, via a perturbed HJB equation. This program is carried out in

Chapter 3, whereby approximated value functions which are classical solutions to

perturbed HJB equations can be obtained. Numerical simulations are performed to

verify the satisfactory performance of the resulting suboptimal controller. In this

setup for the suboptimal control law, the value function can be approximated off-line

and the suboptimal control law in real time can be determined by some simple rules.

However, computations are prohibitively complex for multiuser systems.

Viscosity Solutions for Systems with Rapid Growth Conditions

Chapter 4 is in itself, a contribution to the mathematics of stochastic control.

we study a general class of degenerate stochastic control problems which includes

the system in Chapter 2 as a special case. A viscosity solution analysis is presented

in this Chapter. We develop a certain semiconvex/semiconcave approximation tech-

nique for functions with rapid growth. The approximation is achieved by use of a

pair of localized envelope functions and it is proved that the envelope functions have

semiconvex/semiconcave properties on a compact set when the parameters involved

in the definition of the envelope functions are appropriately set. Further we apply

this approximation to establish a maximum principle for the degenerate HJB equation

under a weak coupling condition on the dynamics, and uniqueness of the viscosity

to the HJB equation follows as a corollary. Uniqueness of the viscosity solution is

an important aspect to the stochastic control problem both for understanding the

nature of the optimal cost function, and developing numerical solutions, since a mul-

tiple solution situation may cause additional difficulty in finding a desired numerical

approximation.

4
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Linear Quadratic Power Optimization

The initial formulation of the stochastic power control problem, although realistic,

is hindered by significant mathematical difficulties, and does not scale up easily in

terms of computations.

The analysis of Chapter 5 employs instead a quadratic type cost function with

the specific input bound constraint replaced by a penalty term for the input in the

cost. The control problem is analyzed in terms of classical solutions. The optimal

control law can be expressed analytically. We then address the important issue of the

computability of the solutions to certain Riccati equations which stem from analysis

of the problem. For a significant number of users, an analysis of local expansions of

solutions around a steady state is useful in the small noise case because the system

state is expected to spend a disproportionate of time in a small neighborhood of

the steady state. The nearly optimal control law thus obtained enjoys a simple

structure which enables efficient implementation in a simple feedback form. Extensive

numerical approximations are developed to construct nearly optimal control laws.

Finally, we give a thorough analysis for the single user system and then apply the

results to systems of large populations via a relatively coarse approximation relying

on state aggregation. In the treatment of large systems, a certain scaling technique

is adopted in the definition of the cost function. This is necessary in order to get

a meaningful mass behaviour in a context where the number of users is allowed to

increase to a significant level by assuming sufficiently large cell capacity. In this

setup, after the scaling step the impact received by an individual from all the other

agents can be approximated by a deterministic process which is then substituted into

the control law. It turns out that the individual user can effectively adapt to the

behaviour of the mass and the total population will gradually settle down to a steady

state behaviour.

Large-scale Linear Quadratic Gaussian Systems and ε-Nash Equilibria

5
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The next two Chapters of the thesis are specifically focussed on the asymptotics

(as the number of agents increases) of centralized, versus distributed (or decentral-

ized) control and the potential system performance degradation as measured by the

corresponding cost differences. Game theoretic concepts play a central role. Chapter

6 is a strictly linear quadratic version of the problem, inspired in its structure by

the wireless power control problem, but interesting in its own right. In Chapter 7,

we consider approximations to the nonlinear power control problem, based on the

analysis of Chapter 6.

In Chapter 6 we investigate a special class of Linear Quadratic Gaussian (LQG)

optimization problems. In this context, the system in question consists of many

players which are governed by independent dynamics subject to individual controls.

All the players are linked by a global cost function with an additive structure. By a

simple splitting, one can derive a set of individual costs from this global cost function.

Thus the system can be optimized either based on the global cost, or starting from

the individual costs. The global cost based optimization can be approached by the

standard LQG method, while for the latter individual cost based dynamic game, the

solution is sought in the Nash equilibrium framework. Specifically, for the individual

cost based optimization, we study decentralized approximate Nash equilibria, or so-

called ε-Nash equilibria. It is shown that such decentralized ε-Nash equilibria possess

an inherent stability feature, which is interesting in a large population system since

in this solution framework the involved individual strategies will lead the players to

eventually reach a stable mass behaviour. Also, a cost gap is evidenced between the

cost associated with the global cost derived control, and that associated with the

individual cost derived control.

Large Population Power Control

For wireless systems accommodating a large population of users, the standard sto-

chastic control approach suffers from high computational complexity. In additional

6
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to the heavy computational load, this approach also requires close coordination be-

tween all users in order to maximize the overall interest of the population. In a large

distributed network, such coordination is a highly demanding task. In addition, the

centralized optimal control approach lacks robustness in the face of misbehaviour of

individuals and possibly unreliable transmission of commands.

These facts naturally suggest we consider individual cost based control for the

large population power control. In Chapter 7 we make initial investigation of this

approach by assigning a cost function to each mobile user. In the reformulation of

the large population power control problem, it is also recognized that in the presence

of a large number of users, their collective impact on a given user coalesces into a

largely deterministic but time-varying signal. For optimization of the given user, the

source of uncertainty reduces mainly to its own channel variation. We then apply a

heuristic argument to generalize the method developed for the LQG problem to the

nonlinear power control problem aiming at decentralized power allocation strategies.

In this manner, we can extract the dynamics of the mass behaviour by a deterministic

approximation. By a combination of the individual dynamics and the mass evolution,

we obtain highly localized control laws for each user.

7





CHAPTER 2

Distributed Stochastic Systems Arising in

Wireless Communications

2.1. The Background Systems

In the past decades, stochastic control theory has been developed and success-

fully applied to various areas including industrial process control, inventory theory,

dynamic resource allocation, production planning, queuing networks, mathematical

finance, and many others [4, 5, 8, 47, 48, 65]. In the framework of stochastic control

and optimization, typically the dynamic behavior of the object under consideration

is described by a random process. In many applications, the modelling and control of

evolution of the object are relatively simple in that the underlying physical system is

located and operates in a small region, the system state is of low dimension and the

way the system experiences random disturbances is simple.

In this Chapter, we introduce a class of stochastic systems which differs from the

traditional ones mentioned above. First, the object we are concerned with in this

research consists of many sub-objects, which may be called individuals or agents with

their own control objectives when participating in the system’s evolution; second,

the sub-objects are geographically distributed in large areas. Indeed, this highly

distributed feature does not increase the complexity of the system dynamics for the

individual’s activity; however it may give rise to challenging issues in the design
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of control strategies since, in this case, it is significantly more difficult to exchange

information among different components of the system for determination of individual

control actions. From the specific distributed feature of such systems arises the need

of designing control laws with relatively simple structure. Finally, to get a more

precise modelling for practical systems, we need to take into account the effect of

human behaviour which is less predictable. The human factor makes the modelling

aspect more difficult.

In this Chapter the considered class of control problems is motivated by the

current theory and technological implementations in wireless communications. We

will use the underlying wireless communication model as the workhorse for a general

theoretic analysis. In particular, we focus on the power control problem for dynamic

lognormal fading channels.

In Chapter 4 we treat a more general system model of which the lognormal power

control model of this Chapter is a special case. To begin with, we give a brief overview

of the power control problem in the literature under various frameworks.

2.2. The Power Control Problem

In current digital communication systems, the mobile users are partitioned into

different cells and each mobile user accesses the network through the base station

able to provide service with lowest power requirements. Power control in cellular

telephone systems is important at the user level both in order to minimize energy

requirements, and to guarantee constant or adaptable Quality of Service (QoS) in the

face of telephone mobility and fading channels. This is particularly crucial in code

division multiple access (CDMA) systems where individual users are identified not by

a particular frequency carrier and a particular frequency content, but by a wideband

signal associated with a given pseudo-random number code. In such a context, the

received signal of a given user at the base station views all other user signals within

the same cell, as well as other cell signals arriving at the base station, as interference

or noise, because both degrade the decoding process of identifying and extracting a

10
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given user’s signal. Thus, it becomes crucial that individual mobiles emit power at

a level which will insure adequate signal to noise ratio at the base station. More

specifically, excess levels of signalling from a given mobile will act as interference

on other mobile signals and contribute to an accelerated depletion of cellular phone

batteries. Conversely, low levels of signalling will result in inadequate QoS. In fact,

tight power control is indirectly related to the ability of the CDMA base station to

accommodate as many users as possible while maintaining a required QoS [76].

There has been a rich literature on the topic of power control. Previous attempts

at capacity determination in CDMA systems have been based on a “load balancing”

view of the power control problem [76]. This reflects an essentially static or at best

quasi-static view of the power control problem which largely ignores the dynamics of

channel fading as well as user mobility. In essence, in this formulation power control

at successive sampling time points is viewed as a pointwise optimization problem

with total statistical independence assumed between the variables (control or signal)

at distinct time points. In a deterministic framework, [68, 69, 70] present an at-

tempt at reintroducing dynamics into the analysis, at least insofar as convergence

analysis to the static pointwise optimum is concerned. This is achieved by recogniz-

ing that in current technological implementations, power level set points dictated by

the base station to the mobile can only increase or decrease by fixed amounts. In

[1], power control is considered for a CDMA system in which a signal to interference

ratio (SIR) based utility function is assigned to each individual user; this gives rise

to a multi-objective power optimization formulation. In the stochastic framework,

attempts at recognizing the time correlated nature of signals are made in [56], where

blocking is defined, not as an instantaneous reaching of a global interference level but

via the sojourn time of global interference above a given level which, if sufficiently

long, induces blocking. The resulting analysis employs the theory of level crossings.

Stochastic approximation algorithms are proposed in [73] for distributed power con-

trol with constant channel gains, and mean square convergence to the optimum is

proved. In [46], the authors proposed power control methods for Rayleigh fading

11
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channels based on outage probability. At each time snapshot, the power is computed

by minimizing total power subject to outage probability constraints or by minimizing

outage probability subject to power constraints. Down link power control for fading

channels is studied in [13] by heavy traffic limit where averaging methods are used.

In [16], the authors consider decentralized dynamic power control for a finite state

Markovian channel, the power control law is determined by the so-called single-user

policy where the intercell and incell interferences are approximated by a constant on

the overall time duration of power control.

In contrast to the above research, the modelling and analysis of power control

strategies investigated in this thesis employ continuous time wireless models which are

time-varying and subject to fading. In particular, the dynamic model for power loss

expressed in dBs is a linear stochastic differential equation whose properties model

the long-term fading effects due to (i) reflection power loss, and (ii) power loss due to

long distance transmission of electromagnetic waves over large areas [17, 19]. This

gives rise to power loss trajectories which are log-normally distributed. Lognormal

power loss models are justified by experimental data [61, 63]. Recently, there is

an increasing interest in the effect of lognormal fading on communication quality of

service; see [81, 2, 29].

m1

m3

m4

m2

base

fading

fading

Figure 2.1. A typical cell consisting

of a base station and many users

Motivated by the current

technology in use [62], in this

Chapter we propose a (bounded)

rate based power control model

for the power adjustment of log-

normal fading channels and then

a performance function is intro-

duced. An important conse-

quence of the existence of a bound on the rate of change of mobile power, is that

successive uplink power adjustments can no longer be considered as a sequence of in-

dependent pointwise optimization problems (currently prevailing telecommunications
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view). The structure of the performance function is related to the system signal to

interference ratio (SIR) requirements. We do not make direct use of the SIR or other

related quantities such as the bit error rates (BER) or outage probabilities in the

definition of the performance function [22]; instead we use a loss function integrated

over time which depends upon the factors determining the SIRs and the power levels.

By this means we will be able to avoid certain technical difficulty in the analysis and

computation of the control laws. Our current analysis of the optimal control law of

each individual user involves centralized information, i.e., the control input of each

user depends on the state variable of all the users. It would be of significant interest

to investigate the feasibility of decentralized control under fading channels since this

would potentially reduce the system complexity for practical implementation of the

control laws. This important issue will be addressed in Chapter 7.

2.3. Dynamic Modelling for Radio Propagation under User

Mobility

2.3.1. Traditional Modelling for Fading. In mobile communication sys-

tems, the signal delivered from the transmitter to the receiver experiences two types of

fading — small scale (short-term) fading and large-scale (long-term) fading [61, 63].

For the uplink of a mobile communication system our convention is that the transmit-

ter and the receiver shall refer to the mobile user and the base station, respectively.

Small-scale fading is characterized as deep and rapid fluctuation of the amplitude

of the received signal over a very short time duration or over very short travelling

distances (up to a few wavelengths). This kind of rapid fading is caused by the multi-

path effect in which the received signal is the superposition of multiple replicas of the

transmitted signal arriving at the receiver with slightly different delays [59]. Small-

scale fading is typically modelled by Rayleigh distributions. Specifically, the received

signal envelope (with amplitude r ≥ 0) is Rayleigh distributed and is described by

13
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the density function

fray(r) =





r
σ2

ray
exp(− r2

2σ2
ray

), r ≥ 0,

0, r < 0,

where σ2
ray > 0 is the time average power of the received signal before envelope

detection [63]. It can be shown that subject to Rayleigh fading the received signal

power is exponentially distributed [46]. In certain circumstances, apart from the

multipath effect there exists a dominant signal component reaching the receiver from

the transmitter (for instance, due to a line-of-sight (LOS) propagation path). In

this case the small-scale fading envelope has a Rician distribution. This situation is

termed as Rician fading. The density function of a Rician distribution is expressed by

modifying the Rayleigh density with a modified Bessel function of the first kind and

of zero-order; the interested reader is referred to [63] for details. When the dominant

component vanishes, the Rician distribution degenerates to a Rayleigh distribution.

In contrast, large-scale fading is used to characterize signal attenuation over long

distances caused by shadowing effects due to variations of the terrain profile and the

surroundings of the transmitter and the receiver. Large-scale fading is conveniently

described in terms of large-scale path loss (PL) (simply called path loss), which mea-

sures the amount of amplitude decrease by decibels (dB) when the power is delivered

from the transmitter to the receiver. Extensive experiments and their statistical anal-

ysis indicate that expressed in dB the path loss is the sum of two terms: the power-law

distance loss and a zero mean random variable with a normal distribution [63]. The

power-law distance loss is determined by the distance between the user and the base

station and a power-law loss exponent. Quantitatively, the path loss is represented

as

PL(m,B) = [PL(d0) + 10γ log10(
d(m,B)

d0
)] + ξσ2(m,B)

4
= PL(m,B) + ξσ2(m,B),
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where d0 is a reference distance from the base station B and γ is the power-law loss

exponent which is in the range [2, 4] [63], d(m,B) denotes the distance between the

position m of the mobile user and the base station, and PL(do) is a deterministic value

representing the average large-scale path loss for a transmitter-receiver separation

distance of d0. We shall call PL(m,B) the power-law distance loss. −PL(m,B)

is usually called the power attenuation at m with respect to the base station B.

The variance σ2 of the spatially indexed normal random variable ξσ2(m,B) will also

be called the standard deviation of the lognormal fading. Lognormal fading is also

commonly called lognormal shadow fading due to the role of shadowing effects in

generating large-scale fading. For a large suburban area (or an urban area), the

standard deviation σ2 of the lognormal fading is a constant depending on the near

ground geography of large areas. The spatial correlation of the lognormal fading can

be determined by experiments and is shown to decay with separation distance at an

exponential rate [28].

In the following table we list the three frequently used models (Rayleigh, Rician

and lognormal) for a comparison.

distribution category time-scale caused by

Rayleigh small-scale millisecond multipath

Rician small-scale millisecond multipath

dominant paths

Lognormal large-scale hundreds of milliseconds shadowing

For radio propagation, the large-scale fading and small-scale fading are considered

as superimposed and can be treated separately due to the independence assumption

of the two phenomena [49, 63]. Also, the methods to mitigate the impairments

of large-scale fading and small-scale fading are quite different. In general, practical

power control algorithms can efficiently compensate for large-scale fading but cannot
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effectively cope with small-scale fading [30]; the more effective techniques to combat

small-scale fading include antenna arrays, coding, etc. [81].

For these reasons, in the subsequent analysis we only deal with lognormal fading,

and the small-scale fading will not be in the scope of our research. We note that in

certain environments the small-scale component may play an increasingly important

role for channel modelling.

2.3.2. Channel Variation Due to Outdoor User Mobility. In [49],

systematic experimental investigations are carried out on an integrated simulation

platform. In the experiments, power control is applied under signal propagation

conditions for travelling mobile users. The radio power loss is modelled as a spatially

correlated lognormal stochastic process. This also naturally gives a time correlated

lognormal stochastic process for a real time power control when the spatial location

of the user changes from time to time. This illustrates the apparent rationality of

modelling the lognormal fading of a user by a random process under an outdoor

mobility condition.

We use the following example to illustrate the spatial variation of the large-scale

path loss and show the necessity of dynamic modelling of lognormal fading for mobile

users. We consider a large coverage cellular system (macrocell) which is typically used

in suburban areas. Let B be the location of the base station at the center of a 15

km×15 km service area. Denote by d(m1, m2) the distance between two user locations

m1 and m2. Suppose d(m1, B) = 5 km, d(m2, B) = 5.1 km and d(m1, m2) = 0.1 km,

i.e., m2 is on the straight line determined by B and m1. In the macrocell case the

reference distance d0 can be taken as 1 km [63]. Using the representation of the

previous subsection, we write

PL(m1, B) = PL(d0) + 10γ log10(
d(m1, B)

d0
) + ξσ2(m1, B),

PL(m2, B) = PL(d0) + 10γ log10(
d(m2, B)

d0
) + ξσ2(m2, B).
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The spatial correlation R(m1, m2) between ξσ2(m1, B) and ξσ2(m2, B) can be accu-

rately described by R(m1, m2) = σ2 exp(−d(m1 ,m2)
d∗

) [28, 49].

For illustration, we take σ2 = 10 dB, γ = 2.7, and d∗ = 0.5 km. With this

selection of d∗, the correlation for a separation distance of 0.1 km is 0.8187; see [28]

for determination of d∗ from experimental measurements. Experimental data as well

as systematic statistical analysis on determining these parameters for the lognormal

shadowing effect can be found in [63, 28]. We have

PL(m1, B) − PL(m2, B) = 10γ log10

(
d(m1, B)

d(m2, B)

)
,

E|ξσ2(m1, B) − ξσ2(m1, B)| =
2
√
σ2 − R(m1, m2)√

π
.

We have PL(m1, B)−PL(m2, B) = −0.2895 and E|ξσ2(m1, B)−ξσ2(m2, B)| = 1.5143.

This indicates that in the process of successive user position changes, the lognormal

shadowing effect actually causes a much greater fluctuation in the path loss than the

increase or decrease of distance does. This clearly shows the necessity of capturing

the spatial variations of the lognormal fading in a mobile communication situation.

2.3.3. Spatio-Temporal Correlation of Indoor Fading. In the classic log-

normal modelling of large-scale fading, each location is assigned a lognormal random

variable and experimental verification is performed with fixed transmitter-receiver

positioning. In this modelling irregular human disturbances around the transmitter

and receiver are neglected. For an indoor environment (consisting of walls, indoor

obstacles,etc) such a simplification is not acceptable; this is due to the extreme sensi-

tivity of propagation patterns with respect to source and obstacle motion; this motion

consequently becomes a very significant aspect of the modelling exercise.

It is shown by experiments in [26, 27] that the local movement of personnel near

the terminal (i.e. transmitter or receiver) and the local movement of the terminal

around a give location (for instance, slightly shaking the terminal by the user) have

drastic effect on the received power. Under such conditions the lognormal fading

model still fits with the measurements, however the channel exhibits observable short
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time and spatial variations. So in a practical indoor communication scenario, it is

infeasible to model the channel condition by a static lognormal distribution,

Well justified by the above facts, for a practical indoor communication scenario,

although the user is physically confined in a small area it is more realistic and po-

tentially more precise to introduce dynamic modelling of lognormal fading which is

likely to capture the spatio-temporal variations of the channel and will be able to fur-

ther characterize the underlying spatio-temporal correlation feature of the lognormal

process.

2.3.4. The SDE modelling of Dynamic Channel Characteristics. For

both outdoor and indoor scenarios, taking into account user mobility and variations

of the surroundings of the user, the lognormal fading the user experiences can be

modelled as a lognormal random process with certain statistical properties. In [28]

a first order autoregressive (AR) innovation model was used to model the evolution

of the lognormal fading for mobile users along an evenly sampled time sequence; see

also [75]. As a natural generalization to the continuous time case, Charalambous et.

al. [17] employ a linear stochastic differential equation (SDE) in the modelling of the

channel characteristic. In both [28, 75] and [17], the basic modelling hypothesis is a

Markovian assumption concerning the property of the lognormal fading process. More

general but more complex modelling can be obtained by considering inhomogeneous

Markovian modelling in contrast to the homogeneous (or time-invariant) Markovian

models in [17, 75, 28]. For mobile users, the variation associated with the power-

law distance loss can also be explicitly incorporated into the modelling. In general,

for indoor users and outdoor users moving in a small area, the power-law distance

loss can be approximated by a constant. For users travelling in a large area within

the duration of service, the situation is more complicated; several factors including

travelling speed, cell size and handover should be taken into account for realistic

channel modelling. In the stochastic control formulation of this Chapter, we will

follow the fading channel model in [17]. These more complicated inhomogeneous

models involving high speed travelling conditions will not be considered here.

18
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2.4. A Stochastic Optimal Control Formulation

2.4.1. The Dynamic Lognormal Fading Channel Model. Let xi(t), 1 ≤
i ≤ n, denote the attenuation (expressed in dBs and scaled to the natural logarithm

basis) at the instant t of the power of the i-th mobile user of a network and let

αi(t) = exi(t) denote the corresponding power loss. Based on the work in [17], we

model the power attenuation dynamics by

dxi = −ai(xi + bi)dt+ σidwi, t ≥ 0, 1 ≤ i ≤ n, (2.1)

where n denotes the number of mobiles, {wi, 1 ≤ i ≤ n} are n independent standard

Wiener processes, and the initial states xi(0), 1 ≤ i ≤ n, are mutually independent

Gaussian random variables which are also independent of the Wiener processes. In

(2.1), ai > 0, bi > 0, σi > 0, 1 ≤ i ≤ n. The first term in (2.1) implies a long-

term adjustment of xi towards the long-term mean −bi, and ai is the speed of the

adjustment. Correspondingly, the i-th power loss αi has a long-term adjustment

toward its long-term mean, which is the average large-scale path loss [17].

The model (2.1) corresponds to a stable diffusion process due to the positivity of

ai, and the process xi is referred to as a mean reverting Ornstein-Uhlenbeck process

[17], where the mean −bi of the power attenuation is explicitly incorporated into the

dynamics.

2.4.2. Rate Based Power Control. Currently, the power control algorithms

employed in the mobile telephone domain use gradient type algorithms with bounded

step size [62]. This is motivated by the fact that cautious algorithms are sought which

behave adaptively in a communications environment in which the actual position of

the mobile and its corresponding channel properties are unknown and varying.

We model the adaptive step-wise adjustments of the (sent) power pi (i.e., that

sent in practice by the i-th mobile) by the so-called rate adjustment model [31, 32]

dpi = uidt, t ≥ 0, |ui| ≤ uimax, 1 ≤ i ≤ n, (2.2)
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where the bounded input ui controls the size of increment dpi at the instant t. Without

loss of generality, uimax will be set equal to one. The adaptive nature of practical

rate adjustment control laws is replaced here by an optimal control calculation based

on full knowledge of channel parameters ai, bi, and σi, 1 ≤ i ≤ n. In the intended

practical implementation of our solution these parameters would be replaced by on-

line estimates. We write

x = [x1, · · · , xn]τ , p = [p1, · · · , pn]
τ , u = [u1, · · · , un]

τ .

Notice that the above rate adjustment model (2.2) may be compared with the

up/down power control scheme proposed in [67] where the power of the next time

step is calculated from the current power level and an additive adjustment which is

optimized by a statistical linearization technique. The algorithm in [67] is in discrete

time, and the required information for updating power includes the current power,

the channel state and a target SIR.

2.4.3. Quality of Service Requirements and Criteria for Optimization.

Let η > 0 be the constant system background noise intensity which is assumed to

be the same for all n mobile users in a network. Then, in terms of the power levels

pi ≥ 0, 1 ≤ i ≤ n, and the channel power attenuations αi, 1 ≤ i ≤ n, the so-called

signal to interference ratio (SIR) for the i-th mobile is given by

Γi =
αipi∑n

j 6=i αjpj + η
, 1 ≤ i ≤ n. (2.3)

A standard communications Quality of Service (QoS) constraint is to require that

Γi ≥ γi > 0, 1 ≤ i ≤ n, (2.4)

where γi, 1 ≤ i ≤ n, is a prescribed set of individual target signal to interference

ratios. We note that the constraints (2.4) are equivalent to the linear constraints
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αipi ≥ γi(
∑n

j 6=i αjpj + η), 1 ≤ i ≤ n, which, in turn, are equivalent to

(1 + γi)αipi ≥ γi(
n∑

j=1

αjpj + η), 1 ≤ i ≤ n,

and hence to

Γ′
i =

αipi∑n
j=1 αjpj + η

≥ µi, 1 ≤ i ≤ n, (2.5)

where µi
4
= γi

1+γi
> 0, 1 ≤ i ≤ n. Further, since

n∑

i=1

Γ′
i =

∑n
j=1 αjpj∑n

j=1 αjpj + η
, (2.6)

it necessarily follows that

n∑

i=1

µi < 1, (2.7)

if (2.5) is solvable with pi ≥ 0, 1 ≤ i ≤ n.

A plausible power allocation would be satisfying the generalized SIR requirements

(2.5) with as low power consumption as possible. In a real time power allocation sce-

nario, a straightforward way to formulate the optimization problem would be to seek

control functions which yield the minimization of the integrated power
∫ T

0

∑n
i=1 pi(t)dt

subject to the constraints (2.5)-(2.7) at each instant t, 0 ≤ t ≤ T .

Here we begin by considering the pointwise global minimization of the summed

power
∑n

i=1 pi under the inequality constraints (2.5)-(2.7) and the constraints pi ≥ 0,

1 ≤ i ≤ n. Setting n inequalities in (2.5) as equalities and taking into account the

constraint (2.7), we get a positive power vector p0 = (p0
1, · · · , p0

n) given by

p0
i =

µiη

αi(1 − ∑n
i=1 µi)

, 1 ≤ i ≤ n. (2.8)

It turns out that p0 is the unique positive vector which minimizes
∑n

i=1 pi under

constraints (2.5)-(2.7). Furthermore, it can be shown [70] that any nontrivial local

perturbation of p0 to a vector p which also satisfies the constraints results in a strict
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increase of each component p0
i . Hence, such a p0 is a local (linear inequality con-

strained) minimum which is also a global (linear inequality constrained) minimum.

In other words, provided (2.7) holds, the solution to

minimize

n∑

i=1

pi, pi ≥ 0, (2.9)

subject to the constraints (2.5) is the unique solution to

αipi∑n
j=1 αjpj + η

= µi, 1 ≤ i ≤ n. (2.10)

(See [70]). Hence it is well motivated to replace the above pointwise constrained de-

terministic optimization problem with the corresponding unconstrained deterministic

penalty function optimization problem:

minimize
n∑

i=1

[αipi − µi(
n∑

j=1

αjpj + η)]2 + λ

n∑

i=1

pi, λ ≥ 0, (2.11)

over pi ≥ 0, 1 ≤ i ≤ n. However, because the power vector is a part of the stochastic

channel-power system state with dynamics (2.1)-(2.2) and full state (α, p), it is im-

possible to instantaneously minimize (2.11) via u(t) at all times t. Hence, over the

interval [0, T ], we employ the following averaged integrated cost function:

E

∫ T

0

{
n∑

i=1

[αipi − µi(
n∑

j=1

αjpj + η)]2 + λ

n∑

i=1

pi}dt (2.12)

subject to (2.1) and (2.2), where λ ≥ 0. Here the small positive parameter λ is used

to adjust the power level and to avoid potential power overshoot.

In the cost function (2.12), the first term of the integrand is related to the instan-

taneous SIR in an indirect way. If the SIR term defined by (2.4) is directly applied in

the cost function, this will cause a potential zero division problem and present more

analytic difficulties since in our current formulation we do not add hard constraints

to ensure positivity of the powers.

In a practical implementation, the power of each user should remain positive. To

meet such a requirement, one can choose appropriate control models and associated
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cost functions. For example, one might choose the control model

dpi = uipidt, t ≥ 0, 1 ≤ i ≤ n,

with a positive initial power for each individual mobile; then all power trajectories

will remain positive with probability 1 on [0, T ]. However, this and related setups

may deviate significantly from the current technology in that the power adjustment

is done in an additive way in practice. Instead, we use the rate based control model

and the cost function introduced above. By choosing a small weight coefficient λ

and increasing the upper bound uimax for the control input, we can guarantee that

the optimally controlled power process p̂ obtained below in the stochastic optimal

control framework takes non-positive values with only a small probability. For a

better understanding of this point, we consider the ideal powers for minimizing the

integrand of (2.12). For a fixed time, we take the attenuations as constants and write




p̃1

p̃2

· · ·
p̃n




=




1 − µ1 −µ1 · · · −µ1

−µ2 1 − µ2 −µ2 · · ·
· · · · · ·
−µn −µn · · · 1 − µn







α1p1

α2p2

· · ·
αnpn



. (2.13)

And we write the integrand in (2.12) as

n∑

i=1

(p̃i − µiη)
2 + λ

n∑

i=1

βip̃i, (2.14)

where the coefficients βi are determined from (2.13). The minimum of (2.14) is

attained at

p̃i =
2µiη − λβi

2
, 1 ≤ i ≤ n. (2.15)

Thus, when the attenuations are fixed and 0 ≤ λ << 1, (2.15) gives a positive vector

p̃. By a straightforward algebraic calculation it can be further shown that under

assumption (2.7), the coefficient matrix in (2.13) has an inverse with all positive

entries and therefore we can obtain a positive power vector p0 from p̃. Although p0
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cannot be realized by a control input, the optimal control will try to track p0. Once

the actual power is deviating from p0, a greater penalty results. In such a manner the

optimal control makes efforts to steer the optimally controlled power to be positive

with a large probability. We remark that it is of interest to consider power adjustment

using the rate based power control model (2.2) with positive power constraints. This

issue will be addressed in Chapter 4 in a more general context.

We introduce the assumption:

(H2.1) The positive constants µi, 1 ≤ i ≤ n, in (2.12) satisfy
∑n

i=1 µi < 1.

Throughout Chapters 2-3 we assume (H2.1) holds for the formulation of the

power control problem. However we note that technically (H2.1) is used only in the

proof of Theorem 2.1 below.

2.5. Optimal Control and the HJB Equation

In the following we will analyze the optimal control problem in terms of the state

vector (x, p); this facilitates the definition of the value function v since xi is defined

on IR, while αi is only defined on IR+, 1 ≤ i ≤ n. Clearly the results in terms of x

can be re-expressed in terms of the power loss α by substitution of variables. Further

define

f(x) =




−a1(x1 + b1)
...

−an(xn + bn)


 , H =




σ1 · · · 0
...

. . .
...

0 · · · σn


 ,

z =


 x

p


 , ψ =


 f

u


 , G =


 H

0


 ,

where the second block of G is an n × n zero matrix. Now we write the equations

(2.1) and (2.2) together in the vector form

dz = ψdt+Gdw, t ≥ 0, (2.16)
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where w is an n×1 standard Wiener process determined by (2.1). In further analysis

we will denote the state variable either by (x, p) or by z, or in a mixing form, when

it is convenient. We also rewrite the integrand in (2.12) in terms of (x, p) as

l(z) = l(x, p) =

n∑

i=1

[exipi − µi(

n∑

j=1

exjpj + η)]2 + λ

n∑

i=1

pi, λ ≥ 0.

The admissible control set is specified as

U = {u(·) | u(t) is adapted to σ(xs, ps, s ≤ t), and u(t) ∈ U
4
= [−1, 1]n, ∀ 0 ≤ t ≤ T}.

As is stated in Section 2.4.1, the initial state vector is independent of the n×1 Wiener

process; we make the additional assumption that p has a deterministic initial value

p(0) at t = 0. Then it is evident that σ(xs, ps, s ≤ t) = σ(x0, ws, s ≤ t). We also

introduce

L = {u(·) | u is adapted to σ(xs, ps, s ≤ t), and E
∫ T

0
|ut|2dt <∞, }.

If L is endowed with an inner product 〈u, u′〉 = E
∫ T

0
uτu′ds, for u, u′ ∈ L, then L

constitutes a Hilbert space. By the above inner product we can induce a norm ‖ · ‖
on L. Under this norm U is a bounded, closed and convex subset of L. Finally, the

cost associated with the system (2.16) and a control u(·) is specified to be

J(s, x, p, u) = E[

∫ T

s

l(xt, pt)dt|xs = x, ps = p],

where s ∈ [0, T ] is taken as the initial time of the system; further we set the value

function

v(s, x, p) = inf
u∈U

J(s, x, p, u), (2.17)

and simply write J(0, x, p, u) as J(x, p, u).
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Theorem 2.1. If Assumption (H2.1) holds, there exists a unique optimal control

û ∈ U such that

J(x0, p0, û) = inf
u∈U

J(x0, p0, u),

where (x0, p0) is the initial state at time s = 0, and uniqueness holds in the following

sense: if ũ ∈ U is another control such that J(x0, p0, ũ) = J(x0, p0, û), then PΩ(ũs 6=
ûs) > 0 only on a set of times s ∈ [0, T ] of Lebesgue measure zero, where Ω is the

underlying probability sample space.

PROOF. The existence of the optimal control can be established by a typical

approximation argument on the subset U of the Hilbert space L, and the details are

omitted here (see, e.g., [78]).

Uniqueness: Assume there is ũ ∈ U such that J(x0, p0, ũ) = J(x0, p0, û), and

denote the power corresponding to ũ by p̃. For any fixed x ∈ IRn, by (H2.1) it can be

verified that ∂2l(x,p)
∂p2 is strictly positive definite, and therefore l(x, p) is strictly convex

with respect to p. So we have

l(xs,
1

2
(p̂s + p̃s)) ≤

1

2
[l(xs, p̂s) + l(xs, p̃s)], (2.18)

and a strict inequality holds on the set A0 4
= {(s, ω) ∈ [0, T ] × Ω, p̃s 6= p̂s}. Now we

assume that E
∫ T

0
1(

�

ps 6=
�

ps)ds > 0, i.e., A0 has a strictly positive measure, and then the

control 1
2
(û+ ũ) ∈ U yields

J(x0, p0,
1

2
(û+ ũ)) <

1

2
[J(x0, p0, û) + J(x0, p0, ũ)] = inf

u∈U
J(x0, p0, u),

by integrating and taking expectation on both sides of (2.18), which is a contradiction,

and therefore

E

∫ T

0

1(
�

ps 6=
�

ps)ds = 0. (2.19)

Since with probability 1 the trajectories of ps are continuous, by (2.19) we have

p̃s − p̂s ≡ 0 on [0, T ]
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with probability 1. By (2.2) we have

∫ s

0

(ũt − ût)dt = p̂s − p̃s,

for all s ∈ [0, T ], so that with probability 1, ũs − ûs = 0 a.e. on [0, T ]; or equivalently,

E

∫ T

0

1(
�

us 6=
�

us)ds =

∫ T

0

PΩ(ũs 6= ûs)ds = 0.

So that PΩ(ũs 6= ûs) > 0 only on a set of times s ∈ [0, T ] of Lebesgue measure zero.

This proves uniqueness.

Proposition 2.1. The value function v is continuous on [0, T ] × IR2n, and fur-

thermore,

v(t, x, p) ≤ C(1 +

n∑

i=1

p4
i +

n∑

i=1

e4xi), (2.20)

where C > 0 is a constant independent of (t, x, p).

PROOF. The continuity of v can be established by continuous dependence of the

cost on the initial condition of the system (2.16). The inequality (2.20) is obtained

by a direct estimate of the cost function.

The above growth estimate of the value function will be used in Chapter 3 to

define a function class in which approximate solutions are sought.
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CHAPTER 3

The HJB Equation and its Approximation

3.1. The Dynamic Programming Equation

In this Chapter we continue the investigation of the stochastic control problem

introduced in Chapter 2. The notation used below is consistent with that of Section

2.5 of the previous Chapter. Formally applying dynamic programming to the stochas-

tic optimal control problem formulated in Section 2.5, Chapter 2, we may write the

Hamilton-Jacobi-Bellman (HJB) equation for the value function v defined by (2.17)

as follows:

0 = −∂v
∂t

+ sup
u∈U

{−∂
τv

∂z
ψ} − 1

2
tr(
∂2v

∂z2
GGτ ) − l, (3.1)

v(T, x, p) = 0,

where z = (xτ , pτ )τ . It is seen that in (3.1) the covariance matrix GGτ is not of

full rank. In general, under such a condition the corresponding stochastic optimal

control problem does not admit classical solutions due to the degenerate nature of the

resulting HJB equations. The solution for such an HJB equation can be formulated

in the viscosity solution framework. The definition of a viscosity solution will be

given in Chapter 4. After the existence of a viscosity solution is proved for the HJB

equation, an interesting issue arises as to whether the value function is the unique

viscosity solution in a certain function class. For such degenerate HJB equations
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proving the uniqueness of viscosity solutions is not only of apparent mathematical

interest, but is also important for analyzing convergence to the viscosity solution for

certain approximation schemes [7, 24].

In order to prove uniqueness of the viscosity solution to the above HJB equation,

we introduce the function class G such that each v(t, x, p) ∈ G satisfies

(i) v ∈ C([0, T ] × IR2n) and

(ii) there exist C, k1, k2 > 0 such that |v| ≤ C[1 +
∑n

i=1 e
k1|xi| +

∑n
i=1(|xi|k2 +

|pi|k2)], where the constants C, k1, k2 can vary with each v.

Theorem 3.1. The value function v defined by (2.17) is a viscosity solution to

the HJB equation (3.1), and moreover, the value function v is a unique viscosity

solution to (3.1) in the class G.

PROOF. It is easy to verify that the stochastic control problem formulated in

Section 2.5 is a special case of the class of stochastic control problems in Section 4.2.

Specifically, the system (2.16) satisfies Assumptions (H4.1)-(H4.2) of Chapter 4.

Hence by Theorems 4.1 we see that v defined by (2.17) is a viscosity solution to (3.1).

Obviously the value function v is in the class G by Proposition 2.1. By Theorem

4.3 it follows that v is a unique viscosity solution to (3.1) in the class G.

3.2. Perturbation of the HJB Equation

As is pointed out in Section 3.1, in general, one cannot prove the existence of a

classical solution to the HJB equation (3.1) due to the lack of uniform parabolicity.

Now we modify (3.1) by adding a perturbing term 1
2

∑n
i=1 ε

2 ∂2v
∂pi

2 and formally carrying

out the minimization to get

0 =
∂vε

∂t
+

1

2

n∑

i=1

σ2
i

∂2vε

∂x2
i

+
1

2

n∑

i=1

ε2∂
2vε

∂p2
i

−
n∑

i=1

∂vε

∂xi

ai(xi + bi) −
n∑

i=1

|∂v
ε

∂pi

| + l, (3.2)

where we use vε to indicate the dependence of the solution on ε > 0. We will seek a

classical solution vε in the class F :

(i) vε ∈ C1,2((0, T ) × IR2n) ∩ C([0, T ] × IR2n) and
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(ii) |vε| ≤ C(1 + |p|k1 + ek2|x|), where C, k1, k2 > 0 can vary with each vε, and

(iii) vε(T, x, p) = 0.

We prove the existence of a solution to (3.2) in F by an approximation approach.

First we fix 0 < ε < 1. For integer d ≥ 1, we introduce a cut-off function hd(x, p) =

hd(z) such that hd(z) = 1 for |z| ≤ d, hd(z) = 0 for |z| ≥ d + 1, and |hd
zi
| ≤ 2,

1 ≤ i ≤ 2n. Write the auxiliary equation

0 =
∂vd

∂t
+

1

2

n∑

i=1

σ2
i

∂2vd

∂x2
i

+
1

2

n∑

i=1

ε2∂
2vd

∂p2
i

−
n∑

i=1

∂vd

∂xi
ai(xi + bi)h

d(z) (3.3)

−
n∑

i=1

|∂v
d

∂pi

|hd(z) + l(x, p)hd(z),

vd(T, x, p) = 0.

Theorem 3.2. The equation (3.2) has a unique classical solution in the class F
for all ε > 0.

PROOF. The existence of a classical solution can be proved in a way similar to the

proof of Theorem VI6.2 [23], and it can be shown first that (3.3) admits a classical

solution vd in the class F . Fix any d0 > 1. We take D = (0, T )×(|(x, p)| < d0). Then

for any d ≥ d0, v
d(t, x, p) in (3.3) satisfies (3.2) for |z| < d0, and moreover vd, vd

xi
, vd

pi

are uniformly bounded on D with respect to d. For any Q = (0, T ) × (|z| < d′),

0 < d′ < d0, by local estimates it can be shown that

|vd|(2)λ,Q

4
= |vd|λ,Q + |vd

s |λ,Q +
∑

i

|vd
zi
|λ,Q +

∑

i,j

|vd
zizj

|λ,Q

is uniformly bounded with respect to d, where | · |λ,Q denotes the Lλ(Q) norm. In the

above we can take λ > n + 2, and therefore by the Hölder estimates, vd
zi

satisfies a

uniform Hölder condition on Q. We can further use the Hölder estimates to show that

vd
s , v

d
zizj

, d = d0+1, d0+2, · · · , satisfy a uniform Hölder condition on Q. Finally we use

Arzela-Ascoli theorem [64] to take a subsequence {dkq , q ≥ 1} of {dk
4
= d0 +k, k ≥ 1}

such that vdkq , v
dkq
s , v

dkq
zi , v

dkq
zizj converge uniformly to vε, vε

s, v
ε
zi
, vε

zizj
onQ, respectively,

as q → ∞, where vε satisfies (3.2) and is in the class F . By the growth condition
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of vε, we can use Itö’s formula to show that vε is the value function to a related

stochastic control system, and thus it is a unique solution to (3.2) in the class F .

Theorem 3.3. For 0 < ε < 1 and B a compact subset of IR2n, if vε is the solution

of (3.2) in class F , then vε → v uniformly on [0, T ]×B, where v is the value function

of the system (2.16).

PROOF. Suppose {wi, νi, 1 ≤ i ≤ n} are mutually independent standard Wiener

processes. Write

dpε
i = uidt+ εdνi, 1 ≤ i ≤ n. (3.4)

Here we use Uw,ν to denote σ(wi, νi)-adapted controls satisfying |ui| ≤ 1, 1 ≤ i ≤ n.

It can be shown that the optimal cost of the system (2.16) does not change when

in (2.17) U is replaced by Uw,ν . In fact, in both cases of admissible control set U
and Uw,ν we can prove by dynamic programming that the resulting value functions

are a viscosity solution to the associated HJB equation (3.1) in the class F and the

viscosity solution is unique; see the viscosity solution analysis in Chapter 4 or [36].

Hence in the following proof we always take controls from Uw,ν . And in fact, vε ∈ F
determined by (3.2) is the value function to the stochastic control problem (2.1)-(3.4),

i.e.,

vε(s, x, p) = inf
u∈Uw,ν

J(s, x, p, u) = inf
u
E[

∫ T

s

l(xt, p
ε
t)dt|xs = x, ps = p].

For a fixed u ∈ Uw,ν, we have P{limε→0 sup0≤t≤T |pε
i − pi| = 0} = 1, and using

Lebesgue’s dominated convergence theorem [64] we obtain

|Jε(s, x, p, u) − J(s, x, p, u)| → 0, as ε→ 0,

and therefore, vε(s, x, p) → v(s, x, p), as ε → 0. It is easy to verify that vε(s, x, p) is

uniformly bounded on [0, T ]×B for 0 < ε < 1. Furthermore, by taking two different

initial conditions we can show that on [0, T ]×B, vε is equicontinuous with respect to
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0 < ε < 1. By Arzela-Ascoli theorem, vε(s, x, p) → v(s, x, p) uniformly on [0, T ]×B,

as ε→ 0.

3.3. Interpretation of Bounded Rate Control

In the HJB equation (3.1), the value function is specified by the formal use of its

first and second order derivatives, and then the equation is interpreted in a viscosity

solution sense. Evidently the optimal control is not specified as a function of time and

the state variable globally due to the nondifferentiable points of the value function.

However, by checking the Dynamic Programming Principle at any point (t, x, p) such

that the value function v is differentiable in a neighbourhood of (t, x, p), we see that

locally the optimal control can be specified by the derivative information of the value

function around such a point and the control input is a bang-bang control.

After the perturbation of HJB equation, the associated suboptimal cost function

is differentiable everywhere. Then the suboptimal control law is constructed by the

rule:

u = argmin
u∈U

ψτ ∂v
ε

∂z
, (3.5)

which also gives a bang-bang control. We note that the suboptimal control law (3.5)

resembles the up/down power control algorithms in [67] where at each discrete time

instant the power is increased or decreased by a fixed amount and the increment is

determined by the current power, the observed random channel gain and a target SIR

level. But our method here differs from [67] since the fading dynamics modelled by

(2.1) are incorporated into the calculation of the control law (3.5). Clearly for (3.5),

ui = −sgn ∂vε

∂pi
since ui ∈ [−1, 1]. In a discrete time implementation, we assume the

time axis is evenly sampled by a period of ∆T . At time k∆T , k = 0, 1, 2, · · · , the i-th

user only needs to increase or decrease its power by ∆T in the case ∂vε

∂pi
|t=k∆T < 0 or

∂vε

∂pi
|t=k∆T > 0, respectively; if ∂vε

∂pi
|t=k∆T = 0, the power increment for pi is set as 0.

The significance of the suboptimal control law is that it gives a very simple scheme

(i.e., increase or decrease the power by a fixed amount or keep the same power level)
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for updating the power of users by requiring limited information exchange between

the base station and the users (in the current technology, the base station sends the

power adjustment command to the users based on its information on the operating

status of each user), and thus reduces implementational complexity.

On the other hand, from the structure of the suboptimal control law we see that

each user should use centralized information, i.e., the current powers and attenuations

of all the users, to determine its own power adjustment. In general, to implement the

centralized control law requires more information exchange between the base station

and the individual users than in the case of static channels [68, 69, 82].

3.4. Numerical Implementation of ε-Perturbation Suboptimal

Control

From the above analysis it is seen that for a numerical implementation, we only

need to choose a small positive constant ε > 0 and solve equation (3.2) and the

suboptimal control is determined in a feedback control form. Consider the case of

two users with i.i.d. channel dynamics

dxi = −a(xi + b)dt+ σdwi, i = 1, 2, 0 ≤ t ≤ 1.

We take the time interval [0, 1] and use a performance function E
∫ 1

0
l(xt, pt)dt with

l =[ex1p1 − 0.4(ex1p1 + ex2p2 + 0.25)]2

+ [ex2p2 − 0.4(ex1p1 + ex2p2 + 0.25)]2 + λ(p1 + p2).

In order to compute the suboptimal control law, we need to solve the approximation

equation numerically,

0 = vt +
1

2
σ2(vx1x1 + vx2x2) +

1

2
ε2(vp1p1 + vp2p2) (3.6)

− a(x1 + b)vx1 − a(x2 + b)vx2 − |vp1| − |vp2| + l,

v(1, x, p) = 0.
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The above equation is solved by a standard difference scheme [3] in a bounded region

S = {(t, x, p) : 0 ≤ t ≤ 1, −4 ≤ x1, x2 ≤ 3, |p1|, |p2| ≤ 3}.

An additional boundary condition is added such that v(t, x, p)|∂ = 0, where

∂ = ∂S − {(t, x, p), t = 0}. We let δt, h > 0 be the step sizes, and denote z =

(x1, x2, p1, p2)
τ , ei = (0, · · · , 1, · · · , 0)τ where 1 is the i-th entry in the row. We

discretize (3.6) to get the difference equation

0 =
1

δt
[v(t+ δt, z) − v(t, z)] (3.7)

+
σ2

2h2
[v(t, z + e1h) + v(t, z − e1h) − 2v(t, z)]

+
σ2

2h2
[v(t, z + e2h) + v(t, z − e2h) − 2v(t, z)]

+
ε2

2h2
[v(t, z + e3h) + v(t, z − e3h) − 2v(t, z)]

+
ε2

2h2
[v(t, z + e4h) + v(t, z − e4h) − 2v(t, z)]

− a(x1 + b)

h
[v(t, z + e1h) − v(t, z)]1{a(x1+b)≤0}

− a(x1 + b)

h
[v(t, z) − v(t, z − e1h)]1{a(x1+b)>0}

− a(x2 + b)

h
[v(t, z + e2h) − v(t, z)]1{a(x2+b)≤0}

− a(x2 + b)

h
[v(t, z) − v(t, z − e2h)]1{a(x2+b)>0}

+
u1

2h
[v(t, z + e3h) − v(t, z − e3h)]

+
u2

2h
[v(t, z + e4h) − v(t, z − e4h)] + l(z),

where

u1 = −sgn[v(t, z + e3h) − v(t, z − e3h)], (3.8)

u2 = −sgn[v(t, z + e4h) − v(t, z − e4h)]. (3.9)
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With the boundary condition and an initial approximate solution, we can determine

the variables u1 and u2 (the control variables) by the rules (3.8)-(3.9), and update

the numerical solution. The iterations converge to the exact solution to the difference

equation (3.7), as can be proved by the method in [53]. We remark that there are

general results concerning the convergence of this type of difference scheme to the

solution of the original partial differential equation. The interested reader is referred

to the literature (see, e.g., [24, 50, 51]).

3.4.1. Numerical Examples. In the numerical simulations, we consider the

system with parameters a = 4, b = 0.3, σ2 = 0.09, ε2 = 0.15, and three cases for λ:

(1) λ = 0.01; (2) λ = 0.001; (3) λ = 0. In the difference scheme the step size is 0.1

for t, xi, pi, i = 1, 2. To improve the approximation we may reduce ε, and at the

same time we should reduce h to guarantee convergence of iterations of the difference

scheme [53]. In the simulation, the value function will be further interpolated to get

a step size of 0.05 which will help reduce overshoot in the power adjustment. The

power loss processes are also discretized with a time step size of 0.05. In the control

determination, a current time space vector (t, x1, x2, p1, p2) is mapped to a grid point.

Then the control is determined by the descent direction of the value function with

respect to the control input ui, i = 1, 2. If either increasing or decreasing the power

level does not result in an evident decrease of the value function, we set the control

to be 0. Figures 3.1-3.3 present the numerical simulation results where x1, x2 denote

the attenuations, p1, p2 denote the powers for two users, and q1, q2 are the pointwise

optimal powers obtained from (2.8). Figures 3.1, 3.2, 3.3 correspond to cases 1, 2, 3,

respectively. It can be seen in all of the cases that after a certain period of time, the

two power levels are very close to each other.

When at the initial time one mobile has a significantly different power level than

the other, we see that an interesting equalization phenomenon takes place; this is

shown in Figures 3.1 (b), 3.2 (b) and 3.3 (b). Starting from the initial instant the

controller will first make the mobile with a high power level reduce power and the

other increase power; after a certain period however both mobiles will increase their
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power together. This happens because a large difference in the two powers induces a

large penalty in the performance function.

Figures 3.1, 3.2 and 3.3 show that the power is rather sensitive to the weight

factor λ. When the cost function places a small emphasis upon power saving the

optimal power trajectories are seen to be close to the pointwise optimal powers.

Figures 3.4 and 3.5 demonstrate the the trajectories of the attenuation, the con-

trolled power and the associated control input for two users. The control for each

user has a bang-bang feature where for most of time it takes -1 or 1, and the control

is set as 0 for some rare cases when the calculated gradient of the value function w.r.t.

the control is very small and thus treated as 0 derivative.

Figure 3.6 shows two surfaces of the value function at different times when the

attenuations are fixed. It illustrates the variation of the value function w.r.t. different

power levels.
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Figure 3.1. The trajectories for the attenuation xi and power pi; Different
initial powers are used in (a) and (b); The power weight λ = 0.01
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CHAPTER 4

Viscosity Solution Analysis for a Class of

Degenerate Stochastic Control Problems

4.1. Introduction

This Chapter is concerned with a class of optimization problems arising from the

power control problem for wireless communication systems and forms a mathematical

foundation for the results in Chapters 2 and 3 and the papers [32, 35]. The material in

this Chapter follows the papers [33, 36]. We will first formulate a class of degenerate

stochastic control problems which take the form of the regulation the state of a

controlled process where an exogenous random parameter process is involved in the

performance function, and then we show that the communication application reduces

to a special case for the general formulation. A mathematical finance problem will

also be introduced for illustration of the general case.

The random parameter process and the controlled process are denoted by xt ∈ IRn

and pt ∈ IRn, t ∈ IR+, respectively. Suppose x is modelled by the stochastic differential

equation

dx = f(t, x)dt+ σ(t, x)dw, t ≥ 0, (4.1)

where f and σ are the drift and diffusion coefficients, respectively, w is an n dimen-

sional standard Wiener process with covariance Ewtw
τ
t = tI and the initial state x0

is independent of {wt, t ≥ 0} with finite exponential moment, i.e., Ee2|x0| <∞.
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The process p is governed by the model

dp = g(t, p, u)dt, t ≥ 0, (4.2)

where the component gi(t, p, u), 1 ≤ i ≤ n, controls the size of the increment dpi at

the time instant t, u ∈ IRn, |ui| ≤ uimax, 1 ≤ i ≤ n. Without loss of generality we set

uimax = 1, and we shall write

x = [x1, · · · , xn]τ , p = [p1, · · · , pn]
τ , u = [u1, · · · , un]

τ .

In the regulation of p, we introduce the following cost function

E

∫ T

0

[pτC(x)p+ 2Dτ (x)p]dt, (4.3)

where T <∞, C(x), D(x) are n× n positive definite matrix (for any x ∈ IRn), n× 1

vector, respectively, and the components of C(x) and D(x) are exponential functions

of linear combinations of xi, 1 ≤ i ≤ n. For simplicity, in this Chapter we take

Cij(x) = cije
xi+xj , Di(x) = die

xi + si for 1 ≤ i, j ≤ n, where cij, di, si ∈ IR are

constants. This particular structure of the weight coefficients indicates that each pi

is directly associated with the parameter component xi through the cost function

for 1 ≤ i ≤ n, when expanding the integrand in (4.3) into its components. The

more general case of expressing the components of C(x) and D(x) as exponential

function of general linear combinations of xi, 1 ≤ i ≤ n, can be considered without

further difficulty. We will give the complete optimal control formulation in Section

4.2, where the technical assumptions of weak coupling for the dynamics (4.1)-(4.2)

will be introduced.

4.1.1. The Stochastic Power Control Example. We now briefly review

the motivating stochastic power control problem for lognormal fading channels. In

an urban or suburban environment, the power attenuations of wireless networks are

described by lognormal random processes. Let xi(t), 1 ≤ i ≤ n, denote the power

attenuation (expressed in dBs and scaled to the natural logarithm basis) at the instant
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t of the i-th mobile and let αi(t) = exi(t) denote the actual attenuation. Based on the

work in [17], the power attenuation dynamics adopted in Chapters 2, 3 and in the

papers [32, 35] are given as a special form of (4.1):

dxi = −ai(xi + bi)dt+ σidwi, t ≥ 0, 1 ≤ i ≤ n. (4.4)

In (4.4) the constants ai, bi, σi > 0, 1 ≤ i ≤ n. (See [17] for a physical interpretation

of the parameters in (4.4)). In a network, at time t the i-th mobile sends its power

pi(t) and the resulting received power at the base station is exi(t)pi(t). The mobile

has to adjust its power pi in real time so that a certain Quality of Service (QoS) is

maintained. In Chapters 2, 3 and [31, 32, 38] the adjustment of the (sent) power

vector p for the n users is modelled by simply taking g(t, p, u) = u in (4.2) which

is called the rate adjustment model. Subsequently, based on the system signal to

interference ratio (SIR) requirements, the following averaged integrated performance

function

E

∫ T

0

{
n∑

i=1

[exipi − µi(
n∑

j=1

exjpj + η)]2 + λ

n∑

i=1

pi}dt (4.5)

was employed, where η > 0 is the system background noise intensity, λ ≥ 0, and

µi, 1 ≤ i ≤ n, is a set of positive numbers determined from the SIR requirements.

The resulting power control problem is to adjust u as a function of the system state

(x, p) so that the above performance function is minimized.

4.1.2. A Mathematical Finance Example. In the area of mathematical

finance we take a special form of (4.1) in which

dxi = fi(t)dt + σi(t)dwi, 1 ≤ i ≤ n, (4.6)

where fi(t) and σi(t) are continuous on [0, T ]. Taking αi = exi we obtain from (4.6)

dαi

αi
= [fi(t) +

σ2(t)

2
]dt+ σi(t)dwi

4
= bi(t)dt+ σi(t)dwi, 1 ≤ i ≤ n, (4.7)
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which is the so-called geometric Brownian motion (GBM) model and is well known in

mathematical finance for modelling prices of risky assets, for instance, stocks [57, 48].

(4.7) is also the fundamental stock price model in the celebrated Black-Scholes theory

[12, 48]. We now suppose (4.7) models the prices for n stocks. A shareholder’s

decisions are usually made by means of adjusting the fraction of wealth invested

on the n stocks while consideration is also given to possibly other investment (for

instance, savings) as well as to consumption. This leads to utility based portfolio

optimization. Let pi, 1 ≤ i ≤ n, stand for the number of shares of the i-th stock.

In the process of asset management, at time t the value carried by the stock shares

of the investor is the sum of the terms exi(t)pi(t), 1 ≤ i ≤ n. The share number pi

varies with time according to the investing strategy of the shareholder and since this

is a controlled quantity a connection with the power control problem in this thesis is

revealed which will be studied in future research.

4.1.3. Organization of the Analysis. The analysis in this Chapter treats

a general class of performance functions that have an exponential growth rate with

respect to xi, 1 ≤ i ≤ n; hence this analysis covers the loss function in (4.5) and it

differs from that appearing in most stochastic control problems in the literature, where

linear or polynomial growth conditions usually pertain [23, 78]. Two novel features

of the class of models (4.1)-(4.2) are (i) neither the drift nor the diffusion of the state

subprocess x are subject to control and hence x can be regarded as an exogenous

signal, and (ii) further, the controlled state subprocess p has no diffusion part. Hence

(4.1)-(4.2) gives rise to degenerate stochastic control systems. As is well known, the

optimization of such systems leads to degenerate Hamiltonian-Jacobi-Bellman (HJB)

equations which in general do not admit classical solutions [24, 78].

This Chapter deals with the mathematical control theoretic questions arising

from the class of stochastic optimal control problems considered in Chapter 3 and

[32] where some approximation and numerical methods are proposed for implemen-

tation of the control laws. For the resulting degenerate HJB equations, we adopt
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viscosity solutions and show that the value function of the optimal control is a vis-

cosity solution. To prove uniqueness of the viscosity solution, we develop a localized

semiconvex/semiconcave approximation technique. Specifically, we introduce par-

ticular localized envelope functions in the unbounded domain to generate semicon-

vex/semiconcave approximations on any compact set. Compared to previous works

[24, 78], by use of the set of envelope functions, we can treat very rapid growth

conditions, and we note that no Lipschitz or Hölder type continuity assumption is

required for the function class involved. We also consider the optimal control subject

to state constraints which leads to the formulation of constrained viscosity solutions

to the associated second order HJB equations; this part is parallel to [66], where a

first order HJB equation is investigated. This Chapter is organized as follows: in

Section 4.2 we state existence and uniqueness of the optimal control, and show that

the value function is a viscosity solution to a degenerate HJB equation; we then give

two theorems as the main results about the solution of the HJB equation. Section

4.3 is devoted to introducing a class of semiconvex/semiconcave approximations for

continuous functions; this technique permits us to treat viscosity solutions with rapid

growth. In Section 4.4, we analyze the HJB equation and prove a maximum principle

by which it follows that the HJB equation has a unique viscosity solution in a certain

function class. Section 4.5 considers the control problem subject to state constraints.

4.2. Optimal Control and the HJB Equations

Define

z =


 x

p


 , ψ =


 f

g


 , G =


 σ

0n×n


 .

We now write the equations (4.1) and (4.2) together in the vector form

dz = ψdt+Gdw, t ≥ 0. (4.8)

In the following analysis we will denote the state variable by (x, p) or z, or in a

mixing form; As we do in Section 4.5, we may also write the functions in (4.1)-(4.2)
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in a unifying way in terms of (t, z). We write the integrand in (4.3) as

l(z) = l(x, p) = pτC(x)p+ 2Dτ (x)p, (4.9)

where C(x) > 0 for all x ∈ IRn. The admissible control set is specified as

U = {u(·) | ut is adapted to σ(zs, s ≤ t) and ut ∈ U
4
= [−1, 1]n, ∀ 0 ≤ t ≤ T}.

As is stated in the introduction, the initial state vector is independent of the n × 1

Wiener process; we make the additional assumption that p has a deterministic initial

value p0 at t = 0. Then it is easily verified that σ(zs, s ≤ t) = σ(xs, s ≤ t). Define

L = {u(·) | u is adapted to σ(zs, s ≤ t), ut ∈ IRn and E
∫ T

0
|u|2ds <∞}. If we endow

L with an inner product 〈u, u′〉 = E
∫ T

0
uτu′ds, u, u′ ∈ L, then L constitutes a Hilbert

space with the induced norm ‖u‖ = 〈u, u〉 1
2 ≥ 0, u ∈ L. Under this norm, U is a

bounded, closed and convex subset of L. Finally, the cost associated with the system

(4.8) and a control u ∈ U is specified to be

J(s, z, u) = E[

∫ T

s

l(zt)dt|zs = z],

where s ∈ [0, T ] is taken as the initial time of the system; further we set the value

function v(s, z) = infu∈U J(s, z, u), and simply write J(0, z, u) as J(z, u).

The following assumptions on the time interval [0, T ] will be used in our further

analysis:

(H4.1) In (4.1)-(4.2), f ∈ C([0, T ] × IRn, IRn), σ ∈ C([0, T ] × IRn, IRn×n), g ∈
C([0, T ] × IR2n, IRn) and f, σ, g satisfy a uniform Lipschitz condition, i.e.,

there exists a constant C1 > 0 such that |f(t, x) − f(s, y)| ≤ C1(|t − s| +
|x− y|), |σ(t, x) − σ(s, y)| ≤ C1(|t − s| + |x− y|), |g(t, p, u) − g(s, q, u)| ≤
C1(|t− s| + |p− q|) for all t, s ∈ [0, T ], x, y, p, q ∈ IRn, u ∈ U . In addition,

there exists a constant Cσ such that |σij(t, x)| ≤ Cσ for 1 ≤ i, j ≤ n and

(t, x) ∈ [0, T ] × IRn.
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(H4.2) For 1 ≤ i ≤ n, fi(x) can be written as fi(x) = −ai(t)xi + f 0
i (t, x), where

ai(t) ≥ 0 for t ∈ [0, T ], and sup[0,T ]×IRn |f 0
i (t, x)| ≤ Cf0 for a constant

Cf0 ≥ 0.

Throughout this Chapter we assume (H4.1) holds. (H4.2) is used only in The-

orems 4.3 and 4.2.

Remark 4.1. Assumption (H4.1) ensures existence and uniqueness of the so-

lution to (4.8) for any fixed u ∈ U . In (H4.1), the Lipschitz condition with respect

to t will be used to obtain certain estimates in the proof of uniqueness of the vis-

cosity solution. Here σ is assumed to be bounded to get a finite cost for any initial

state and admissible control. Obviously (H4.2) covers the lognormal fading channel

model. From (H4.2) it is seen that the evolution of xi does not receive strong in-

fluence from the other state components xj, j 6= i, in the sense that the cross term

f 0
i (t, x) is bounded by a constant. (H4.2) shall be called the weak coupling condition

which will be used to establish uniqueness of the viscosity solution.

Proposition 4.1. Assuming in the control model (4.2), g(t, p, u) is linear in p

and u, i.e., there exist continuous functions At, Bt such that g(t, p, u) = Atp + Btu,

there exists an optimal control û ∈ U such that J(x0, p0, û) = infu∈U J(x0, p0, u),

where (x0, p0) is the initial state at time s = 0; if in addition, Bt is invertible for

all t ∈ [0, T ], then the optimal control û is unique and uniqueness holds in the

following sense: if ũ ∈ U is another control such that J(x0, p0, ũ) = J(x0, p0, û), then

PΩ(ũs 6= ûs) > 0 only on a set of times s ∈ [0, T ] of Lebesgue measure zero, where Ω

is the underlying probability sample space.

The proof of Proposition 4.1 can be given in the same say as the proof of Theorem

2.1 and is omitted here.

47



CHAPTER 4. VISCOSITY SOLUTION ANALYSIS FOR DEGENERATE STOCHASTIC CONTROL

Proposition 4.2. The value function v(s, z) is continuous on [0, T ] × IR2n, and

furthermore

v(s, z) ≤ C[1 +
n∑

i=1

e4zi +
2n∑

i=n+1

z4
i ], (4.10)

where C > 0 is a constant independent of (s, z).

PROOF. The continuity of v can be established by continuous dependence of the

cost on the initial condition of the system (4.8). For an initial state zs = z and any

fixed input u, from the equation (4.8), using the structure of C(x) and D(x) in the

cost integrand we have the estimates

J(s, z, u) = E

∫ T

s

l(zt)dt ≤ E

∫ T

s

C0[1 +
n∑

i=1

e4zi(t) +
2n∑

i=n+1

z4
i (t)]dt

≤ C[1 +

n∑

i=1

e4zi +

2n∑

i=n+1

z4
i ],

for some constants C0, C independent of (s, z), and (4.10) follows.

We see that in (4.8) the noise covariance matrix GGτ is not of full rank. In

general, under such a condition the corresponding stochastic optimal control problem

does not admit classical solutions due to the degenerate nature of the arising HJB

equations. Here we analyze viscosity solutions.

Definition 4.1. v(t, z) ∈ C([0, T ] × IR2n) is called a viscosity subsolution to

the HJB equation

0 = −∂v
∂t

+ sup
u∈U

{−∂
τv

∂z
ψ} − 1

2
tr(
∂2v

∂z2
GGτ ) − l, (4.11)

v |t=T = h(z), z ∈ IR2n,

if v |t=T≤ h, and for any ϕ(t, z) ∈ C1,2([0, T ] × IR2n), whenever v − ϕ takes a local

maximum at (t, z) ∈ [0, T ) × IR2n, we have

−∂ϕ
∂t

+ sup
u∈U

{−∂
τϕ

∂z
ψ} − 1

2
tr(
∂2ϕ

∂z2
GGτ ) − l ≤ 0, z ∈ IR2n (4.12)
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at (t, z). v(t, z) ∈ C([0, T ] × IR2n) is called a viscosity supersolution to (4.11) if

v |t=T≥ h, and in (4.12) we have an opposite inequality at (t, z), whenever v−ϕ takes

a local minimum at (t, z) ∈ [0, T )× IR2n. v(t, z) is called a viscosity solution if it is

both a viscosity subsolution and a viscosity supersolution.

Theorem 4.1. The value function v is a viscosity solution to the HJB equation

0 = −∂v
∂t

+ sup
u∈U

{−∂
τv

∂z
ψ} − 1

2
tr(
∂2v

∂z2
GGτ ) − l, (4.13)

v(T, z) = 0.

PROOF. The value function v is continuous (by Proposition 4.2) and it satisfies

the boundary condition in (4.13). Now, for any ϕ(t, z) ∈ C1,2([0, T ] × IR2n), suppose

v−ϕ has a local maximum at (s, z0), s < T . We denote by z(1), z(2) the first n and last

n components of z, respectively. In the following proof, we assume that ϕ(t, z) = 0

for all z(1) such that |z(1) − z
(1)
0 | ≥ C > 0; otherwise we can multiply ϕ(t, z) by a C∞

function ζ(z(1)) with compact support and ζ(z(1)) = 1 for |z(1) − z
(1)
0 | ≤ C

2
. We take

a constant control u ∈ [−1, 1] on [s, T ] to generate zu with initial state zs = z0 and

write ∆(t, z) = v(t, z) − ϕ(t, z). Since (s, z0) is a local maximum point of ∆(t, z),

we can find ε > 0 such that ∆(s1, z) ≤ ∆(s, z0) for |s1 − s| + |z − z0| ≤ ε. For

s1 ∈ (s, T ], zs = z0, write 1Aε = 1(|s1−s|+|zs1−z0|≥ε). Then

E[∆(s, z0) − ∆(s1, zs1)]

= E[∆(s, z0) − ∆(s1, zs1)](1 − 1Aε) + E[∆(s, z0) − ∆(s1, zs1)]1Aε

≥ E[∆(s, z0) − ∆(s1, zs1)]1Aε = O(Ee2|z(1)
s1

|1Aε) (4.14)

= O(Ee2|z(1)
s1

|1
(|z(1)

s1
−z

(1)
0 |≥ε/2)

(4.15)

= O(|s− s1|2) (4.16)

when s1 ↓ s. Here we get (4.14) by basic estimates for the change of optimal cost

with respect to different initial states, obtain (4.15) by z
(2)
s1 → z

(2)
0 uniformly as s1 ↓ s,

and obtain the bound (4.16) using basic moment estimates for z
(1)
s1 . It follows from
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(4.16) that

lim
s1↓s

1

s1 − s
E[∆(s, z0) − ∆(s1, zs1)] ≥ 0. (4.17)

But for s1 ∈ (s, T ], we also have

1

s1 − s
E[∆(s, z0) − ∆(s1, zs1)] ≤

1

s1 − s
E[

∫ s1

s

l(zt)dt− ϕ(s, z0) + ϕ(s1, zs1)]

→ l(s, z0) +
∂ϕ

∂s
+
∂τϕ

∂z
ψ

∣∣
u

+
1

2
tr(
∂2ϕ

∂z2
GGτ ), ∀u ∈ U, (4.18)

as s1 ↓ s, where we get the inequality by the principle of optimality, and obtain

the last line by using Ito’s formula to express ϕ(s1, zs1) near (s, z0) and then taking

expectations. In the above since v satisfies the growth condition in Proposition 4.2,

ϕ(t, z) = 0 for |z(1) − z(1)
0 | ≥ C, all the expectations are finite. Therefore, for z ∈ IR2n,

by (4.17) and (4.18)

∂ϕ

∂s
+ min

u∈U
{∂

τϕ

∂z
ψ} +

1

2
tr(
∂2ϕ

∂z2
GGτ ) + l ≥ 0,

at (s, z0). On the other hand, if v−ϕ has a local minimum at (s, z0), s < T , then for

any small ε > 0, we can choose sufficiently small s1 ∈ (s, T ] and find a control u ∈ U
generating zu such that

E{v(s, z0) − ϕ(s, z0) − v(s1, zs1) + ϕ(s1, zs1)}

≥E{
∫ s1

s

l(zt)dt+ ϕ(s1, zs1) − ϕ(s, z0)} − ε(s1 − s). (4.19)

Similar to (4.16), we also have

E[∆(s, z0) − ∆(s1, zs1)] ≤ O(|s− s1|2),

which together with (4.19) and Ito’s formula gives

∂ϕ

∂s
+ min

u∈U
{∂

τϕ

∂z
ψ} +

1

2
tr(
∂2ϕ

∂z2
GGτ ) + l ≤ 0,

at (s, z0), so that the value function v is a viscosity solution.
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To analyze uniqueness of the viscosity solution, we introduce the function class

G such that each W (t, z) ∈ G satisfies:

(i) W ∈ C([0, T ] × IR2n) and

(ii) there exist C, k1, k2 > 0 such that |W | ≤ C[1 +
∑n

i=1 e
k1|zi| +

∑2n
i=1 |zi|k2],

where the constants C, k1, k2 can vary with each W .

Here we state a general maximum principle in an unbounded domain for the HJB

equation (4.13). The proof of the maximum principle is postponed to Section 4.4.

Theorem 4.2. Assuming (H4.1) and (H4.2) hold, if v, v ∈ G are viscosity

subsolution and supersolution to (4.13), respectively, and sup∂∗Q0
(v − v) <∞, then

sup
Q0

(v − v) = sup
∂∗Q0

(v − v), (4.20)

where Q0 = [0, T ] × IR2n, ∂∗Q0 = {(T, z) : z ∈ IR2n}.

Theorem 4.3. Assuming (H4.1) and (H4.2) hold, there exists a unique viscos-

ity solution to the equation (4.13) in the class G.

PROOF. By considering two possibly distinct viscosity solutions v1 and v2 both

in G, and setting respectively (v1, v2) = (v, v) and (v2, v1) = (v, v) in Theorem 4.2,

we obtain Theorem 4.3 as a corollary.

4.3. Semiconvex and Semiconcave Approximations over Com-

pact Sets

To facilitate our analysis, write the Hamiltonian

H̃(t, z, u, ξ, V ) = −ξτψ(t, z, u) − 1

2
tr{V G(t, z)Gτ (t, z)} − l(z), (4.21)

H(t, z, ξ, V ) = sup
u∈U

H̃(t, z, u, ξ, V ),
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where ξ ∈ IR2n, V is a 2n×2n real symmetric matrix, and the other terms are defined

in Section 4.2. Then the HJB equation (4.13) can be written as

0 = −vt +H(t, z, vz, vzz), (4.22)

v(T, z) = 0. (4.23)

Definition 4.2. [78] A function ϕ(x) defined on a convex set Q ⊂ IRm is said

to be semiconvex on Q, if there exists a constant C > 0 such that ϕ(x) + C|x|2 is

convex. ϕ(x) is semiconcave on Q if −ϕ(x) is semiconvex on Q.

Definition 4.3. A function ϕ(x) defined on a convex set Q ⊂ IRm is said to be

locally semiconvex on Q, if for any y ∈ Q, there exists a convex neighborhood Ny

(relative to Q) of y such that ϕ(x) is semiconvex on Ny.

Proposition 4.3. If ϕ(x) is locally semiconvex on a convex compact set Q, then

ϕ(x) is semiconvex on Q.

PROOF. For any y ∈ Q there exists a convex Ny open relative to Q such that

y ∈ Ny and ϕ(x) is semiconvex on Ny. So there exists Cy > 0 such that ϕ(x)+Cy|x|2 is

convex on Ny. Since {Ny, y ∈ Q} is an open cover of Q, there exists a finite subcover

{Nyi
, 1 ≤ i ≤ k}. Take C = max1≤i≤k Cyi

and then obviously ϕ(x) + C|x|2 4
= ϕ̂(x)

is convex on each Nyi
, 1 ≤ i ≤ k. Now for any x1, x2 ∈ Q, 0 ≤ λ ≤ 1, we

prove that ϕ̂(λx1 + (1 − λ)x2) ≤ λϕ̂(x1) + (1 − λ)ϕ̂(x2). We only need to consider

the case 0 < λ < 1. First, from the collection {Nyi
, 1 ≤ i ≤ k} we select open

sets, without loss of generality, denoted as N 4
= {Nyi

, i = 1, · · · , m ≤ k} such that

L
4
= {x : x = λx1+(1−λ)x2, 0 ≤ λ ≤ 1} ⊂ ∪Nyi

∈NNyi
. For simplicity we consider the

case m = 2 and x1 ∈ Ny1, x2 ∈ Ny2 . The general case can be treated inductively. To

avoid triviality, we assume neither Ny1 nor Ny2 covers L individually, and then we can

find xa ∈ L, xa 6= xλ such that xa ∈ Ny1 ∩Ny2 and xa = c1x1 +(1−c1)x2, 0 < c1 < 1.

Without loss of generality we assume xλ is between x1 and xa. Then we further choose

xb ∈ Ny1 ∩Ny2 such that xb = c2x1 + (1− c2)x2 and xb is between xa and x2. Now it
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is obvious that 0 < c2 < c1 < λ < 1. It is straightforward to verify that

xλ =
λ− c1

1 − c1
x1 +

1 − λ

1 − c1
xa, xa =

c1 − c2

λ− c2
xλ +

λ− c1

λ− c2
xb, xb =

c2

c1
xa +

c1 − c2

c1
x2.

Hence we have

ϕ̂(xλ) ≤
λ− c1

1 − c1
ϕ̂(x1) +

1 − λ

1 − c1
ϕ̂(xa),

ϕ̂(xa) ≤
c1 − c2

λ− c2
ϕ̂(xλ) +

λ− c1

λ− c2
ϕ̂(xb),

ϕ̂(xb) ≤
c2

c1
ϕ̂(xa) +

c1 − c2

c1
ϕ̂(x2),

where we get the first two inequalities and the last one by the local convexity of ϕ̂(x)

on Ny1 and Ny2 , respectively. By a simple transformation with the above inequalities

to eliminate ϕ̂(xa) and ϕ̂(xb) we obtain

ϕ̂(xλ) ≤ λϕ̂(x1) + (1 − λ)ϕ̂(x2).

By arbitrariness of x1, x2 in Q it follows that ϕ̂(x) is convex on Q. This completes

the proof.

We adopt the semiconvex/semiconcave approximation technique of [78, 20, 42,

44, 45], but due to the highly nonlinear growth condition of the class G, we apply

a particular localized technique to construct envelope functions to generate semicon-

vex/semiconcave approximations on any bounded domain. For any W ∈ G, define

the upper/lower envelope functions with η ∈ (0, 1],

W η(t, z) = sup
(s,w)∈Bη(t,z)

{W (s, w) − 1

2η2
(|t− s|2 + |z − w|2)}, (4.24)

Wη(t, z) = inf
(s,w)∈Bη(t,z)

{W (s, w) +
1

2η2
(|t− s|2 + |z − w|2)}, (4.25)

where Bη(t, z) denotes the closed ball (relative to [0, T ] × IR2n) centering (t, z) with

radius η. As will be shown in the following lemma, our construction above will

generate semiconvex/semiconcave approximations to a given continuous function on

a compact set for small η.
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Lemma 4.1. For any fixed W ∈ G and compact convex set Q ⊂ [0, T ] × IR2n,

there exists a constant ηQ ≤ 1 depending only on Q so that for all η ≤ ηQ, W η(t, z)

is semiconvex on Q and Wη(t, z) is semiconcave on Q.

PROOF. Since any fixed W ∈ G is uniformly continuous and bounded on any

compact set Q, there exists ηQ > 0 depending only on Q, so that for all η ≤ ηQ and

(t, z) ∈ Q,

W η(t, z) = sup
(s,w)∈Bη/2(t,z)

{W (s, w)− 1

2η2
[|t− s|2 + |z − w|2]}. (4.26)

Indeed, we can find ηQ > 0 such that for all η ≤ ηQ, |W (s, w) −W (t, z)| ≤ 1
16

for

(s, w) ∈ Bη(t, z), where (t, z) ∈ Q. Then for any (s, w) satisfying η2

4
≤ |s− t|2 + |w−

z|2 ≤ η2, we have

W (s, w) − 1

2η2
(|s− t|2 + |w − z|2) ≤ W (t, z) +

1

16
− 1

2η2

η2

4
< W (t, z),

and (4.26) follows. In the following we assume η ≤ ηQ. Next we show that for

any (t0, z0) ∈ Q, W η(t, z) is semiconvex on Bη/4(t0, z0). It suffices to show that

W η(t, z) +
1

2η2
(t2 + |z|2) is convex on Bη/4(t0, z0). Denote

R(s, w, t, z) = W (s, w) − 1

2η2
(|t− s|2 + |z − w|2) +

1

2η2
(t2 + |z|2).

If (t1, z1), (t2, z2) ∈ Bη/4(t0, z0), we have (t2, z2) ∈ Bη/2(t1, z1). For any λ ∈ [0, 1],

denote (tλ, zλ) = (λt1 + (1 − λ)t2, λz1 + (1 − λ)z2). It is obvious that Bη/2(tλ, zλ) ⊂
Bη(t1, z1) ∩ Bη(t2, z2). Then it follows

W η(tλ, zλ) +
1

2η2
[t2λ + |zλ|2]

= sup
(s,w)∈Bη(tλ,zλ)

R(s, w, tλ, zλ) = sup
(s,w)∈Bη/2(tλ,zλ)

R(s, w, tλ, zλ)

= sup
(s,w)∈Bη/2(tλ,zλ)

[λR(s, w, t1, z1) + (1 − λ)R(s, w, t2, z2)]

≤ sup
(s,w)∈Bη/2(tλ,zλ)

λR(s, w, t1, z1) + sup
(s,w)∈Bη/2(tλ,zλ)

(1 − λ)R(s, w, t2, z2)
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≤ sup
(s,w)∈Bη(t1 ,z1)

λR(s, w, t1, z1) + sup
(s,w)∈Bη(t2,z2)

(1 − λ)R(s, w, t2, z2)

=λ[W η(t1, z1) +
1

2η2
(t21 + |z1|2)] + (1 − λ)[W η(t2, z2) +

1

2η2
(t22 + |z2|2)].

So that W η(t, z) is semiconvex on Bη/4(t0, z0). And by Proposition 4.3, W η(t, z) is

semiconvex on Q. Similarly we can prove Wη(t, z) is semiconcave on Q.

We use an example to illustrate the construction of the semiconvex approximation

to a given function.

Example 4.1. Consider a continuous function W : IR → IR defined as follows:

W (x) =





(x− 1)3 + 1 for x ≤ 0,

−(x + 1)3 + 1 for x > 0.

We take 0 < η ≤ 0.125 and write

θ(x) = 1 − x +
1

6η2
−

√
[1 − x+ 1

6η2 ]2 − (1 − x)2, x ≤ 0.

It is evident that the upper envelope function W η(x) is even on IR and its value on

(−∞, 0] is determined by

W η(x) =





W (x+ η) − 1
2

for x ≤ 1 − η − 1√
3η
,

W (x+ θ(x)) − θ2(x)
2η2 for 1 − η − 1√

3η
< x ≤ −3η2,

W (0) − x2

2η2 for − 3η2 < x ≤ 0.

(4.27)

From Figure 4.1 it is seen that at x = 0 the first order derivative of W (x) has

a negative jump, which corresponds to a sharp turn at x = 0 on the function curve.

After the semiconvexifying procedure, the sharp turn at x = 0 vanishes as shown by

the curve of W η(x).

We give a lemma which is parallel to the one in [78]. But here we do not make

Lipschitz or Hölder type continuity assumptions on W . For completeness we give the

details.
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Figure 4.1. Semiconvex approximation with η = 0.125, (a) The curves in
a large range, (b) The curves in the local region

Lemma 4.2. For W ∈ G and η ∈ (0, 1], W η and Wη are equicontinuous (w.r.t.

η) on any compact set Q ⊂ [0, T ] × IR2n and

W η(t, z) ≤ C[1 +
n∑

i=1

ek1|zi| +
2n∑

i=1

|zi|k2], (4.28)

W η(t, z) = W (t0, z0) −
1

2η2
(|t− t0|2 + |z − z0|2), for some (t0, z0) ∈ Bη(t, z),

(4.29)

1

2η2
(|t− t0|2 + |z − z0|2) → 0 uniformly on Q, as η → 0, and (4.30)

0 ≤ W η(t, z) −W (t, z) → 0 uniformly on Q, as η → 0, (4.31)

where C is a constant independent of η. (4.28)-(4.30) also hold when W η is replaced

by Wη, and

0 ≤ W (t, z) −Wη(t, z) → 0 uniformly on Q, as η → 0. (4.32)

PROOF. (4.28) follows from the definition of G, and (4.29) is obvious. Moreover,

by (4.29) we have

1

2η2
(|t− t0|2 + |z − z0|2) = W (t0, z0) −W η(t, z) ≤ W (t0, z0) −W (t, z). (4.33)

Since |t− t0| + |z − z0| → 0 as η → 0, by (4.33) and the uniform continuity of W on

Q, (4.30) follows. (4.31) follows from (4.29) and (4.30). The equicontinuity of W η
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(w.r.t. η) on Q can be established by (4.31) and the continuous dependence of W η

on (η, t, z) ∈ [ε, 1] ×Q for any 0 < ε ≤ 1. The case of Wη can be treated similarly.

We define

Hη(t, z, ξ, V ) = inf
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ), (4.34)

Hη(t, z, ξ, V ) = sup
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ). (4.35)

Then it can be shown that Hη and Hη converge to H(t, z, ξ, V ) uniformly on any

compact subset of [0, T ] × IR2n × IR2n × S2n as η → 0, where S2n denotes the set of

2n × 2n real symmetric matrices. The following lemma can be proved by a similar

method as in [24, 42, 45]. The proof is omitted here. Notice that the viscosity

sub/supersolution properties hold on a domain smaller than [0, T ] × IR2n.

Lemma 4.3. If v (v, respectively) is a viscosity subsolution (supersolution, re-

spectively) to (4.22) on [0, T ]×IR2n, then vη (vη, respectively) is a viscosity subsolution

(supersolution, respectively) to HJB equation A (B, respectively) on [0, T − η]× IR2n,

where the HJB equations A and B are given by

A :





−vt +Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z),
B :





−vt +Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z).

In the above vη and vη are defined by (4.24)-(4.25).

4.4. Proof of the Maximum Principle

In the Section we give a proof of Theorem 4.2. We note that certain technical

but standard arguments are not included here for reasons of economy of exposition;

complete references to the detailed versions of these parts of the proof are supplied

at appropriate places in the proof.

We follow the method in [78, 24] employing the particular structure of the system

dynamics and will make necessary modifications. For the viscosity subsolution and
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supersolution v, v ∈ G, we prove that

sup
Q1

(v − v) = sup
∂∗Q0

(v − v)
4
= c0 for Q1 = [T1, T ] × IR2n, (4.36)

where T1 = T − 1
4∆
, ∆ = 25n(Cg + Cσ) + 10Cf0 , Cg is a finite constant such that

|gi(t, p, u)| ≤ Cg(1 +
∑n

k=1 |pk|) for t ∈ [0, T ], p ∈ IRn, u ∈ U , 1 ≤ i ≤ n, for g given

in (4.2), and Cσ, Cf0 are given in Assumptions (H4.1)-(H4.2) in Section 4.2. The

maximum principle (4.2) follows by repeating the above procedure backward with

time. Our proof by contradiction starts with observation that if (4.36) is not true,

there exists (t̂, ẑ) ∈ (T1, T ) × IR2n such that

v(t̂, ẑ) − v(t̂, ẑ) = c+0 > c0. (4.37)

We break the proof into several steps: (1) we construct a comparison function Λ

depending on positive parameters α, β, ε, λ, and based upon (4.37), Λ is used to induce

a certain interior maximum, (2) using the viscosity sub/supersolutions conditions, we

get a set of inequalities at the interior maximum, and (3) we establish an inequality

relation between α and β by taking appropriate vanishing subsequences of ε, λ, η,

and this inequality relation is shown to lead to a contradiction. The weak coupling

condition is used to obtain estimates used in Step 3 below.

Step 1: Constructing a comparison function and the interior maximum.

To avoid introducing too many constants, we assume v and v belong to the class G
with associated constants k1 = k2 = 4. The more general case can be treated in

exactly the same way. Now we define the comparison function

Λ(t, z, s, w) =
α(2µT − t− s)

2µT
{

n∑

i=1

[e5
√

z2
i +1 + e5

√
w2

i +1] +
2n∑

i=1

(z6
i + w6

i )} − β(t+ s)

+
1

2ε
|t− s|2 +

1

2ε
|z − w|2 +

λ

t− T1
+

λ

s− T1
,

where α, β, ε, λ ∈ (0, 1], µ = 1 + 1
4T∆

, z, w ∈ IR2n and t, s ∈ (T1, T ]. We write

Φ(t, z, s, w) = vη(t, z)−vη(s, w)−Λ(t, z, s, w), where vη and vη are also in G by Lemma

4.2. Noticing that Φ → −∞ as t∧s→ T1 or |z|+ |w| → ∞, there exists (t0, z0, s0, w0)
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such that Φ(t0, z0, s0, w0) = supQ1×Q1
Φ(t, z, s, w). By Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0),

one can find a constant Cα depending only on α such that (see Remark 4.2)

|z0| + |w0| +
1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 ≤ Cα and t0, s0 ∈ [T1 +

λ

Cα

, T ]. (4.38)

Combining 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0) + Φ(s0, w0, s0, w0), (4.38) and Lemma

4.2 we get (see Remark 4.3)

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 → 0, as ε→ 0. (4.39)

In this Section, we take β ∈ (0,
c+0 −c0

4T
). We further show that there exists α0 > 0

such that for α < α0 and for sufficiently small r0 (which may depend upon α) and

η ≤ r0, ε ≤ r0, λ ≤ r0, the maximum of Φ on Q1 is attained at an interior point

(t0, z0, s0, w0) of the set

Qα = {(t, z, s, w) : T1 +
λ

2Cα

≤ t, s ≤ T − η, and |z|, |w| ≤ 2Cα}, (4.40)

where Cα is determined in (4.38).

We begin by observing that Φ(t0, z0, s0, w0) ≥ Φ(t̂, ẑ, t̂, ẑ) yields

vη(t̂, ẑ) − vη(t̂, ẑ) ≤ vη(t0, z0) − vη(s0, w0) − Λ(t0, z0, s0, w0) + Λ(t̂, ẑ, t̂, ẑ)

≤ vη(t0, z0) − vη(s0, w0) + 2βT +
2λ

t̂− T1

+ 2α[
n∑

i=1

e5
√

ẑ2
i +1 +

2n∑

i=1

ẑ6
i ]. (4.41)

Let H
β stand for the assertion that there exists α0 such that when α ≤ α0 and

max{η, ε, λ} ≤ r0 for sufficiently small r0, (t0, z0, s0, w0) is an interior point of Qα in

(4.40).

If H
β is not true, then there exists an arbitrarily small α ∈ (0, 1] such that for this

fixed α we can select η(k), ε(k), λ(k) → 0 for which the resulting (t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) 6∈

Int(Qα). By (4.38) it necessarily follows that t
(k)
0 ∨ s

(k)
0 ≥ T − η(k) → T and (4.39)

gives |t(k)
0 −s(k)

0 |+|s(k)
0 −w(k)

0 | → 0. It is also clear that (t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) is contained

in a compact set determined by α. Then by selecting an appropriate subsequence of
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(t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) and taking the limit in (4.41) along this subsequence, we get

v(t̂, ẑ) − v(t̂, ẑ) ≤ v(T, zα) − v(T, zα) +
c+0 − c0

2
+ 2α[

n∑

i=1

e5
√

ẑ2
i +1 +

2n∑

i=1

ẑ6
i ]

≤ c+0 + c0

2
+ 2α[

n∑

i=1

e5
√

ẑ2
i +1 +

2n∑

i=1

ẑ6
i ], (4.42)

where zα denotes the common limit of the selected subsequences of z
(k)
0 and w

(k)
0 .

Sending α→ 0, we get v(t̂, ẑ)−v(t̂, ẑ) < c+0 , which contradicts (4.37), hence H
β holds.

From the argument leading to (4.42) it is seen that α0 can be chosen independently

of β.

Step 2: Applying Ishii’s Lemma. Hereafter we assume β <
c+0 −c0

4T
, α < α0

and max{η, ε, λ} ≤ r0 are always satisfied and thus H
β holds. We assume Φ attains a

strict maximum at (t0, z0, s0, w0); otherwise we replace Λ by Λ + |t− t0|2 + |s− s0|2 +

|z− z0|4 + |w−w0|4. Following the derivations in [78, 42, 24], and using the interior

maximum obtained in Step 1, the semiconvexity of vη, and the semiconcavity of vη

for η ≤ ηQα by Lemma 4.1, and by Lemma 4.3, we obtain the so-called Ishii’s lemma,

i.e., there exist 2n× 2n symmetric matrices Mk, k = 1, 2 such that

− Λt(t0, z0, s0, w0) +Hη(t0, z0,Λz(t0, z0, s0, w0),M1) ≤ 0, (4.43)

Λs(t0, z0, s0, w0) +Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) ≥ 0, (4.44)

 M1 0

0 −M2


 ≤


 Λzz Λzw

Λτ
zw Λww




∣∣∣
(t0 ,z0,s0,w0),

(4.45)

We note that it is important to have t0 ∨ s0 < T − η in order to establish (4.43)-

(4.44) by Lemma 4.3 and an approximation procedure (see e.g. [24] for the case of a

bounded domain). Now (4.43) and (4.44) yield

− Λt(t0, z0, s0, w0) − Λs(t0, z0, s0, w0)

≤Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) −Hη(t0, z0,Λz(t0, z0, s0, w0),M1). (4.46)
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Step 3: Estimates for LHS and RHS of (4.46). The final stage in our

deduction of a contradiction from (4.37) involves estimates of the LHS and RHS of

(4.46). The estimates for both sides of (4.46) are taken at (t0, z0, s0, w0), but for

brevity we omit the subscript 0 for each variable. We have

LHS of (4.46) =
α

µT
[

n∑

i=1

(e5
√

z2
i +1 + e5

√
w2

i +1) +

n∑

i=1

(z6
i + w6

i )]

+ 2β +
λ

(t− T1)2
+

λ

(s− T1)2

≥ α

µT
[

n∑

i=1

(e5
√

z2
i +1 + e5

√
w2

i +1) +
n∑

i=1

(z6
i + w6

i )] + 2β, (4.47)

and

RHS of (4.46) = sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u)] − sup

u∈U
[−Λτ

z(t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] + l(ẑ) − l(ŵ)

≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z(t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] − l(ẑ) − l(ŵ),

which together with (4.45), (4.34)-(4.35) leads to

RHS of (4.46) ≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z(t, z, s, w)ψ(t̂, ẑ, u)] (
4
= A1)

+
1

2ε
tr{[G(t̂, ẑ) −G(ŝ, ŵ)]τ [G(t̂, ẑ) −G(ŝ, ŵ)]} (

4
= A2)

+
α(2µT − t− s)

2µT

n∑

i,k=1

1

2
[σ2

ik(t̂, ẑ)(Γ
′′(zi) + 30z4

i ) + σ2
ik(ŝ, ŵ)(Γ′′(wi) + 30w4

i )] (
4
= A3)

+[l(ẑ) − l(ŵ)] (
4
= A4)

= A1 + A2 + A3 + A4, (4.48)

where Γ(r)
4
= e5

√
r2+1, Γ′′ = d2Γ

dr2 and (t̂0, ẑ0) ∈ Bη(t0, z0), (ŝ0, ŵ0) ∈ Bη(s0, w0).

Notice that the set Sη,ε = {(t0, z0), (t̂0, ẑ0), (s0, w0), (ŝ0, ŵ0)} is contained in a compact
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set Q∗
α determined by α. For 0 < ε ≤ 1 appearing in Λ(t, z, s, w), there exists ηε > 0

such that for all 0 < η ≤ ηε,

RHS of (4.46) ≤ A0
1 + A0

2 + A0
3 + A0

4 + ε, (4.49)

where, without writing the subscript 0 for (t0, z0, s0, w0), we denote

A0
1 = sup

u∈U
[Λτ

w(t, z, s, w)ψ(s, w, u) + Λτ
z(t, z, s, w)ψ(t, z, u)],

A0
2 =

1

2ε
tr{[G(t, z) −G(s, w)]τ [G(t, z) −G(s, w)]},

A0
3 =

α(2µT − t− s)

2µT

n∑

i,k=1

1

2
[σ2

ik(t, z)(Γ
′′(zi) + 30z4

i ) + σ2
ik(s, w)(Γ′′(wi) + 30w4

i )],

A0
4 = l(z) − l(w).

Since Sη,ε is contained in Q∗
α and the diameter of Sη,ε tends to 0 as η, ε → 0, by

taking an appropriate sequence (η(k), ε(k), λ(k)) → 0 satisfying η(k) ≤ ηε(k) , we get a

convergent sequence (t
(k)
0 , z

(k)
0 ), (t

(k)
0 , ẑ

(k)
0 ), (s

(k)
0 , w

(k)
0 ), (s

(k)
0 , ŵ

(k)
0 ) → (t̃, z̃), as k → ∞.

In the following we use the same C to denote different constants which are independent

of α. We have the three relations

lim sup
k→∞

LHS of (4.46) (η(k), ε(k), λ(k)) ≥ 2α

µT
[

n∑

i=1

e5
√

z̃2
i +1 +

2n∑

i=1

|z̃i|6] + 2β, (4.50)

lim
k→∞

(A0
2 + A0

4) (η(k), ε(k), λ(k)) = 0, (4.51)

lim sup
k→∞

A0
3 (η(k), ε(k), λ(k)) ≤ nαCσ(µT − t̃)

µT

n∑

i=1

(25e5
√

z̃2
i +1 + 30|z̃i|4), (4.52)

where (4.50) follows from (4.47), and (4.51) follows from continuity of l(z), Lipschitz

continuity of G(t, z) by (H4.1), and (4.39). Now we analyze A0
1.

A0
1 ≤ sup

u∈U

2n∑

i=n+1

[Λzi
(t, z, s, w)ψi(t, z, u) + Λwi

(t, z, s, w)ψi(s, w, u)]

+

n∑

i=1

[Λzi
(t, z, s, w)fi(t, z) + Λwi

(t, z, s, w)fi(s, w)]
4
= A0

11 + A0
12.
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Then it follows that

lim sup
k→∞

A0
11(η

(k), ε(k), λ(k)) ≤ α(µT − t̃)

µT

2n∑

i=n+1

12Cg[2n|z̃i|6 + |z̃i|5]. (4.53)

We employ ai(t) ≥ 0 for t ∈ [0, T ] in the weak coupling condition (H4.2), and the

Lipschitz continuity property of fi(t, z) = ai(t)zi + f 0
i (t, z) by (H4.1) to obtain

A0
12 =

α(2µT − t− s)

2µT

n∑

i=1

{[ 5zi√
z2
i +1

e5
√

z2
i +1 + 6z5

i +
zi − wi

ε
][−ai(t)zi + f 0

i (t, z)]

+ [ 5wi√
w2

i +1
e5
√

w2
i +1 + 6w5

i +
wi − zi

ε
][−ai(s)wi + f 0

i (s, w)]}

≤ α(2µT − t− s)

2µT

n∑

i=1

{[ 5zi√
z2
i +1

e5
√

z2
i +1 + 6z5

i ]f
0
i (t, z)

+ [ 5wi√
w2

i +1
e5
√

w2
i +1 + 6w5

i ]f
0
i (s, w)}+ O(

|t− s|2
ε

+
|z − w|2

ε
). (4.54)

Hence invoking (4.39), it follows that

lim sup
k→∞

A0
12(η

(k), ε(k), λ(k)) ≤ αCf0(µT − t̃)

µT

n∑

i=1

[10e5
√

z̃2
i +1 + 12|z̃i|5], (4.55)

which together with (4.51)-(4.53) gives

lim sup
k→∞

RHS of (4.46) (η(k), ε(k), λ(k))

≤ [10Cf0 + 25n(Cσ + Cg)]α(µT − t̃)

µT
[

n∑

i=1

e5
√

z̃2
i +1 +

2n∑

i=1

|z̃i|6 + C]

≤ α

2µT
[

n∑

i=1

e5
√

z̃2
i +1 +

2n∑

i=1

|z̃i|6 + C]. (4.56)

Hence it follows from (4.46), (4.50) and (4.56) that

2β ≤ − 3α

2µT
{

n∑

i=1

e5
√

z̃2
i +1 +

2n∑

i=1

|z̃i|6} + αC ≤ αC. (4.57)
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We recall from Step 1 that β ≤ 1 can take a strictly positive value from the in-

terval (0,
c+0 −c0

4T
) and α ∈ (0, α0). Letting α → 0 in (4.57) yields β ≤ 0 which is a

contradiction to β ∈ (0,
c+0 −c0

4T
), and this completes the proof.

Remark 4.2. By Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0) and |v − v| = o([
∑n

i=1(e
5|zi| +

e5|wi|) +
∑2n

i=1(z
6
i + w6

i )]), there exists δα > 0, C > 0 such that

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 +

λ

t0 − T1
+

λ

s0 − T1

+δα[
n∑

i=1

(e5
√

1+z2
0,i + e5

√
1+w2

0,i) +
2n∑

i=1

(z6
0,i + w6

0,i)] ≤ C.

Then (4.38) follows readily.

Remark 4.3. By expanding 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0)+Φ(s0, w0, s0, w0)

using all the individual terms, it is found that 1
2ε
|t0 − s0|2 + 1

2ε
|z0 −w0|2 is dominated

by a continuous function F (t0, z0, s0, w0) which goes to zero as |t0−s0|+|z0−w0| → 0,

which also follows from (4.38) when ε→ 0.

Remark 4.4. The proof of the theorem is based on the methods in [78, 42, 45,

20]. Since here we deal with the function class G with a highly nonlinear growth con-

dition on an unbounded domain, a localized semiconvex/semiconcave approximation

technique is devised. The particular structure of the system dynamics also plays an

important role in the proof of uniqueness, and in general it is more difficult to obtain

uniqueness results under more general dynamics and the above fast growth condition.

It is seen that the weak coupling feature of the dynamics of the state subprocess x is

crucial for the above proof. When there exists an ai < 0 (see Assumption (H4.2)),

the estimate (4.54) would not be valid.

4.5. Control with State Constraints

In this Section we consider the case when the state subprocess p is subject to

constraints, i.e., the trajectory of each pi must be maintained to be in a certain

range. We term this situation as optimization under hard constraints. In [66] the
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author considered a deterministic model and obtained a constrained viscosity solution

formulation for a first order HJB equation. Now due to the exogenous attenuation we

come up with a second order HJB equation and we will develop a similar formulation.

Suppose that u ∈ U where U is a compact convex set in IRn, and p should satisfy

pi ∈ [0, P i], where P i is the upper bound. For simplicity we take U = [−1, 1]n and

P i = ∞. For any fixed initial value p0 ≥ 0 (i.e. each (p0)i ≥ 0), define the admissible

control set

Up0 = {u(·) | u is adapted to σ(zs, s ≤ t), and with probability 1

(pi(t) ≥ 0 for all 0 ≤ t ≤ T ) holds, and u(t) ∈ U, E
∫ T

0
|ut|2ds <∞}.

In this Section we consider the simple case of

g(t, p, u) = u.

Under the admissible control set U p0, we will use the notation of Section 4.2 for which

the interpretation should be clear, and in the following we also use U p0 with any initial

time s ≤ T . It is evident that U p0 is a convex set. Under the norm ‖·‖ on L defined in

Section 4.2, Up0 is also closed. Indeed, if ‖u(k) −u‖ → 0 as k → ∞, where u(k) ∈ Up0 ,

one can show that u will also generate positive p trajectories with probability 1 with

initial value p0. So that u ∈ Up0. As in the state unconstrained case, one can prove

existence and uniqueness of the optimal control. Write

Q0
T = [0, T ) × IRn × (0,∞)n,

QT = [0, T ) × IRn × [0,∞)n,

QT = [0, T ] × IRn × [0,∞)n.

We consider the HJB equation

0 = −∂v
∂t

+ sup
u∈U

{−∂
τv

∂z
ψ} − 1

2
tr(
∂2v

∂z2
GGτ ) − l, (4.58)

v |t=T = 0,
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where (t, z) = (t, x, p) ∈ QT .

Definition 4.4. v(t, z) ∈ C(QT ) is called a constrained viscosity solution to

(4.58) if i) v |t=T = 0, and for any ϕ(t, z) ∈ C1,2(QT ), whenever v − ϕ takes a local

maximum at (t, z) ∈ Q0
T , we have

−∂ϕ
∂t

+ sup
u∈U

{−∂
τϕ

∂z
ψ} − 1

2
tr(
∂2ϕ

∂z2
GGτ ) − l ≤ 0, z ∈ IR2n (4.59)

at (t, z), and ii) for any ϕ(t, z) ∈ C1,2(QT ), whenever v−ϕ takes a local minimum at

(t, z) ∈ QT , in (4.59) we have an opposite inequality at (t, z). For short, we term the

constrained viscosity solution v(t, z) ∈ C(QT ) as a viscosity subsolution on Q0
T , and

a viscosity supersolution on QT .

Remark 4.5. Conditions i) and ii) hold on Q0
T and QT , respectively. Here we

give a heuristic interpretation on how the state constrains are captured by Condition

ii). Suppose v − ϕ attains a minimum at (t, x, p), where v is the value function and

satisfies equation (4.58) at (t, x, p) with classical derivatives, i.e.,

0 = −∂v
∂t

+ {−∂
τv

∂z
ψ}|u=

�

u −
1

2
tr(
∂2v

∂z2
GGτ ) − l. (4.60)

In addition, we assume û is admissible w.r.t. (x, p). Here t ∈ [0, T ) and p lies on the

boundary of [0,∞)n. By the necessary condition for a minimum, at (t, x, p), we have

vt − ϕt ≥ 0, vxi
− ϕxi

= 0, vxixi
− ϕxixi

≥ 0, 1 ≤ i ≤ n, (4.61)

where the first inequality becomes equality when t ∈ (0, T ). Since p is on the boundary

of [0, T )n, we can find an index set I such that pi = 0 when i ∈ I, and pi > 0 when

i ∈ {1, · · · , n}\I. Again, by the minimum property at (t, x, p) we get

vpi
− ϕpi

≥ 0 for i ∈ I, vpi
− ϕpi

= 0 for i ∈ {1, · · · , n}\I, (4.62)

at (t, x, p). Since we assume û is admissible w.r.t. (x, p), then we have ûi ≥ 0 for

i ∈ I, and therefore by (4.62), at (t, x, p)

(vp − ϕp)
τ û ≥ 0. (4.63)
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Hence (4.61) and (4.63) lead to

−∂ϕ
∂t

+ {−∂
τϕ

∂z
ψ}|u=

�

u −
1

2
tr(
∂2ϕ

∂z2
GGτ ) − l ≥ 0,

and therefore Condition ii) holds at (t, x, p).

Lemma 4.4. For any initial pair (s0, x0, p0) with each (p0)i ≥ 0, and any u ∈ U ,

there exists ũ ∈ Up0 such that

PΩ{
∫ T

s0
|ũ− u|ds ≤ 4ε} = 1, (4.64)

where with probability 1 and for all 1 ≤ i ≤ n, the constant ε > 0 satisfies

sup
t∈[s0,T ]

max{−pi(t, s0, p0, u), 0} ≤ ε, (4.65)

and p(t, s0, p0, u) denotes the value of p at t corresponding to initial condition (s0, p0)

and control u.

PROOF. We only need to modify each component ui of u in the following way.

Define τ 0
i = s0, and for k ≥ 1,

τk
i = inf{t > τ k−1

i , pi(t, s0, p0, ũ) = 0}, (4.66)

τk
i = T if pi(t, τ

k−1
i + ε, pi(τ

k−1
i + ε), u) > 0 for all t ≥ τ k−1

i + ε, (4.67)

ũi(t) = 1 on [τ k−1
i , τk−1

i + ε), (4.68)

ũi(t) = ui(t) on [τ k−1
i + ε, τ k

i ). (4.69)

Then it is obvious that ũ ∈ Up0. Suppose (4.64) is not true, and then there exist i

and a set A0 with PΩ(A0) > 0, such that on A0

∫ T

s0

|ũi − ui|ds > 4ε. (4.70)

For any fixed ω ∈ A0, if τk0
i is the last stopping time defined by (4.66), then by (4.70)

we can easily show that pi(τ
k0−1
i , s0, p0, u) < −2ε, which is a contradiction.

67



CHAPTER 4. VISCOSITY SOLUTION ANALYSIS FOR DEGENERATE STOCHASTIC CONTROL

Using Lemma 4.4, we can further show that the value function v(t, z) is continuous

on QT by a comparison method as in the unconstrained case [23]. The details are

omitted here. The growth condition of Proposition 4.2 also holds in the constrained

case.

Proposition 4.4. The value function v is a constrained viscosity solution to the

HJB equation (4.58).

PROOF. We verify condition i) first. For an initial condition pair (s, z) with

z ∈ Q0
T , and any u ∈ U we construct control ũ = u on [s, s + ε] and ũ = 0 on

(s+ ε, T ]. We see that when ε is sufficiently small, ũ is in the admissible control set

w.r.t. (s, z) since each pi ∈ [0,∞). All the remaining part and the verification of

condition ii) can be done as in Theorem 4.1.
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CHAPTER 5

Linear Quadratic Optimization for

Wireless Power Control

5.1. Introduction

In Chapters 2 and 3, subject to bounded admissible controls, the value function

of the optimal control problem is described by viscosity solutions, and in general,

it is not possible to get an analytic optimal control law. To obtain optimal power

allocation explicitly utilizing information on the channel states and power levels, in

this Chapter we adopt another approach. The following analysis will be based on the

lognormal fading model (2.1) and the power control model (2.2). For convenience of

reading, here we also write the vector system model. As in Section 2.5 of Chapter

2, setting fi(x) = −ai(xi + bi), 1 ≤ i ≤ n, H = Diag (σi)
n
i=1 and zτ = (xτ , pτ ),

ψτ = (f τ , uτ), Gτ = (H, 0n×n), we write

dz = ψdt+Gdw, t ≥ 0, (5.1)

where all the variables are consistent with those in Chapter 2.

In the cost function introduced below, the cost integrand takes a quadratic form

in terms of the power p and the control u while the attenuation x is regarded as a

random parameter subject to no control. For this reason, we shall term the power

control of this Chapter as “linear quadratic optimization”.
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In this quadratic cost based optimization framework, we impose no bound con-

straint on the control input u and introduce a penalty term for u in the cost function.

We write

E

∫ ∞

0

e−ρt{
n∑

i=1

[exipi − µi(

n∑

j=1

exjpj + η)]2 + uτRu}dt, (5.2)

where R is a positive definite weight matrix, and the positive coefficients µi, 1 ≤ i ≤ n,

satisfy
∑n

i=1 µi < 1 (i.e., Assumption (H2.1) also holds throughout this Chapter).

This cost function includes a discount factor ρ > 0 and an infinite horizon, which will

lead to an elliptic partial differential equation system describing the value function.

In the above integral, the first term is based on the SIR requirements and the second

term is added to penalize abrupt change of powers since in practical systems there

exist basic physical limits for power adjustment rate. Another fact is that in real

systems the operating conditions of a mobile are only estimated approximately, and

it is generally preferred to avoid very rapid power change and hence the power of users

is adjusted in a cautious manner. In (5.2), the weight matrix R should be chosen

in accordance with power change rate requirements. After subtracting the constant

component from the integrand in (5.2) we get the cost function

J(x, p, u) = E[

∫ ∞

0

e−ρt{pτC(xt)p+ 2Dτ (xt)p+ uτ
tRut}dt|x, p], (5.3)

where C(xt), D(xt) are n× n positive definite matrix and n× 1 vector, respectively,

which are determined from (5.2), and (x, p) denotes the initial state at t = 0. In

this Chapter we adopt (5.3) as our cost function; also see [39, 35]. We remark

that another possible way to approach the above power optimization problem is to

modify the cost function (5.2) in a suitable form so that the power is adjusted to

track an exogenous random signal based on stochastic pointwise optimum. Define

the admissible control set

U2 = {u|u adapted to σ(xs, ps, s ≤ t), and E
∫ ∞
0
e−ρt|ut|2dt <∞}.
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As in Chapter 2, in this Chapter we also assume that the initial value of ps at s = 0

is deterministic; then one simply has σ(xs, ps, s ≤ t) = σ(xs, s ≤ t).

We define the value function associated with the the cost (5.3) as

v(x, p) = inf
u∈U2

J(x, p, u). (5.4)

Notice that certain controls from U2 may result in an infinite cost due to the presence

of the exi process, 1 ≤ i ≤ n. However the optimal control problem is still well defined

subject to the new admissible control set U2 and one can show the existence of an

optimal control by standard approximation techniques [78].

We investigate the infinite horizon optimal control problem and its associated

HJB equation. The merit of minimization of the infinite horizon cost is that the

resulting optimal control law is in a steady state form and various suboptimal control

laws can be constructed by an algebraic approach based on this HJB equation. In

order to analyze the infinite horizon optimal cost by a discrete approximation tech-

nique, we will also study the finite horizon cost case to obtain some auxiliary results

in Section 5.2 below.

In the cost (5.3), the weight matrix C(xt) is related to the unbounded random

processes exi , 1 ≤ i ≤ n. In Section 5.2, a certain truncation technique is used to

deal with C(xt) and then obtain a structure for the optimal cost function in the finite

horizon case. Section 5.2 is quite technical. The reader may skip the long sequence

of lemmas and simply refer to the main result in Theorem 5.1 which will be used in

Section 5.3.

5.2. The Finite Horizon Control Problem and Some Auxiliary

Results

Subject to the system dynamics (5.1), for 0 < T <∞, we define the finite horizon

version of the cost function (5.3) as

JT (x, p, u) = E

[∫ T

0

e−ρt{Φ(xt, pt) + uτ
tRut}dt|x, p

]
, (5.5)
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where Φ(xt, pt) = pτ
tC(xt)pt + 2Dτ (xt)pt and (x, p) denotes the initial state at t = 0.

It is evident that

Φ(xt, pt) + η2(
n∑

i=1

µi)
2 4

= Φ(xt, pt) + ηµ ≥ 0, (5.6)

for all xt, pt ∈ IRn. For integer N > 0, we also define the truncated version of

JT (x, p, u) as

JT
N(x, p, u) = E

[∫ T

0

e−ρt{Φ(xt, pt)1(|xt|≤N) + uτ
tRut}dt|x, p

]
, (5.7)

where 1(|xt|≤N) is the indicator function. In both (5.5) and (5.7), pt is generated by

the control ut through the dynamics (5.1) on [0, T ]. Define the admissible control set

as UT
2 = {u|u adapted to σ(xs, ps, s ≤ t), and E

∫ T

0
e−ρt|ut|2dt < ∞}. Set vT (x, p) =

infu∈UT
2
JT (x, p, u). For developing discrete approximation schemes in below, we need

to define a subset of UT
2 as UT,k

2 = {u|u ∈ UT
2 and is a stepwise random process

specified by times t = iT
2k , 0 ≤ i ≤ 2k}. Write vT,k(x, p) = infu∈UT,k

2
JT (x, p, u). We

give the following lemmas.

Lemma 5.1. For a sequence of IRn-valued controls uk ∈ UT
2 , k = 1, 2, · · · , assume

there exists u∞ ∈ UT
2 such that limk→∞E

∫ T

0
|uk − u∞|2dt = 0 and denote by pk the

solution to dp = udt corresponding to u = uk, k = 1, · · · ,∞, and the same initial

condition p|t=0. Then limk→∞E
∫ T

0
|pk − p∞|2dt = 0, and limk→∞ JT

N(x, p, uk) =

JT
N(x, p, u∞) where p stands for the initial value p|t=0.

PROOF. It is obvious that |pk − p∞|t ≤
∫ t

0
|uk − u∞|sds, which yields

E

∫ T

0

|pk − p∞|2tdt ≤ E

∫ T

0

(

∫ t

0

|uk − u∞|sds)2dt

≤E
∫ T

0

∫ t

0

ds ·
∫ t

0

|uk − u∞|2sdsdt ≤ E

∫ T

0

t

∫ T

0

|uk − u∞|2sdsdt

=
T 2

2
E

∫ T

0

|uk − u∞|2sds→ 0, as k → ∞. (5.8)
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To prove the last part of the lemma, by Schwartz inequality we have

E

∣∣∣∣
∫ T

0

[pτ
kC(xt)pk + 2Dτ (xt)pk]1(|xt|≤N)dt−

∫ T

0

[pτ
∞C(xt)p∞ + 2Dτ (xt)p∞]1(|xt|≤N)dt

∣∣∣∣

= E

∣∣∣∣
∫ T

0

(pk − p∞)τC(xt)pk1(|xt|≤N)dt+

∫ T

0

(pk − p∞)τC(xt)p∞1(|xt|≤N)dt

+2

∫ T

0

Dτ (xt)(pk − p∞)1(|xt|≤N)dt

∣∣∣∣

≤ E

∫ T

0

|pk − p∞|2dt ·
[
E

∫ T

0

|C(xt)pk|21(|xt|≤N)dt+

E

∫ T

0

|C(xt)p∞|21(|xt|≤N)dt+ E

∫ T

0

|D(xt)|21(|xt|≤N)dt

]
(5.9)

→ 0, as k → ∞, (5.10)

where (5.10) follows from the L2 convergence of uk, pk, k ≥ 1, on [0, T ] × Ω and

boundedness of C(xt)1(|xt|≤N), D(xt)1(|xt|≤N) in (5.9). Similarly, we have

E|
∫ T

0

uτ
kRukdt−

∫ T

0

uτ
∞Ru∞dt| → 0, as k → ∞, (5.11)

and therefore it follows from (5.10)-(5.11) that limk→∞ JT
N(x, p, uk) = JT

N(x, p, u∞).

Lemma 5.2. For JT
N(x, p, u) defined by (5.7), we have

lim
N→∞

inf
u∈UT

2

JT
N(x, p, u) = vT (x, p), (5.12)

for any x ∈ IRn and p ∈ IRn.

PROOF. We define

JT
N,ηµ

(x, p, u)
4
= JT

N(x, p, u) + ηµE[

∫ T

0

e−ρt1(|xt|≤N)dt|x],

vT
ηµ

(x, p)
4
= vT (x, p) + ηµ

∫ T

0

e−ρtdt,
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where ηµ = η2(
∑n

i=1 µi)
2. Recalling (5.6) and the definition of JT

N (x, p, u), vT (x, p),

for any (x, p) and N > 0, it is obvious that

inf
u∈UT

2

JT
N,ηµ

(x, p, u) ≤ vT
ηµ

(x, p), (5.13)

and

JT
N1,ηµ

(x, p, u) ≤ JT
N2,ηµ

(x, p, u), (5.14)

for N1 < N2. We will show that

lim
N→∞

inf
u∈UT

2

JT
N,ηµ

(x, p, u) = vT
ηµ

(x, p), (5.15)

for all x, p ∈ IRn. We prove (5.15) by contradiction. If (5.15) is not true, then by

(5.13)-(5.14), there exist a pair (x, p) and ε > 0 such that

inf
u∈UT

2

JT
N,ηµ

(x, p, u) < vT
ηµ

(x, p) − ε, (5.16)

for all N > 0. Then for each fixed N , there exists uN ∈ UT
2 such that

JT
N,ηµ

(x, p, uN) < vT
ηµ

(x, p) − ε

2
, (5.17)

which together with (5.7) implies supN E
∫ T

0
|uN |2dt <∞; hence by well known results

in functional analysis [79, 78], there exists a subsequence {uNi
, i = 1, 2, · · · } of

{uN , N = 1, 2, 3 · · · } such that uNi
converges weakly to a limit û ∈ UT

2 . For simplicity

in the following we still denote {uNi
} by {uN}. Furthermore, by Mazur’s theorem

[79], there exist λik ≥ 0,
∑∞

k=1 λik = 1 such that

lim
i→∞

E

∫ T

0

|
∞∑

k=1

λikui+k − û|2dt = 0, (5.18)
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Now by (5.18) and Lemma 5.1 it follows that

JT
N,ηµ

(x, p, û) = lim
N≤i→∞

JT
N,ηµ

(x, p,

∞∑

k=1

λikui+k)

≤ lim
N≤i→∞

∞∑

k=1

λikJ
T
N,ηµ

(x, p, ui+k) (5.19)

≤ lim
N≤i→∞

∞∑

k=1

λikJ
T
i+k,ηµ

(x, p, ui+k) (5.20)

≤ vT
ηµ

(x, p) − ε

2
. (5.21)

Here (5.19) is obtained by convexity with respect to (p, u) of the integrand in (5.7)

and the linear dynamics dp = u; (5.20) follows by (5.14) and we get (5.21) from (5.17).

On the other hand, by Lebesgue’s monotone convergence theorem [64] we have

JT
N,ηµ

(x, p, û) ↑ JT (x, p, û) + ηµ

∫ T

0

e−ρtdt, as N ↑ ∞, (5.22)

since [Φ(xt, pt) + ηµ]1(|xt|≤N) ↑ Φ(xt, pt) + ηµ a.e. on [0, T ] × Ω. Hence by (5.22) and

(5.21), we have

JT (x, p, û) = lim
N→∞

JT
N,ηµ

(x, p, û) − ηµ

∫ T

0

e−ρtdt ≤ vT (x, p) − ε

2
, (5.23)

which is a contradiction. Thus we have proved that (5.15) holds, and therefore

lim
N→∞

inf
u∈UT

2

JT
N(x, p, u) = lim

N→∞
inf

u∈UT
2

[JT
N,ηµ

(x, p, u) − ηµE

∫ T

0

e−ρt1(|xt|≤N)dt]

= lim
N→∞

inf
u∈UT

2

JT
N,ηµ

(x, p, u) − ηµ

∫ T

0

e−ρtdt

= vT
ηµ

(x, p) − ηµ

∫ T

0

e−ρtdt = vT (x, p)

and the lemma follows.
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Lemma 5.3. For any u ∈ UT
2 there exists a sequence of stepwise random processes

uk ∈ UT,k
2 , k ≥ 1, such that

lim
k→∞

E

∫ T

0

|ut − uk
t |2dt = 0.

PROOF. This follows easily from the proof of Lemma 4.4 in [55], and in fact each

uk can be chosen to be bounded by a deterministic constant.

Lemma 5.4. The finite horizon optimal cost function vT (x, p) can be represented

in the form

vT (x, p) = lim
N→∞

lim
k→∞

inf
u∈UT,k

2

JT
N(x, p, u). (5.24)

PROOF. By Lemma 5.2 it suffices to prove that

lim
k→∞

inf
u∈UT,k

2

JT
N (x, p, u) = inf

u∈UT
2

JT
N(x, p, u), (5.25)

for which the left hand side exists since UT,k
2 ⊂ UT,k+1

2 and the sequence of optimal

costs (relative to UT,k
2 ) infu∈UT,k

2
JT

N(x, p, u), k ≥ 1, monotonely decreases as k ↑ ∞.

Since for all k,

inf
u∈UT,k

2

JT
N(x, p, u) ≥ inf

u∈UT
2

JT
N(x, p, u),

it follows that

lim
k→∞

inf
u∈UT,k

2

JT
N(x, p, u) ≥ inf

u∈UT
2

JT
N(x, p, u). (5.26)

Now we only need to prove an opposite inequality for (5.26). For any ε > 0, take

û ∈ UT
2 such that JT

N(x, p, û) ≤ infu∈UT
2
JT

N(x, p, u) + ε
3
. By Lemmas 5.3 and 5.1 there

exists a sufficiently large k0 and uk0 ∈ UT,k0

2 such that |JT
N(x, p, uk0)−JT

N (x, p, û)| ≤ ε
3
.

Then it follows that

lim
k→∞

inf
u∈UT,k

2

JT
N(x, p, u) ≤ inf

u∈UT,k0
2

JT
N(x, p, u) ≤ JT

N(x, p, uk0)

≤ JT
N(x, p, û) +

ε

3
≤ inf

u∈UT
2

JT
N(x, p, u) +

2ε

3
.
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Since ε > 0 is arbitrary, it follows that

lim
k→∞

inf
u∈UT,k

2

JT
N(x, p, u) ≤ inf

u∈UT
2

JT
N(x, p, u), (5.27)

which completes the proof.

Lemma 5.5. For any fixed pair N and k, vT,k
N (x, p, u)

4
= infu∈UT,k

2
JT

N(x, p, u) is a

quadratic form in terms of p with coefficients depending on x.

PROOF. We decompose the cost function to get

JT
N(x, p, u)

=E




2k−1∑

i=0

∫ (i+1)T

2k

iT

2k

[pτ
tC(xt)pt1(|xt|≤N) + 2Dτ (xt)pt1(|xt|≤N) + utRut]dt|x, p


 , (5.28)

where u ∈ UT,k
2 . We minimize JT

N(x, p, u) backward by applying dynamic program-

ming. The last term in the sum is given by

s(2k − 1) =

∫ T

(2k
−1)T

2k

[pτ
tC(xt)pt1(|xt|≤N) + 2Dτ (xt)pt1(|xt|≤N) + utRut]dt. (5.29)

Denote r0 = (2k−1)T
2k . In the above integral the initial condition for the state variable

is (xr0 , pr0). For t ∈ [r0, T ], ut = ur0 and pt = pr0 +ur0(t−r0). Then there exist F1(·),
F2(·), F3(·), F4(·) such that

E[s(2k − 1)|σ(xt, pt, t ≤ r0)]

=pτ
r0
F1(xr0)pr0 + F τ

2 (xr0)pr0 + uτ
r0
F3(xr0)ur0 + F τ

4 (xr0)ur0, (5.30)

where the matrices F1(xr0) ≥ 0 and F4(xr0) ≥ R. By dynamic programming we min-

imize (5.30) and obtain the minimum as a quadratic function of pr0 with coefficients

depending on xr0 . Repeating the above LQ minimization procedure in (5.28) and by

induction we see that vT,k
N (x, p, u) is a quadratic form in terms of p with coefficients

depending on x.
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Lemma 5.6. Suppose a sequence of continuous functions vk(x, p) mapping IRn ×
IRn into IR, k ≥ 1, is represented as

vk(x, p) = pτKk(x)p + 2pτSk(x) + qk(x), (5.31)

where Kk(x) = Kτ
k (x), and in addition, there exists a finite limk→∞ vk(x, p) for all

x, p ∈ IRn. Then there exist K∞(x) = Kτ
∞(x), S∞(x), q∞(x), all continuous in x, such

that (Kk(x), Sk(x), qk(x)) → (K∞(x), S∞(x), q∞(x)), as k → ∞.

PROOF. We have

lim
k→∞

vk(x, p) = lim
k→∞

[pτKk(x)p + 2pτSk(x) + qk(x)].

In particular,

lim
k→∞

vk(x, 0) = lim
k→∞

qk(x)
4
= q∞(x), (5.32)

which further implies that limk→∞[pτKk(x)p + 2pτSk(x)] also exists and is finite for

all (x, p). We take p = [0, · · · , pi, · · · , 0]τ , then limk→∞Kkii(x)p
2
i +2Skipi = finite. By

taking pi = 1, 2, respectively, we get limk→∞Kkii(x)+2Ski = finite, limk→∞ 4Kkii(x)+

4Ski = finite. Then it follows easily that both limk→∞Kkii(x) and limk→∞ Ski(x) have

finite values. Repeating this procedure for each entry of the matrices, we see that

there exist K∞(x), S∞(x) such that

lim
k→∞

Kk(x) = K∞(x), lim
k→∞

Sk(x) = S∞(x).

For any fixed x, using a similar argument as above, we can show that K∞, S∞, q∞

are continuous at x. This completes the proof.

We conclude this Section with the following theorem concerning the structure of

vT (x, p).

Theorem 5.1. There exist KT (x), ST (x) and qT (x) of suitable dimension such

that the finite horizon optimal cost vT (x, p) can be represented as

vT (x, p) = pτKT (x)p + 2pτST (x) + qT (x), (5.33)
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where KT (x) = (KT )τ (x), and the superscript T is used to indicate the time horizon.

PROOF. This follows from Lemmas 5.4, 5.5 and 5.6.

5.3. The Infinite Horizon Optimal Cost and the HJB Equation

We proceed to analyze the infinite horizon optimal control problem formulated in

Section 5.1; formally applying dynamic programming, we may write the HJB equation

for the value function v defined by (5.4) as follows:

0 = ρv − f τ ∂v

∂x
− 1

2
tr(
∂2v

∂z2
GGτ ) + sup

u∈IRn
{−uτ ∂v

∂p
− uτRu} − pτC(x)p− 2Dτ (x)p,

which gives

ρv =f τ ∂v

∂x
+

1

2
tr[GGτ ∂

2v

∂z2
] − 1

4
(
∂v

∂p
)τR−1∂v

∂p
+ pτC(x)p+ 2Dτ (x)p

= −
n∑

i=1

ai(xi + bi)
∂v

∂xi
+

1

2

n∑

i=1

σ2
i

∂2v

∂xi
2
− 1

4
vτ

pR
−1vp + pτC(x)p+ 2Dτ (x)p.

(5.34)

Before v is determined as a classical solution to the HJB equation (5.34), we need

some local Lipschitz estimates. To determine the range of x and p for the following

comparison method, we define a subset of IRn × IRn by taking QB = {(x, p)|x, p ∈
IRn and |x| ≤ B, |p| ≤ B}, where the constant B > 0.

Since −η2

ρ

∑n
i=1 µ

2
i ≤ v(x, p) ≤ J(x, p, 0), there exists a constant CB > 0 de-

pending on QB such that sup(x,p)∈QB
|v(x, p)| ≤ CB. For each (x, p) ∈ QB define the

subset of the admissible control set U2 as U (x,p)
2 = {u ∈ U2|J(x, p, u) ≤ 2CB} and

take the union U2,B = ∪(x,p)∈QB
U (x,p)

2 . By explicitly substituting any initial condition

(x, p) ∈ QB into the integrand of J(x, p, ·) and by basic bound estimates for the en-

tries exipi(t) and their products involved in pτ
tC(xt)pt, it can be further verified that

there exists constants Ĉ1
B, Ĉ2

B such that

|J(x, p, u)| ≤ Ĉ1
B, |J(x, p, u) − J(x′, p′, u)| ≤ Ĉ2

B(|x− x′| + |p− p′|), (5.35)

where u ∈ U2,B and (x, p), (x′, p′) ∈ QB.
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On the other hand, for (x, p), (x′, p′) ∈ QB we have

|v(x, p) − v(x′, p′)| ≤ sup
u∈U2,B

|J(x, p, u) − J(x′, p′, u)|. (5.36)

Indeed, for any ε > 0 there exist û, û′ ∈ U2,B such that

J(x, p, û) < v(x, p) +
ε

4
, J(x′, p′, û′) < v(x′, p′) +

ε

4
(5.37)

Without loss of generality, we assume v(x, p) > v(x′, p′) and ε has been chosen suffi-

ciently small such that v(x, p) − v(x′, p′) ≥ ε. Then it follows that

|v(x, p) − v(x′, p′)| ≤ J(x, p, û) − J(x′, p′, û′) +
ε

4

≤ J(x, p, û′) − J(x′, p′, û′) +
ε

2

≤ sup
u∈U2,B

|J(x, p, u) − J(x′, p′, u)| + ε

2

which leads to (5.36) since ε > 0 can be arbitrarily small.

Combining (5.36) and (5.35) we obtain the following proposition:

Proposition 5.1. There exists a constant ĈB > 0 such that

|v(x, p) − v(x′, p′)| ≤ ĈB(|x− x′| + |p− p′|),

where (x, p), (x′, p′) ∈ QB
4
= {(x, p)|x, p ∈ IRn, and |x| ≤ B, |p| ≤ B}, B > 0.

Theorem 5.2. The value function v defined by (5.4) is a continuous function of

(x, p) and can be written as

v(x, p) = pτK(x)p+ 2pτS(x) + q(x) (5.38)

where K(x) = K(x)τ , S(x) and q(x) are continuous functions of x, and are all of

order O(1 +
∑

n

i=1
e2xi ).

PROOF. The continuity of v follows from Proposition 5.1 since B can be taken

as any positive constant. We approximate v(x, p) by a sequence of costs vT (x, p),

T > 0, each of which is the optimal cost of the stochastic control problem with
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the time horizon [0, T ]. Applying a similar argument as in the proof of Lemma 5.2

to the current case by extending the time horizon to infinite, it can be verified that

v(x, p) = limT→∞ vT (x, p) for all (x, p), and therefore (5.38) holds by Theorem 5.1 and

Lemma 5.6. The upper bound for K(x), S(x), q(x) is obtained by a direct estimate

of the growth rate of v.

Theorem 5.3. The value function v is a classical solution to the HJB equation

(5.34), i.e., ∂v
∂xi

, ∂2v
∂xi

2 ,
∂v
∂pi

, 1 ≤ i ≤ n, exist and are continuous on IR2n.

PROOF. By a vanishing viscosity technique [23, 78] one can show that the value

function v is a generalized solution to (5.34) in terms of weak derivatives with respect

to (x, p). By Theorem 5.2, we see that ∂v
∂p

exists and is continuous. Now (5.34) can be

looked at as a partial differential equation parametrized by p. Then one can further

show by use of smooth test functions of the form ϕ1(x)ϕ2(p) with compact support

that v is a generalized solution with respect to x for each fixed p.

By Proposition 5.1 one can verify that K(x), S(x) satisfy a local Lipschitz condi-

tion, and hence for each fixed p, the term Ψp(x)
4
= −1

4
vτ

pR
−1vp + pτC(x)p+ 2Dτ(x)p

in (5.34) also satisfies a local Lipschitz condition w.r.t. x.

For each fixed p, (5.34) can be written as follows:

−ρv −
n∑

i=1

ai(xi + bi)
∂v

∂xi
+

1

2

n∑

i=1

σ2
i

∂2v

∂xi
2

+ Ψp(x) = 0. (5.39)

Since (5.39) is uniformly elliptic and Ψp is locally Lipschitz continuous w.r.t. x, the

generalized solution v (w.r.t. x) has the first and second order classical derivatives

with respect to x [25], i.e., ∂v
∂xi

, ∂2v
∂xi

2 , 1 ≤ i ≤ n, exist and are continuous. Hence v

has all the classical derivatives appearing in the HJB equation (5.34).
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5.3.1. Associated PDE’s and the Control Law. By Theorems 5.2 and

5.3, we have

pτρK(x)p + 2pτρS(x) + ρq(x)

=f τ (x)
∂

∂x
[pτK(x)p+ 2pτS(x) + q(x)]

+
1

2
tr{GGτ ∂

2

∂z2
[pτK(x)p+ 2pτS(x) + q(x)]}

− [K(x)p+ S]τR−1[K(x)p+ S] + pτC(x)p+ 2Dτ (x)p.

This gives

pτρK(x)p + 2pτρS(x) + ρq(x)

=pτ (

n∑

k=1

fk
∂K

∂xk
)p+ 2pτ (

n∑

i=1

fk
∂S

∂xk
) + f τ ∂q

∂x

+ pτ (
n∑

k=1

σ2
k

2

∂2K

∂xk
2
)p+ pτ

n∑

k=1

σ2
k

∂2S

∂xk
2

+
n∑

k=1

σ2
k

2

∂2q

∂xk
2

− pτKR−1Kp− SτR−1S − 2pτKR−1S.

Hence we get the partial differential equation system

ρK =
1

2

n∑

k=1

σ2
k

∂2K

∂xk
2

+

n∑

k=1

fk
∂K

∂xk
−KR−1K + C, (5.40)

ρS =
1

2

n∑

k=1

σ2
k

∂2S

∂xk
2

+

n∑

k=1

fk
∂S

∂xk
−KR−1S +D, (5.41)

ρq =
1

2

n∑

k=1

σ2
k

∂2q

∂xk
2

+ f τ ∂q

∂x
− SτR−1S, (5.42)

where we shall refer to (5.40) as the Riccati equation of the system. Finally the

optimal control law is given by

u = [u1, · · · , un]
τ = −R−1[K(x)p+ S(x)], (5.43)
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where p denotes the power vector. This gives the control law for all users. From the

above it is seen that the optimal control is determined as a feedback which uses the

measurement of the current power and attenuation processes.

5.3.2. Simulations. In the numerical experiments below, we study two dif-

ferent systems with the same cost function. Each system includes two users and the

channel dynamics of both systems are given by

System A: dxi = −4(xi + 0.3)dt+ 0.3dwi, i = 1, 2,

and

System B:





dx1 = −4(x1 + 0.3)dt+ 0.3dw1,

dx2 = −3.5(x2 + 0.2)dt+ 0.2dw2.

In the quadratic type cost function (5.3), the discount factor ρ = 0.5, the weight

matrix R = 0.03I2, and (5.3) is derived from (5.2) where µ1 = µ2 = 0.4, η = 0.25. In

the simulation the time step size is 0.05. We use a similar difference scheme as in the

bounded control case of Chapter 3 to compute the value function approximately and

the control law is determined by a quadratic type minimization based calculation, i.e.

u = argminu{uτ ∂v

∂p
+ uτRu}.

Figures 5.1 and 5.2 correspond to system A and system B, respectively, where

xi, pi, qi, i = 1, 2, denote the attenuation, the controlled power, and the static point-

wise optimum obtained from (2.10), respectively. Figures 5.1 (b) and 5.2 (b) indicate

the control inputs corresponding to Figures 5.1 (a) and 5.2 (a), respectively.

For system A, as shown by Figure 5.1, whenever the two users have significantly

different initial powers there is an initial convergence of the power levels to a common

level and then subsequent approximately equal behavior which converges toward a

steady level. In the long term, the two controlled power trajectories are very close to

each other; this happens because the two mobiles have i.i.d. channel dynamics. For

system B, after a fast adjustment, the powers of two mobiles will be maintained at
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stable levels and the power trajectories of the first user will generally stay above that

of the second user due to the asymmetry of the channel dynamics of the two users,

which is different from the case of system A.

From Figures 5.1 (b) and 5.2 (b) it is seen that in contrast to their initial behavior,

after both powers settle down in a small neighborhood of the optimum, at each step

only a minor effort is required for each mobile to adjust its power, which also differs

from the bounded control case in Chapter 3 where the power adjustment takes the

form of bang-bang controls.
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Figure 5.1. Simulation for system A
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Figure 5.2. Simulation for system B

5.4. The Classical Solution and its Small Noise Approxima-

tion

In this section we address the important issue of the computability of solutions to

the equations in Section 5.3.1. In general, constructing a control law by solving the
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partial differential equation systems in the high dimensional case is a formidable or

even impossible task. For a significant number of users, an analysis of local expansions

of solutions around a steady state attenuation value x is useful in the small noise case

because the attenuation trajectory x(t) will be expected to spend a disproportionate

amount of time in a small neighborhood of x. In this way it is possible to construct

suboptimal controller with ideal performance but at significantly reduced complexity.

For simplicity we make the Symmetry Assumption: all the users have i.i.d.

channel dynamics with ai = a, bi = b, σi = σ and γi = γ, R = rIn. We use

K(x) = (Kij(x))
n
i,j=1 to denote the solution of the Riccati equation (5.40) and write

Kij(x) = Kij(x) + (x− x)τ ∂Kij(x)

∂x
+

1

2
(x− x)τ ∂

2Kij(x)

∂x2
(x− x) + o(|x− x|2)

4
= Kij(x) + (x− x)τK

(1)
ij (x) +

1

2
(x− x)τK

(2)
ij (x)(x− x) + o(|x− x|2), (5.44)

where x = (b, · · · , b)τ is the steady state mean of the attenuation vector.

5.4.1. Complexity of the Local Expansion of the Matrix K(x). In the

following we will show that in the symmetric case, when n grows the complexity of the

local polynomial approximation does not increase with the dimension, i.e., the total

number of distinct entries of the three coefficient matrices in (5.44) does not increase

with n. To this end, we first show an important property of the entries of the Riccati

matrix K(x). For the ordered integers I = (1, 2, · · · , n), let I = (i1, i2, · · · , in) be an

arbitrary permutation of I. For 1 ≤ j ≤ n, suppose j is the s(j)-th element in the

row I.

Proposition 5.2. Under the Symmetry Assumption, for the Riccati matrixK(x),

we have

Kij(x1, x2, · · · , xn) = Ks(i)s(j)(xi1 , xi2 , · · · , xin). (5.45)

PROOF. By the symmetry assumption on the channel dynamics and the cost

function, we have

v(x1, x2, · · · , xn, p1, p2, · · · , pn) = v(xi1 , xi2, · · · , xin, pi1 , pi2, · · · , pin). (5.46)
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Using Theorem 5.2 and comparing the coefficients of the quadratic terms of p, we get

the above relation (5.45).

Using Proposition 5.2 repeatedly, we can verify that the computation of each Kij

and its first, second order partial derivatives at x = (b, · · · , b)τ can be reduced to

K11, K12 and their derivatives at x. In fact, these first and second order derivatives

at x can be represented by 13 variables. Here we list all the distinct entries in the

three matrices of (5.44) as follows:

K11, K12,
∂K11

∂x1

,
∂K11

∂x2

,
∂2K11

∂x1
2
,
∂2K11

∂x2
2
,
∂2K11

∂x1∂x2

,
∂2K11

∂x2∂x3

,

∂K12

∂x1
=
∂K12

∂x2
,
∂K12

∂x3
,
∂2K12

∂x3
2
,
∂2K12

∂x1∂x2
,
∂2K12

∂x1
2

=
∂2K12

∂x2
2
,

∂2K12

∂x1∂x3

=
∂2K12

∂x2∂x3

,
∂2K12

∂x3∂x4

,

where all the quantities are computed at x = (b, · · · , b)τ . Here we verify the last

identity. In fact, by (5.45) and the transpose symmetry of K, i.e., K(x) = Kτ (x), we

have

∂2K12

∂x2∂x3

∣∣∣
x

= lim
ε→0

1

ε2
[K12(x1, x2 + ε, x3 + ε, x4, · · · ) −K12(x1, x2, x3 + ε, x4, · · · )

−K12(x1, x2 + ε, x3, x4, · · · ) +K12(x1, x2, x3, x4, · · · )]

= lim
ε→0

1

ε2
[K12(x1 + ε, x2, x3 + ε, x4, · · · ) −K12(x1, x2, x3 + ε, x4, · · · )

−K12(x1 + ε, x2, x3, x4, · · · ) +K12(x1, x2, x3, x4, · · · )]

=
∂2K12

∂x1∂x3

∣∣∣
x
,

where x = (x1, · · · , xn)τ = (b, · · · , b)τ . The remarkable feature of limited complexity

for K(x) as well as its first and second order derivatives at x is potentially useful to

obtain simple and efficient local approximation for K(x) by determining the above

15 unknowns.
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5.4.2. The Approximating Equation System. We write the Riccati equa-

tion (5.40) in terms of its components to obtain

ρKij(x) =
σ2

2

∑

k

∂2Kij(x)

∂xk
2

+
∑

k

fk
∂Kij(x)

∂xk
−

∑

k

1

r
Kik(x)Kkj(x) + Cij(x). (5.47)

And using (5.44) we write the system of approximate equations (up to second order)

ρKij(x) + ρ(x− x)τK
(1)
ij (x) +

ρ

2
(x− x)τK

(2)
ij (x)(x− x)

=
σ2

2

∑

k

K
(2)
ij,k(x) +

∑

k

[−a(xk − xk)] [K
(1)
ij,k(x) +K

(2)
ij,k(·)(x)(x− x) ]

−
∑

k

1

r
[ Kik(x) + (x− x)τK

(1)
ik (x) +

1

2
(x− x)τK

(2)
ik (x)(x− x)]·

[Kkj(x) + (x− x)τK
(1)
kj (x) +

1

2
(x− x)τK

(2)
kj (x)(x− x)]

+ Cij(x) + (x− x)τC ′
ij(x) +

1

2
(x− x)τC ′′

ij(x)(x− x), (5.48)

where K
(2)
ij,k(x), K

(2)
ij,k(·)(x) are the k-th diagonal entry and the k-th row of the matrix

K
(2)
ij (x), respectively, and K

(1)
ij,k(x) is the k-th entry of K

(1)
ij (x). Notice that in writing

the equation (5.48) only the first three terms in (5.44) are formally substituted into

(5.47) and the higher order terms are neglected. When the higher order terms are

taken into account, additional terms of the order |σ2

2
K

(3)
ij | and |σ2

4
K

(4)
ij | will appear in

equations (5.50) and (5.51) below, respectively, where K
(3)
ij and K

(4)
ij denote the third

and fourth order mixing partial derivatives of Kij(x) at x assuming their existence.

Here in order to avoid an infinitely coupled equation system we omit the additional

terms but maintain sufficiently close approximation to the exact solution since we are

considering the small noise case.

However we write an exact equation corresponding to the zero order term since

it has more weight in the suboptimal control law when the state stays in a small

neighborhood of x. Grouping terms with zero power of (x − x) in (5.48), we obtain
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the equation system

ρKij(x) =
σ2

2

∑

k

K
(2)
ij,k(x) −

∑

k

1

r
Kik(x)Kkj(x) + Cij(x), (5.49)

or equivalently, in the matrix form

ρK(x) =
σ2

2

(
tr{K(2)

ij (x)}
)n

i,j=1
− 1

r
K(x)K(x) + C(x),

which takes the form of a perturbed algebraic Riccati equation. By (5.48) we also

have

(x− x)τρK
(1)
ij (x) = (x− x)τ

(
− aK

(1)
ij,k(x)

)n

k=1

−
∑

k

(x− x)τ 1

r
[ K

(1)
ik (x)Kkj(x) +Kik(x)K

(1)
kj (x) ] + (x− x)τC ′

ij(x),

which gives

(ρ + a)K
(1)
ij (x) = −1

r

∑

k

[ K
(1)
ik (x)Kkj(x) +Kik(x)K

(1)
kj (x) ] + C ′

ij(x). (5.50)

Finally, by inspecting the second order terms in (5.48) we get

(
ρ

2
+ a)K

(2)
ij (x) = − 1

2r

∑

k

[ Kik(x)K
(2)
kj (x) +K

(2)
ik (x)Kkj(x) ]

− 1

r

∑

k

K
(1)
ik (x)[K

(1)
kj (x)]τ +

1

2
C ′′

ij(x). (5.51)

It would be of interest to investigate the procedure to solve the above equation system

numerically, which is an important step toward implementing the suboptimal control

law in a simple and efficient manner. We will design the numerical procedure to solve

the equation system (5.49)-(5.51) below.

5.4.3. A Recursive Algorithm. In this part we design a recursive algo-

rithm to solve the equation system (5.49)-(5.51). To achieve good numerical stability

and convergence for the recursive algorithm the coupled polynomial equations are
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rewritten. First, we write (5.50) in the following form:

[ ρ+ a +
Kii +Kjj

r
]K

(1)
ij (x)

= − 1

r

∑

k 6=i,j

[ K
(1)
ik (x)Kkj(x) +Kik(x)K

(1)
kj (x) ] + C ′

ij(x), (5.52)

and (5.51) is written as

[
ρ

2
+ a+

Kii +Kjj

2r
]K

(2)
ij (x) = − 1

2r

∑

k 6=i,j

[ Kik(x)K
(2)
kj (x) +K

(2)
ik (x)Kkj(x) ]

− 1

r

∑

k

K
(1)
ik (x)[K

(1)
kj (x)]τ +

1

2
C ′′

ij(x). (5.53)

where Kii and Kjj are computed at x. Denote

Aij = ρ+ a +
Kii +Kjj

r
, Bij =

ρ

2
+ a+

Kii +Kjj

2r
.

Assuming Aij 6= 0 and Bij 6= 0, from (5.52)-(5.53) we write

K
(1)
ij (x) = − 1

rAij

∑

k 6=i,j

[ K
(1)
ik (x)Kkj(x) +Kik(x)K

(1)
kj (x) ] +

1

Aij
C ′

ij(x)

4
= Ψij(K,K

(1)), (5.54)

K
(2)
ij (x) = − 1

2rBij

∑

k 6=i,j

[ Kik(x)K
(2)
kj (x) +K

(2)
ik (x)Kkj(x) ]

− 1

rBij

∑

k

K
(1)
ik (x)[K

(1)
kj (x)]τ +

1

2Bij
C ′′

ij(x)
4
= Φij(K,K

(1), K(2)), (5.55)

where K(1), K(2) denote the sequence of K
(1)
ij (x), K

(2)
ij (x), 1 ≤ i, j ≤ n, with any

predetermined order, respectively. For (5.49) we assume a unique positive definite

solution K exists for K(2) varying in a certain range and we indicate the dependence

by

K = Λ(K(2)). (5.56)

To approximate the solution to the equation system (5.49)-(5.51), we first set

the initial condition K0, K
(1)
0 , K

(2)
0 where the subscript is used to indicate the time
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instant, and then we update the solution by the following scheme:

Kt+1 = Λ(K
(2)
t ), (5.57)

(K
(1)
ij )t+1 = Ψij(Kt+1, K

(1)
t ), 1 ≤ i, j ≤ n, (5.58)

(K
(2)
ij )t+1 = Φij(Kt+1, K

(1)
t+1, K

(2)
t ), 1 ≤ i, j ≤ n, (5.59)

where t ≥ 0.

To illustrate the efficiency of the recursive algorithm we apply (5.57)-(5.59) to

system A of Section 5.3.2 with the same cost function as specified in Section 5.3.2.

Since the two mobiles have i.i.d. dynamics, we adopt a certain symmetry with the

initialization of the algorithm. Specifically, we take K0 = I2×2 and all the first and

second order derivatives of K take the initial condition of zero matrices or vectors of

suitable dimension. Figure 5.3 below demonstrates the asymptotic behavior of the

iteration of (5.57)-(5.59) from step 2 to step 20. Interpretation of the entries in the

plot can be found in Section 5.4.2.

2 4 6 8 10 12 14 16 18 20
−0.06

−0.04

−0.02
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0.02

0.04

0.06

0.08

0.1

A
t

B
t

C
t

D
t

Figure 5.3. At = K12(t), Bt = K
(1)
11,1(t), Ct = K

(2)
11,1(t), Dt = K

(2)
12,1(t)

Remark 5.1. For this two dimensional example, it is worth mentioning an im-

portant feature for the operators on the right hand side of (5.58) and (5.59). To begin

with, by removing the leading term on the right hand side of (5.49) we get a usual

Riccati equation for which we obtain a so-called nominal solution K̂. Let K
(1)
t denote

the following composite vector

K
(1)
t

4
= [K

(1)
11

τ
(t), K

(1)
12

τ
(t), K

(1)
21

τ
(t), K

(1)
22

τ
(t)]τ .
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We replace Kt+1 by its nominal value K̂ in (5.58). Now (5.58) can be written as

K
(1)
t+1 = Ψ1K

(1)
t + Ψ2, (5.60)

where Ψ1 ∈ IR8×8 is determined by K̂ and Ψ2 ∈ IR8 is a constant vector depending on

K̂ and C ′(x). For systems A and the associated cost function we can verify that the

absolute value of each eigenvalue of Ψ1 is less than 0.37 and hence Ψ1 is stable. We

can also verify a similar stabilizing property for the map (5.59) when Kt+1 is replaced

by its nominal value K̂.

We write the results of the recursion in the following compact form where the

determination of each block is evident.

K =


 0.070945 −0.050494

−0.050494 0.070945


 , (5.61)


 K

(1)
11 K

(1)
12

K
(1)
21 K

(1)
22


 =




0.054577 −0.019913

−0.007263 −0.019913

−0.019913 −0.007263

−0.019913 0.054573



, (5.62)


 K

(2)
11 K

(2)
12

K
(2)
21 K

(2)
22


 =




0.067471 −0.004126 −0.007098 −0.010009

−0.004126 −0.004070 −0.022420 −0.007098

−0.007098 −0.022420 −0.004070 −0.004126

−0.010009 −0.007098 −0.004126 0.067471



. (5.63)

Notice that the resulting matrices K
(2)
12 and K

(2)
21 are not symmetric. This is not

unusual since the equations (5.49)-(5.51) are obtained by a certain approximation

technique (with a noise level σ2 = 0.09) and it may not provide tight approximation

to certain entries in the second order Taylor coefficient matrices for K(x) in (5.44).

With K, K(1), K(2) given by (5.61)-(5.63), applying the local expansion method of

Section 5.4.2 to the equation (5.41) we can also determine the approximate values of

the associated coefficients S(x), S(1)(x), S(2)(x), the computation of which is simple
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since they are described by a set of linear equations. We have

S =


 −0.012523

−0.012523


 , [S

(1)
1 S

(1)
2 ] =


 −0.000485 −0.001771

−0.001771 −0.000485


 ,

[S
(2)
1 S

(2)
2 ] =


 0.000834 −0.000209 −0.000438 −0.001290

−0.001290 −0.000438 −0.000209 0.000834


 .

Now we substitute the local second order approximation of K(x) and S(x) into

the controller (5.43) to get a nearly optimal controller. The following Figure 5.4 is the

simulation of this local expansion based controller for system A in Section 5.3.2. The

variables xi (power attenuation), pi (controlled power), qi (static pointwise optimum)

in Figure 5.4 (a) are specified in the same way as in Section 5.3.2. Figure 5.4 (b)

demonstrates the control inputs of two mobiles. In Figures 5.4 and 5.1, the basic

behaviour of the power adjustment is quite similar and in both cases the powers of

the two users will gradually be brought to certain stable level.
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x1
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q1
q2

0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

u1
u2

(a) p1(0) = 0, p2(0) = 0.2 (b) u1 and u2

Figure 5.4. Simulation for system A using the nearly optimal control law

5.4.4. The Single User Case. In this part we consider the very simple

example of n = 1. This corresponds to the case of a single mobile in service under

the effect of a fading channel and the background noise. However we mention that

the solution is useful to construct nearly optimal control laws in systems with large

populations where a particular mobile M is singled out for analysis and the scaled

interference generated from all the other users can be approximated by a deterministic
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quantity due to the effect of the law of large numbers. For n = 1, we have

C(x) = (1 − µ)2e−2b, C ′(x) = 2(1 − µ)2e−2b, C ′′(x) = 4(1 − µ)2e−2b,

and the equations (5.49)-(5.51) reduce to

ρK =
σ2

2
K(2) − 1

r
K2 + C, (5.64)

(ρ + a)K(1) = −2

r
KK(1) + C ′, (5.65)

(
ρ

2
+ a)K(2) = −1

r
KK(2) − 1

r
K(1)K(1) +

1

2
C ′′, (5.66)

where C, C ′ and C ′′ take their values at x. In the following we seek a solution for

the small noise case satisfying K ≥ 0.

Proposition 5.3. There exists σ2
0 > 0 such that for any finite σ2 ≤ σ2

0 the

equation system (5.64)-(5.66) has a solution (K,K
(1)
, K

(2)
) and K ≥ 0.

PROOF. Rewriting the system (5.64)-(5.66) yields

K =
−rρ+

√
r2ρ2 + 2r(σ2K(2) + 2C)

2

4
= G0(K

(2)), (5.67)

K(1) =
rC ′

r(ρ+ a) + 2K

4
= G1(K), (5.68)

K(2) =
rC ′′ − 2K(1)K(1)

r(ρ+ 2a) + 2K

4
= G2(K,K

(1)). (5.69)

We introduce four constants

c1
4
=

C ′

ρ+ a
, c2

4
=

C ′′

ρ+ 2a
,

c0
4
=

−rρ+
√
r2ρ2 + 2r(σ2c2 + 2C)

2
,

c−2
4
= inf

0≤s≤G0(c2)

rC ′′ − 2c21
r(ρ+ 2a) + 2s

,

and a convex compact subset of IR3 denoted by

K 4
= {(x0, x1, x2) : 0 ≤ xi ≤ ci, i = 0, 1 and c−2 ≤ x2 ≤ c2}. (5.70)
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Set σ2
0 = sup{σ2 : σ2c−2 + 2C ≥ 0}. Then for any σ2 ≤ σ2

0, the square root in (5.67)

is always no less than rρ for c−2 ≤ K(2) ≤ c2. We define the continuous map G on K
such that

G(K,K(1), K(2)) = ( G0(K
(2)), G1(K), G2(K,K

(1)) ). (5.71)

Then it is readily verified that G(K) ⊆ K and therefore, by Brouwer’s fixed point

theorem G has a fixed point (K,K
(1)
, K

(2)
). From (5.67) it is seen that K ≥ 0.

Thus we have proved that the system (5.64)-(5.66) has a solution (K,K
(1)
, K

(2)
) and

K ≥ 0.

We proceed to consider the local approximation of S(x) in Section 5.3.1. We

write

S(x) = S(x) + S(1)(x)(x− x) +
1

2
S(2)(x)(x− x)2 + o(|x− x|2).

Then similar to the treatment for K(x), from (5.41) we obtain a system of algebraic

equations

(ρ +
K

r
)S − σ2

2
S(2) = D, (5.72)

K
(1)

r
S + (a+ ρ+

K

r
)S(1) = D′, (5.73)

K
(2)

2r
S +

K
(1)

r
S(1) + (

ρ

2
+ a+

K

2r
)S(2) =

1

2
D′′, (5.74)

where D = D′ = D′′ = −µη(1 − µ)e−b.

Example 5.1. For n = 1, a = 2, b = 0.3, σ2 = 0.01, µ = 0.6, η = 0.25, ρ =

0.5, r = 0.1, we have

(K,K
(1)
, K

(2)
) = ( 0.072120, 0.044547, 0.052429 ),

(S, S
(1)
, S

(2)
) = ( −0.036412, −0.008763, −0.003362 ).
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Example 5.2. For n = 1, a = 2, b = 0.4, σ2 = 0.01, µ = 0.6, η = 0.25, ρ =

0.5, r = 0.1, we have

(K,K
(1)
, K

(2)
) = ( 0.063525, 0.038134, 0.044794 ),

(S, S
(1)
, S

(2)
) = ( −0.035443, −0.008517, −0.003475 ).

Remark 5.2. For x = (x1, x2, x3) ∈ IR3, we define ‖x‖ = maxi |xi|. By examining

the upper bounds for |∂Gj

∂xi
| on K, j = 0, 1, 2, i = 1, 2, 3, where K and G are defined

by (5.70) and (5.71), we can show that in Examples 5.1 and 5.2, the map G is a

contraction on K under the norm ‖ · ‖. In this case the unique solution of (5.64)-

(5.66) can be approximated iteratively.

By substituting the local second order polynomial approximation of K(x) and

S(x) into the feedback control (5.43), the suboptimal control law for the single user

is determined as

u = − 1

r
[K +K

(1)
(x + b) +

1

2
K

(2)
(x + b)2]p

− 1

r
[S + S

(1)
(x + b) +

1

2
S

(2)
(x + b)2]. (5.75)

From (5.75) we write the 0-th order approximation of the optimal control law as

u(0) = −K
r
p− S

r
, for which the steady state power is p∞ = − S

K
. On other other hand,

we determine the nominal power level p by setting exp − µ(exp + η) = 0, and define

the relative error between p∞ and p by Err(p∞, p)
4
= |p∞−p|

p
. For Examples 5.1 and

5.2, we have

Example p∞ p Err(p∞, p)

1 0.504881 0.506197 < 0.3%

2 0.557938 0.559434 < 0.3%

The following is the simulation of the suboptimal control law given by (5.75). The

pointwise optimum q is determined by setting qex

qex+η
(t) = µ for each t ≥ 0. Figure 5.5
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demonstrates the dynamic behavior of the system in Example 5.1 with two different

initial powers.
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(a): p(0) = 0 (b): p(0) = 0.8

Figure 5.5. Left (a) and Right (b): The trajectories of attenuation x, power
p and control u with initial power 0 and 0.8, respectively

5.5. Application of the Single User Based Design to Systems

with Large Populations

In this section we study the power control problem in a large population context.

In this case the Quality of Service (QoS) measure needs to be suitably scaled. For

instance, in (2.7), to insure solvability of the static problem (i.e., there exists at least

one positive power vector satisfying (2.5)), one can diminish µi toward 0 as n → ∞.

However, here we shall not follow this scaling. The QoS measure of this Section is

based on the SIR of users after matched filtering in CDMA systems. Specifically we

seek to have

p̂i∑n
j 6=i βjip̂j + η

≈ p̂i∑n
j=1 βjip̂j + η

≈ µi, 1 ≤ i ≤ n,

in some sense, where the received power p̂i = exipi, and βji = (sτ
j si)

2, j 6= i, is

the crosscorrelation between the signature sequences sj, si of length ns for users j, i,
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respectively. Following [72, 74, 80], we make the standard assumption that n
ns

→
α > 0, as n → ∞. By appropriately choosing random signature sequences of length

ns, one can get βji ≈ 1
ns

[72, 80], and hence βji ≈ α
n
. Here for simplicity we take

βji = 1
n

4
= βn.

Hence we write the following static nominal equation

exipi = µi(βn

n∑

j=1

exjpj + η), (5.76)

which is equivalent to

exipi = µi[e
xipi + (1 − µi)(βn

n∑

j=1

exjpj + η)].

We set η̃(x, p) = βn

∑n
j=1 e

xjpj +η and term η̃(x, p) as the network interference index.

Notice that under mild conditions on the distribution of xi, pi, 1 ≤ i ≤ n, η̃(x, p)

has a small variance compared to its mean, and thus can be approximated by a

deterministic constant at each fixed time instant. In particular, when most users in

the system are in stable working conditions, for analysis of a small group of newly

admitted users the variation of the network interference index with respect to time

is negligible.

The above analysis suggests we write an individual cost function for the i-th

mobile

Ji = E

∫ ∞

0

e−ρt{ [exipi − µi(e
xipi + (1 − µi)η̃)]

2 + ru2
i }dt. (5.77)

In this setup the i-th mobile is singled out from the large population to deal with an

interference generated by all other mobiles and the true background noise. In essence,

the i-th user is treated as the only user of a “virtual system” with an “equivalent time-

varying background noise intensity”. Then on a time interval [kT, (k + 1)T ), T > 0,

k = 0, 1, 2, · · · , the control law ui of the i-th user is determined by (5.75) using

(1 − µi)η̃ as a time-varying parameter for the equivalent background noise intensity.

In the implementation, η̃ is replaced by its measurement at t = kT and updated at
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t = (k + 1)T . We construct the control law of the i-th mobile as

ui = − 1

r
[K +K

(1)
(xi + bi) +

1

2
K

(2)
(xi + bi)

2]pi

− (1 − µi)η̃0

rη
[S + S

(1)
(xi + bi) +

1

2
S

(2)
(xi + bi)

2], (5.78)

where (S, S
(1)
, S

(2)
) is the solution of (5.72)-(5.74) corresponding to the constant η,

and η̃0 = η̃(x, p)(kT ) for t ∈ [kT, (k + 1)T ). Compared to (5.75), the second term in

(5.78) contains the factor (1−µi)
�

η0

η
since in the present case the original η is replaced

by (1 − µi)η̃0 in (5.77) and (S, S
(1)
, S

(2)
) depends on η linearly as indicated by

(5.72)-(5.74) . Here (K, K
(1)
, K

(2)
) is independent of η.

Notice that the control law (5.77) is partially decentralized since for each user it

depends only on its own state and the network interference index η̃ to be measured

by the base station. In fact, η̃ is the sum of the scaled total received power and the

background noise intensity.

Remark 5.3. Assuming all the users start from zero power, an initial increase of

powers of all users leads to a higher network interference index, which in turn requires

a further increase of individual powers. This gives rise to the question whether there

would be an unlimited growth of individual powers. To a large extent, this question is

related to stability of the power updating scheme. In fact, by examining the 0-th order

approximate control law induced from (5.78) we see that under very mild conditions

on the coefficients the corresponding network interference index has a stable behavior

after successive iterations of powers along the steady state x.

5.5.1. Simulation Examples. The following simulation shown in Figure 5.6

is for a system of 140 users. For all users we take µi = 0.6 in (5.78). Parameters for

each half (i.e., 70 ) of the users are as specified in Examples 5.1 and 5.2, respectively.

User 1 has an initial power 0. The initial powers of other users are distributed in a

small neighborhood of 0.2.

For this simulation we label the users specified in Examples 5.1 and 5.2, re-

spectively, by 1-70 (Population 1) and 71-140 (Population 2), respectively. We take
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n = 140 and use the attenuation, power and control variables x, p, u ∈ IRn to de-

scribe all users. Here we give an informal stability analysis for the individual cost

based control law (5.78) for which we write the so-called nominal equation as follows:

ui = −K i

r
pi −

(1 − µi)Si

rη
(
1

n

n∑

i=1

e−bipi + η), (5.79)

where 1 ≤ i ≤ 70 for Population 1 and 71 ≤ i ≤ 140 for Population 2. For instance,

if user i is in Population 1 (i.e., 1 ≤ i ≤ 70) then all the parameters in (5.79) are

determined from Example 5.1; similarly for Population 2 in Example 5.2. We further

write the nominal equation for the closed-loop power adjustment as

dp

dt
= u = Λ1p+ Λ2, (5.80)

where Λ1 ∈ IRn×n, Λ2 ∈ IRn are easily determined by (5.79) and Λ1 can be written in

the form

Λ1 =




α + δ1 · · · α α · · · α
...

...

α · · · α + δ1 α · · · α

β · · · β β + δ2 · · · β
...

...

β · · · β β · · · β + δ2




n×n

,

where n = 140, α = 0.003083, β = 0.002715, δ1 = −0.7212 and δ2 = −0.6352. The

eigenvalues of Λ1 are given by

λ3 = λ4 = · · · = λ71 = δ1,

λ72 = λ73 = · · · = λ140 = δ2,

and λ1, λ2 are the two roots of

λ2 − [
n

2
(α + β) + δ1 + δ2]λ+ [

n

2
(αδ2 + βδ1) + δ1δ2] = 0,
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from which we take

λ1 = −0.6800, λ2 = −0.2705.

It is seen that all λi, 1 ≤ i ≤ 140, lie in the left half plane with a strictly positive

stability margin. This fact reveals the stabilizing feature of the power adjustment

scheme (5.78) in the small noise situation.
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Figure 5.6. The power adjustment of user 1 and the behaviour of the
population with the single user based control law

It is shown by Left bottom in Figure 5.6 that at t = 45, the powers of the 140

users stay in small neighbourhoods of two different levels due to different long-term

means of the attenuations for the two groups (i.e., Populations 1 and 2) of users.

5.5.2. Investigation of Population Behaviour in Large Systems. As

indicated by the above numerical example, under a large population condition the

network interference index exhibits a largely deterministic behavior in its evolution

with respect to time (see Right top in Figure 5.6); this fact suggests the feasibility of

modelling the system’s evolution by a certain deterministic dynamics and associated

initial conditions. This may potentially lead to completely decentralized control laws
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since each mobile uses only its own state and a deterministic process (subject to the

aggregated influence of the individuals) to determine its control input.

Concerning power control, the important issues of large populations, decentral-

ization, and the nature of the associated control laws will be addressed in Chapter

7. Also within the context of large population systems, we will investigate a class

of large-scale linear models in Chapter 6 and develop the general methodology for

analyzing decentralized control and for studying individual-mass behaviour.

Although in Chapter 6 the structure of the large-scale cost-coupled linear qua-

dratic Gaussian (LQG) systems is inspired by that of the power control problem, it is

of interest in its own right. In this linear context, we shall develop both the central-

ized optimal control, and more importantly, a decentralized game theoretic solution

with an individual playing against the mass of other players. In turn, the solution

for the large-scale linear systems will serve as a paradigm for approaching the large

population power control problem in Chapter 7.

5.6. Adaptation with Unknown Parameters in Channel Dy-

namics

We rewrite the lognormal fading channel model of Section 2.4 as follows:

dxi = −ai(xi + bi)dt+ σidwi, 1 ≤ i ≤ n. (5.81)

In this model, the channel variation is characterized by the parameters ai > 0, bi >

0, σi > 0. For practical implementations, ai, bi, σi may not be known a priori, but

xi can be measured, for instance, with the aid of pilot signals [18, 60]. In CDMA

systems, the power of users is updated with a period close to 1 millisecond (for

instance, by 800Hz [71]) while the time scale of lognormal fading is much larger.

Hence the channel may be regarded as varying in a very slow rate. In such a case

one expects to have estimation of the channel state at high accuracy. In the following

analysis, we shall assume perfect knowledge on the channel state xi.
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Consider an estimation algorithm for ai and bi via the measurement of xi. For

the i-th mobile, the parameters are estimated by the least squares algorithm where

âi(t), b̂i(t) denote the estimate of ai, bi at t ≥ 0, respectively. Define

b̂i(t) = −1

t

∫ t

0

xi(s)ds, t > 0, (5.82)

dPi = −Pi(xi + b̂i)(xi + b̂i)Pidt, t ≥ 0, (5.83)

dâi = −Pi(xi + b̂i)[dxi + âi(xi + b̂i)dt], t ≥ 0, (5.84)

where the initial conditions are given by b̂i(0), Pi(0) > 0, âi(0), respectively. The

estimates are strongly consistent as stated by the following proposition.

Proposition 5.4. The estimates b̂i(t) and âi(t) converge to the true parameters

with probability one as t→ ∞, i.e.,

lim
t→∞

b̂i(t) = bi, a.s. (5.85)

lim
t→∞

âi(t) = ai, a.s. (5.86)

with initial conditions b̂i(0), âi(0), Pi(0) > 0.

PROOF. Since ai > 0, σi > 0, it follows that xi is an ergodic diffusion process

satisfying

lim
t→∞

1

t

∫ t

0

xi(s)ds = lim
t→∞

Exi(t) = −bi a.s.

and (5.85) follows. Write ãi = âi − ai, b̃i = b̂i − bi and yi = xi + b̂i. It is easy to verify

that

dãi = −Pi(xi + b̂i)[dxi + âi(xi + b̂i)dt]

= −Piãiy
2
i dt− aib̃iPiyidt− σiPiyidwi, (5.87)

dP−1
i = y2

i dt. (5.88)
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By (5.88) it follows that

|1
t
P−1

i (t) − 1

t

∫ t

0

(xi + bi)
2ds|

=|1
t
P−1

i (0) +
1

t

∫ t

0

(bi − b̂i)
2ds− 2

t

∫ t

0

(xi + bi)(bi − b̂i)dt|

≤1

t
P−1

i (0) +
1

t

∫ t

0

b̃2i ds+ 2(
1

t

∫ t

0

(xi + bi)
2ds)

1
2 (

1

t

∫ t

0

b̃2i ds)
1
2 . (5.89)

Since limt→∞
1
t

∫ t

0
(xi + bi)

2ds = limt→∞E[xi(t)−Exi(t)]
2 a.s. by ergodicity of xi, and

limt→∞
1
t

∫ t

0
b̃2i ds = 0 a.s., it follows that

lim
t→∞

1

t
P−1

i (t) = lim
t→∞

E[xi(t) − Exi(t)]
2 > 0, a.s. (5.90)

By (5.87) and (5.88) we obtain

dP−1
i ã2

i = −ã2
i y

2
i dt− 2aib̃iãiyidt+ σ2

i Piy
2
i dt− 2σiãiyidwi. (5.91)

Applying the technique in [15], from (5.91) we get

P−1
i (t)ã2

i (t) − P−1
i (0)ã2

i (0)

= −
∫ t

0

ã2
i y

2
i ds+

∫ t

0

σ2
i Piy

2
i dt− 2

∫ t

0

aib̃iãiyidt− 2

∫ t

0

σiãiyidwi

= −
∫ t

0

ã2
i y

2
i ds+O(logP−1

i (t)) +O

(
[

∫ t

0

b̃2i ds]
1
2 · [

∫ t

0

ã2
i y

2
i ds]

1
2

)

+O

(
(

∫ t

0

ã2
i y

2
i ds)

1
2
+ε

)
, a.s. (5.92)

where 0 < ε < 1
2
. From (5.92) it follows that

∫ t

0

ã2
i y

2
i ds ≤ O(logP−1

i (t)) +O

(
[

∫ t

0

b̃2i ds]
1
2 · [

∫ t

0

ã2
i y

2
i ds]

1
2

)
+O

(
(

∫ t

0

ã2
i y

2
i ds)

1
2
+ε

)
,

which yields

∫ t

0

ã2
i y

2
i ds = O(log t) +O(

∫ t

0

b̃2i ds), a.s.
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Since b̃i(t) → 0, a.s., as t→ ∞, it follows that

∫ t

0

ã2
i y

2
i ds = o(t) a.s. (5.93)

By (5.90), (5.92) and (5.93), we get limt→∞ ãi(t) = 0, a.s., and (5.86) follows.

The estimation of σ2 is more complicated than that of ai and bi. In the following

we employ a discrete time prediction error term to construct the empirical variance.

We first take a sampling step h > 0 to discretize (5.81) to write

xi[(k + 1)h] + bi = e−aih[xi(kh) + bi] + σi

∫ (k+1)h

kh

e−ai[(k+1)h−s]dwi(s), k ≥ 0.

(5.94)

Setting Ai = e−aih and νi(kh) =
∫ (k+1)h

kh
e−ai[(k+1)h−s]dwi(s), (5.94) can be written in

the form

xi[(k + 1)h] + bi = Ai[xi(kh) + bi] + σiνi(kh).

It is easy to verify that Var(νi(kh)) = 1−e−2aih

2ai

4
= Σνi

. Denote Âi(kh) = e−
�

ai(kh)h,

Σ̂νi
(kh) = 1−e−2

�

ai(kh)h

2
�

ai(kh)
and

σ̂2
i (nh) =

1

nΣ̂νi
(kn)

n−1∑

k=0

(
xi[(k + 1)h] + b̂i(kh) − Âi(kh)[xi(kh) + b̂i(kh)]

)2

. (5.95)

It is straightforward to show that (5.95) can be written in a recursive form. We have

the following proposition:

Proposition 5.5. For σ̂2
i (nh), n ≥ 1, defined by (5.95), we have

lim
n→∞

σ̂2
i (nh) = σ2

i , a.s. (5.96)

where σ2
i > 0 is determined by (5.81).

PROOF. For notational brevity, in the following proof we write xi(kh), Ai, bi,

Âi(kh), b̂i(kh), νi(kh) as xi(k), A, b, Â(k), b̂(k), ν(k), respectively. Setting Ã(k) =
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Âi(kh) − Ai and b̃(k) = b̂i(kh) − bi, we have

n−1∑

k=0

(
xi[(k + 1)h] + b̂i(kh) − Âi(kh)[xi(kh) + b̂i(kh)]

)2

=
n−1∑

k=0

[Ã(k)xi(k)]
2 +

n−1∑

k=0

[Ab− Â(k)̂b(k) − b̂(k)]2 +
n−1∑

k=0

σ2
i ν

2(k)

+ 2

n−1∑

k=0

[Ã(k)xi(k)][Â(k)̂b(k) + b̃(k) − Ab] + 2

n−1∑

k=0

[−Ã(k)xi(k)][σiν(k)]

+ 2
n−1∑

k=0

[Ab− Â(k)̂b(k) − b̃(k)][σiν(k)]
4
= S1 + S2 + S3 + S12 + S13 + S23. (5.97)

Since Â(k) → A, b̂(k) → b a.s., as k → ∞, and
∑n−1

k=0 x
2
i (k) = O(n) a.s., it follows

that

|S1| + |S2| + |S12| = o(n), a.s. (5.98)

On the other hand, by the estimates in [54], we have

S13 = O(S
1
2
+ε

1 ), S23 = O(S
1
2
+ε

2 ), a.s.

for any 0 < ε < 1
2
, and therefore,

|S13| + |S23| = o(n), a.s. (5.99)

By (5.97)-(5.99), it follows that

lim
n→∞

σ̂2
i (nh) = lim

n→∞
1

nΣ̂νi
(kn)

n−1∑

k=0

σ2
i ν

2(k) = σ2
i , a.s. (5.100)

which completes the proof.

It is also possible to apply certain well known discrete time parameter estimation

algorithms (see, e.g., [14]) to (5.94) for estimating ai and bi.

The estimation algorithm given above will potentially remove certain obstacles

in applying the stochastic control framework developed in this Chapter as well as in
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Chapters 2-3 to power adjustment with unknown channel parameters. Notably, using

the above algorithm one can obtain an adaptive version of the suboptimal control law

of Section 5.5 in a straightforward way, and the adaptive control law is derived by

solving (5.64)-(5.66) and (5.72)-(5.74) when the parameters ai, bi, σi are replaced by

their on-line estimates.
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CHAPTER 6

LQG Optimization for Large-Scale

Cost-Coupled Systems

6.1. Introduction

In this Chapter, we investigate optimization of large-scale linear quadratic Gauss-

ian (LQG) control systems. We intend to develop implementationally simple control

scheme for such large-scale systems. At the present stage, the system dynamics under

consideration are not in their most general form; instead, the dynamics proposed are

those for describing the dynamical behaviour of many agents (also to be equivalently

called individuals or players) evolving in a similar manner. Roughly speaking, these

agents have independent dynamics when state regulation is not included. The opti-

mization of such systems is based on quadratic costs including two cases: the global

cost and the individual cost.

To facilitate our exposition, the global cost based optimization shall be termed

as the (centralize) optimal control and the individual cost based optimization shall be

called the dynamic LQG game (solution), or simply LQG game (solution).

For the LQG system we first examine the optimal control problem and analyze

the resulting algebraic Riccati equation as well as the feedback control.

Subsequently, we turn to the LQG game; in this part we analyze the resulting

ε-Nash equilibrium properties for the control law. In this case, each agent is weakly
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coupled with the other agents in the sense that it is only connected to the other

agents through its cost function. We view this to be the characteristic property of a

class of problems we call cost coupled (distributed) control problems. The connection

to economic problems is immediately evident.

Due to the particular structure of the individual cost, the mass formed by all other

agents imposes its impact on a given agent as a nearly deterministic quantity; for any

known mass influence, any given individual will seek its best way to respond to the

mass so that its cost is minimized. In a practical situation, the mass influence cannot

be assumed known a priori; this, however, does not present any difficulty for applying

the individual-mass interplay methodology. In this noncooperative game setup, by

assuming that all agents are at the same level of rationality and adopting basically

the same mode of reasoning for any presumed known mass behaviour, one can find

the natural response of all individuals, which in turn determine a corresponding mass

behaviour. Thus a meaningful solution to the underlying problem is to find a fixed

point for this procedure, i.e., find a mass behaviour so that the optimal response in a

certain sense will exactly generate the aforementioned mass behaviour. We note that

this LQG control problem is closely related to the stochastic power control problem.

The framework presented in this part is particularly suitable for optimization of large-

scale systems where individuals in the system seek to optimize for their own return

and where, moreover, it is more difficult to achieve global optimality through close

coordination between all agents. The general methodology of noncooperative games

provides a feasible methodology for building simple optimization rules which under

appropriate conditions can lead to stable population behaviour.

At the end of this Chapter we give a general analysis comparing the centralized

cost based optimal control with the individual cost based (decentralized) control.
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6.2. Dynamically Independent and Cost-Coupled Systems

Suppose in a linear stochastic system, the state evolution of each of the n indi-

viduals or agents is described by

dzi = (azi + bui)dt+ σdwi, 1 ≤ i ≤ n, t ≥ 0, (6.1)

where {wi, 1 ≤ i ≤ n} denotes n independent standard scalar Wiener processes. The

initial state zi(0) are mutually independent and are also independent of {wi, 1 ≤ i ≤
n}. In addition, E|zi(0)|2 <∞ and b 6= 0. For a given individual in the system, apart

from the control input, its state is not subject to direct influence from the other

individuals. In the following we will investigate the behaviour of the agents when

they interact with each other through coupling costs. Thus we term this class of

models as dynamically independent and cost-coupled systems. Concerning the costs,

we will consider two scenarios, i.e., a global cost function and individual costs.

In the first scenario, i.e., the centralized optimal control problem, the n individ-

uals interact with each other through a global cost function

J = J(u1, v1; u2, v2; · · · ; un, vn) =
n∑

i=1

Ji(ui, vi)

4
= E

∫ ∞

0

n∑

i=1

e−ρt[(zi − vi)
2 + ru2

i ]dt; (6.2)

and in particular we set in the cost-coupled case vi = γ( 1
n

∑n
k 6=i zk + η). Here we

assume ρ, r, γ, η > 0.

In the second scenario, i.e., the dynamic LQG game problem, each agent is as-

signed a cost function Ji defined as above, and we study the large system behaviour

in the dynamic noncooperative game framework.

In the rest of this Section we give a production planning example for illustration

of the cost Ji in (6.2), and we will derive a link term v0
i which is different from but

closely resembles vi = γ( 1
n

∑n
k 6=i zk+η). Most of the analysis in this Chapter is related
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to the case with the link term vi = γ( 1
n

∑n
k 6=i zk +η); and we reserve the phrase “cost-

coupled case” only for this vi. The methodology of this Chapter can be applied to

the production planning example without difficulty.

We stress that throughout this Chapter zi is described by the dynamics (6.1).

6.2.1. A Production Planning Example. The example below is motivated

by the work of Basar and Ho [9] where a quadratic nonzero-sum game was considered

for a static duopoly model. In their work it was assumed that the price of the

commodity decreases linearly as the overall production level of the two firms increases.

We will study here a dynamic model consisting of many players.

Consider n firms Fi, 1 ≤ i ≤ n, supplying the same product to the market. First,

let xi be the production level of firm Fi and suppose xi is subject to adjustment by

the following model:

dxi = uidt+ σdwi, t ≥ 0, (6.3)

which is a special form of (6.1). Here ui denotes the action of increasing or decreasing

the production level xi, and σdwi denotes uncertainty in the change of xi.

Second, by generalizing the affine linear price model of [9] to the case of many

players, we assume the price of the product is given by

p = η − γ(
1

n

n∑

i=1

xi), (6.4)

where η, γ > 0. In (6.4) the overall production level
∑n

i=1 xi is scaled by the factor 1
n

instead of a straight summation. A justification for doing so is that we are modelling

an expanding market in which an increasing number of firms are allowed to compete

together to serve an increasing number of consumers in large geographical areas.

So 1
n

∑n
i=1 xi is a reasonable choice to measure the average production level in an

expanding market. Following [9], γ may be interpreted as the “slope of the demand

curve”.
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Third, we assume that the firm Fi adjusts its production level xi by referring to

the current price of the product. When the price goes up, if the firm increases xi too

rapidly, it may create excessive inventory load. In the case of a price drop, if the firm

overly decreases xi, it may face high risk of supply shortage in the near future. Hence

it is critical to have an appropriate planning for the production level in order to be

in a better position with respect to profit-making. In the following we take a mild

adjustment rate for the production level by seeking

xi ≈ βp = β[η − γ(
1

n

n∑

i=1

xi)], (6.5)

where β > 0 is a constant. Based on (6.5) we write a penalty term

{xi − β[η − γ(
1

n

n∑

i=1

xi)]}2 4
= (xi − v0

i )
2. (6.6)

On the other hand, in the adjustment of xi the control ui corresponds to actions of

shutting down or restarting production lines, or even the construction of new ones.

Each of these actions will incur certain costs to the firm; for simplicity we denote the

instantaneous cost of the adjustment by ru2
i , where r > 0. We now write the infinite

horizon discounted cost for the firm Fi as follows:

Jx
i (ui, v

0
i ) = E

∫ ∞

0

e−ρt[(xi − v0
i )

2 + ru2
i ]dt, (6.7)

where ρ > 0 and we use the superscript in Jx
i to indicate that the associated dynamics

is (6.3). Here obviously v0
1 = · · · = v0

n. Notice that v0
i = β[η − γ( 1

n

∑n
i=1 xi)] and

vi = γ( 1
n

∑n
k 6=i zk + η) share the common feature of taking an average over a mass.

In this production planning example, each firm has its individual dynamics and

all the firms interact with each other through the market and their cost function.

6.3. The Global Cost Based Optimal Control

Assuming complete information for the system state, we determine the optimal

control law minimizing the cost function (6.2) with vi = γ( 1
n

∑n
k 6=i zk + η), subject
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to the dynamics (6.1). Writing the optimal cost v associated with (6.2) in the form

v(z) = zτPz+2sτz+ s0, and invoking the standard results of LQG control (see, e.g.,

[52, 10, 11]), we have

2(a− ρ

2
)P − b2

r
P 2 +Q = 0, (6.8)

ρs = as− b2

r
Ps+ (

n− 1

n
γ2η − γη)[1, · · · , 1]τ ,

ρs0 = −b
2

r
sτs + σ2trP + nγ2η2. (6.9)

where Q,P ∈ IRn×n. Q is seen to have the form below

Q =




α β · · · β

β α · · · β
...

. . .
...

β β · · · α



, (6.10)

where α = 1 + (n−1)γ2

n2 , β = −2γ
n

+ (n−2)γ2

n2 , which results in P taking the form

P =




p q · · · q

q p · · · q
...

. . .
...

q q · · · p



. (6.11)

The eigenvalues of Q are give by λ1 = α + (n − 1)β = [1 − (n−1)γ
n

]2, λ2 = λ3 =

· · · = λn = α− β = (1 + γ
n
)2. In the following we consider two cases.

Case 1: γ > 0 is chosen such that λ1 > 0. Then clearly Q > 0 (i.e., strictly

positive definite) and the pair [(a− ρ
2
)In, Q

1
2 ] is observable, so that the Riccati equation

(6.8) has a unique solution P > 0.

Case 2: γ > 0 is chosen such that λ1 = 0. In this case the solution P to (6.8)

is only positive semidefinite. Indeed, using an orthogonal transform T such that
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T τQT = Diag(λi)
4
= ΛQ, from (6.8) we obtain

2(a− ρ

2
)T τPT − b2

r
(T τPT )2 + ΛQ = 0,

Obviously, to the above equation there exists a unique positive semidefinite solution

T τPT of rank n − 1. So that there exists a unique positive semidefinite solution P

of rank n− 1 to the equation (6.8).

Substituting P into (6.8) and denoting a = a − ρ
2
, b = b√

r
, we get the following

equations

2ap− b
2
[p2 + (n− 1)q2] + α = 0, (6.12)

2aq − b
2
[2pq + (n− 2)q2] + β = 0, (6.13)

which further give

b
2
(p− q)2 − 2a(p− q) − (α− β) = 0. (6.14)

Under the positive semidefinite condition of P (including both case 1 and 2), solving

(6.12)-(6.14) yields

p =
a+

√
a2 + a2(α− β)

a2 +

√
a2 + b

2
(α− β) + nb

2
β −

√
a2 + b

2
(α− β)

nb
2 , (6.15)

q =

√
a2 + b

2
(α− β) + nb

2
β −

√
a2 + b

2
(α− β)

nb
2 . (6.16)

Summarizing the above analysis we state the following proposition:

Proposition 6.1. There exists a unique solution P ≥ 0 to (6.8), where Q is

defined by (6.10), and P is given by (6.11), (6.15), (6.16). If λ1 = [1 − (n−1)γ
n

]2 > 0,

then P > 0; if λ1 = 0, P ≥ 0 is of rank n− 1.

6.3.1. The Optimal Control and its Asymptotic Properties: the Indi-

vidual and the Collective. By well known results in LQG optimal control, the
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feedback control for the i-th player is determined as

ui = − b
r
(Pz)i −

b

r
si = − b

r
pzi −

b

r
q
∑

k 6=i

zk −
b

r
si. (6.17)

For large n, we have the expressions

p(n) =
a+

√
a2 + b

2

b
2 + o(1), q(n) =

√
a2 + (1 − γ)2b

2 −
√
a2 + b

2

nb
2 + o(

1

n
),

si(n) =
γη(γ − 1)

ρ
2

+

√
a2 + (1 − γ)2b

2
+ o(1), i = 1, 2, · · · , n,

where we use p(n), q(n), and si(n) to indicate their explicit dependence on n.

The main feature of the control ui is characterized by the first two terms in the

far right side of (6.17). The first term − b
r
pzi contains information on the state of

the i-th individual itself. Noticing the asymptotic property of q, in the second term

− b
r
q
∑

k 6=i zk an averaging takes place. This averaged quantity measures the collective

effect of all the other agents.

Assuming the initial state z|t=0 is always 0, then the limit average cost incurred

by each agent is given as

lim
n→∞

v

n
= lim

n→∞
s0(n)

n
=
γ2η2

ρ


1 − b

2
(γ − 1)2

(ρ
2

+

√
a2 + (1 − γ)2b

2
)2


 +

σ2(a+

√
a2 + b

2
)

ρb
2 .

(6.18)

6.4. The Linear Tracking Problem

In this Chapter, one of our main interests is in the large population behaviour

when each agent pursues its optimization strategy based on its individual cost. With

the above particular set of individual costs associated with the population, the essence

of an individual’s participation in the play is to adjust its state process so that it can

follow the average effect of the mass in a certain sense. We seek to develop simplified

control strategies; in doing so, a major step in our analysis will be to construct a
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certain deterministic approximation of the average effect which a given player receives

from the mass.

To begin with, for large n, assume z∗−i

4
= γ( 1

n

∑n
k 6=i zk + η) in Section 6.2 is ap-

proximated by a deterministic continuous function z∗(t). Now assuming z∗ is known,

we construct the individual cost for the i-th player as follows:

Ji(ui, z
∗) = E

∫ ∞

0

e−ρt{[zi − z∗(t)]2 + ru2
i }ds, (6.19)

which can be regarded as the i-th component of the global cost (6.2) with vi(t)
4
= z∗(t).

We note that for large n, it is reasonable to use a single z∗(t) to approximate all

z∗−i, 1 ≤ i ≤ n. By use of such a deterministic function we have a natural splitting of

the centralized cost such that the i-th player’s cost is isolated from direct interaction

with the other players.

Before we develop the approximation technique for individual cost based opti-

mization problems, we first examine a general tracking problem where we consider

bounded z∗. For the tracking problem itself, the boundedness condition on z∗ can

be relaxed, but we shall not do so since the results obtained here is sufficient for the

individual mass behaviour analysis in the following Sections of this Chapter.

In the following for two functions ϕ1(t), ϕ2(t) > 0, both defined on [0,∞), ϕ1(t) =

o(ϕ2(t)) means limt→∞
ϕ1(t)
ϕ2(t)

= 0, and ϕ1(t) = O(1) means supt≥0 |ϕ(t)| <∞.

Let Π be the positive solution to the algebraic Riccati equation

ρΠ = 2aΠ − b2

r
Π2 + 1. (6.20)

It is well known that a− b2Π
r

− ρ
2
< 0, or equivalently, −a+ b2Π

r
+ ρ

2
> 0. Denote

β1 = −a +
b2

r
Π, β2 = −a +

b2

r
Π + ρ. (6.21)

It is obvious that β2 > 0 since −a+ b2Π
r

+ ρ
2
> 0.

We have the following proposition.
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Proposition 6.2. Suppose i) the initial condition zi|t=0 has finite second order

moment, z∗ ∈ Cb[0,∞)
4
= {x ∈ C[0,∞), supt∈[0,∞) |x(t)| < ∞}; ii) Π > 0 is the

solution to the Riccati equation (6.20) and β1 = −a+ b2

r
Π > 0; and iii) s ∈ Cb[0,∞)

is determined by the following differential equation

ρs =
ds

dt
+ as− b2

r
Πs− z∗, (6.22)

Then ûi = − b
r
(Πzi + s) is an optimal control minimizing Ji(ui, z

∗), for all ui adapted

to σ(wi(r), r ≤ t).

Before proving the proposition, we first have a brief discussion about the as-

sumptions introduced above. For minimization of Ji, the admissible control set can

be taken as Ui
4
= {ui|ui adapted to σ(wi(r), r ≤ t), and

∫ ∞
0
e−ρt(z2

i + u2
i )dt < ∞},

where the process zi is subject to the control ui. In fact, Ui is nonempty due to con-

trollability of (6.1); Condition i) ensures that Ji has a finite minimum with respect

to ui adapted to σ(wi(s), s ≤ t), and this minimum is attained in Ui. Condition ii)

is needed in a technical step of the proof to establish an auxiliary equality; it means

that the resulting closed-loop system has a stable pole. Condition ii) will also be used

later for asymptotic analysis in the large population game context. In Condition iii)

instead of an initial condition s|t=0, only a boundedness condition for s is specified.

It turns out this boundedness condition can uniquely determine s on [0,∞). This

point will be illustrated after the proof of the proposition.

Proof of Proposition 6.2. The proof will be done following an algebraic ap-

proach as in [10], but in the current infinite horizon case, we need to estimate the

growth rate of the stochastic processes involved. First we define the auxiliary process

y with initial condition y0 = zi|t=0 as follows:

dy = {ay + b[− b
r
(Πy + s)]}dt+ dwi. (6.23)

For any ui ∈ Ui, the resulting state evolution of zi is described by

dzi = (azi + bui)dt+ σdwi.
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Denote ui = − b
r
(Πzi + s) + ũ and zi − y = z̃. Then it is obvious

dz̃ = (a− b2

r
Π)z̃dt + bũdt, z̃|t=0 = 0. (6.24)

Since E
∫ ∞
0
e−ρt[z2

i + u2
i ]dt <∞, it follows that

E

∫ ∞

0

e−ρtũ2dt <∞. (6.25)

Now the cost Ji(ui, z
∗) can be written as

Ji(ui, z
∗) =E

∫ ∞

0

e−ρt[(y − z∗)2 +
b2

r
(Πy + s)2]dt (

4
= I1)

+ E

∫ ∞

0

e−ρt[z̃2 + r(ũ− b

r
Πz̃)2]dt (

4
= I2)

+ 2E

∫ ∞

0

e−ρt[z̃(y − z∗) − b(Πy + s)(ũ− b

r
Πz̃)]dt (

4
= 2I3). (6.26)

For T > 0, using Ito’s formula and taking expectation we get

Ee−ρT z̃(Πy + s)(T ) = E

∫ T

0

e−ρt{−ρz̃(Πy + s) + [(a− b2

r
Π)z̃ + bũ](Πy + s)

+ z̃[Π(a− b2

r
Π)y − b2

r
Πs+ (ρ− a +

b2

r
Π)s + z∗]}dt (6.27)

4
= E

∫ T

0

e−ρtK(z̃, ũ, y, s, z∗)dt. (6.28)

It can be verified that Ey2 = O(1) by Condition ii); and moreover, since β1 > 0 it

follows that

Ez̃2
t ≤

∫ t

0

e−2β1(t−τ)dτ

∫ t

0

b2Eũ2
τdτ ≤ 1

2β1

∫ t

0

b2eρτe−ρτEũ2
τdτ = o(eρt),

where we get the estimate o(eρt) by the fact (6.25), and therefore Ee−ρT z̃(Πy +

s)(T ) → 0, as T → ∞. Taking limit on both sides of (6.27) gives

E

∫ ∞

0

e−ρtK(z̃, ũ, y, s, z∗)dt = 0. (6.29)
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Denoting the integrand in I3 of (6.26) as I(z̃, ũ, y, s, z∗), then it is straightforward to

verify that I(z̃, ũ, y, s, z∗) +K(z̃, ũ, y, s, z∗) is identical to zero, and consequently,

Ji(ui, z
∗) = I1 + I2. (6.30)

Taking into account the initial condition and dynamics of z̃, it follows that ui =

− b
r
(Πzi + s) minimizes Ji and the proof is complete.

The optimal cost for the deterministic tracking problem is given as follows.

Proposition 6.3. Assume Assumptions i)-iii) in Proposition 6.2 hold and q ∈
Cb[0,∞) is a solution to the equation

ρq =
dq

dt
− b2

r
s2 + (z∗)2 + σ2Π, (6.31)

Then the cost for the optimal control ûi = − b
r
(Πzi + s) is given by Ji(ûi, z

∗) =

ΠEz2
i (0) + 2s(0)Ezi(0) + q(0), where zi(0) is the initial state.

PROOF. First, we write the closed-loop system for the control ûi as

dzi = [(a− b2

r
Π)zi −

b2

r
s2]dt + σdwi. (6.32)

For any T > 0, by (6.32) and Ito’s formula it follows that

E

∫ T

0

d[e−ρt(Πz2
i + 2szi + q)]

=E

∫ T

0

(−ρ)e−ρt(Πz2
i + 2szi + q)dt+ E

∫ T

o

e−ρtΦdt (6.33)

where

Φ
4
=2Πzi[(a−

b2

r
Π)zi −

b2

r
s2] + Πσ2 + 2zi(ρs− as+

b2

r
Πs+ z∗)

+ 2s[(a− b2

r
Π)zi −

b2

r
s2] + [ρq +

b2

r
s2 − (z∗)2 − σ2Π].

Then it can be verified that

−ρ(Πz2
i + 2szi + q) + Φ = −(zi − z∗)2 − b2

r
(Πzi + s)2 (6.34)
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By (6.33) and (6.34) it follows that

J(ûi, z
∗) = E

∫ ∞

0

[(zi − z∗)2 +
b2

r
(Πzi + s)2]dt

= − E lim
T→∞

∫ T

0

d[e−ρt(Πz2
i + 2szi + q)] = ΠEz2

i (0) + 2s(0)Ezi(0) + q(0) (6.35)

since limT→∞Ee−ρT (Πz2
i + 2szi + q)(T ) = 0 by the growth condition of Ez2

i , s and

q. This completes the proof.

Now we show how s can be uniquely determined subject to the boundedness

condition specified in Proposition 6.2, i.e., z∗(t) = Cb[0,∞), s(t) = Cb[0,∞). With

an initial condition s0 and recalling (6.22), s can be expressed as

s(t) = s0e
β2t + eβ2t

∫ t

0

e−β2τz∗(τ)dτ. (6.36)

Since β2 > 0, the integral
∫ ∞
0
e−β2τz∗(τ)dτ exists and is finite. We take initial condi-

tion s0 = −
∫ ∞
0
e−β2τz∗(τ)dτ , so that

s(t) = −eβ2t

∫ ∞

t

e−β2τz∗(τ)dτ ∈ Cb[0,∞),

and any other initial condition will yield a solution which is not in the set Cb[0,∞)

and is excluded for our problem.

6.5. Competitive Behaviour and Mass Behaviour

We now return to the system (6.1) when each agent is assigned an individual

cost Ji(ui, vi) which is the i-th component of J defined by (6.2). As a first step, after

applying the optimal tracking control law

ui = − b
r
(Πzi + s), (6.37)

with respect to a deterministic function z∗, where Π and s are determined by (6.20)

and (6.22), the closed loop for the i-th player is

dzi = (a− b2

r
Π)zidt−

b2

r
sdt+ σdwi. (6.38)
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Denoting zi(t) = Ezi(t) and taking expectation on both sides of (6.38) yields

dzi

dt
= (a− b2

r
Π)zi −

b2

r
s, (6.39)

where the initial condition is zi|t=0 = Ezi(0).

We further define the population average of means (simply called population

mean) as z
4
= 1

n

∑n
i=1 zi; then it is clear that z satisfies the same equation as zi, i.e.,

dz

dt
= (a− b2

r
Π)z − b2

r
s, (6.40)

where the initial condition is given by z|t=0 = 1
n

∑n
i=1Ezi(0).

Here one naturally comes up with the important questions how the deterministic

process z∗ is chosen when it is applied to system (6.1) to approximate the influence

of all other players on the given player, and in what way it captures the dynamic

behaviour of the collection of many individuals. Since we wish to have z∗(t) ≈ z∗−i =

γ( 1
n

∑n
k 6=i zk + η), for large n it is reasonable to express z∗ in terms of the population

mean z as

z∗(t) = γ(z(t) + η), (6.41)

whenever an equality for all time t is possible. We note that z∗ defined above is

used to approximate z∗i = γ( 1
n

∑n
k 6=i zk + η) in the context of a fixed large n. As n

increases, accuracy of this approximation is expected to improve. Subject to such an

equality constraint, a dynamic interaction is built up between the individual and the

mass. Specifically, based on the population mean z a tracking level z∗ is determined

by the rule (6.41) which is then used to compute the individual control law; in turn

the individual control will lead to a corresponding mass behaviour. In the following

we will address certain stability issues associated with such interactions.

120



6.5 COMPETITIVE BEHAVIOUR AND MASS BEHAVIOUR

Combining (6.22), (6.40) and (6.41) together and setting the derivatives as zero,

we write a set of steady state equations as follows




γz∞ − z∗∞ = −γη,
z∗∞ − (a− b2

r
Π − ρ)s∞ = 0,

(a− b2

r
Π)z∞ − b2

r
s∞ = 0,

(6.42)

Example 6.1. a = 1, b = 1, σ = 0.3, ρ = 0.5, γ = 0.6, r = 0.1, η = 0.25. We get

Π = 0.4, (z∞, z
∗
∞, s∞) = (0.333333, 0.35,−0.1).

We make the following key assumptions:

(H6.1) β1 > 0, and M
β1β2

< 1, where M = b2γ
r

, and β1, β2 are defined by (6.21).

(H6.2) zi(0), 1 ≤ i ≤ n, are mutually independent and Ez2
i (0) < C for C indepen-

dent of n.

Notice that the condition β1 > 0 has been used in Proposition 6.2. It can be

verified that (H6.1) holds for Example 6.1. Under Assumption (H6.1), (6.42) is a

nonsingular linear equation and has a unique solution (z∞, z∗∞, s∞).

Eliminating s in (6.40) by (6.22) and (6.41), we get the equation for the population

mean

dz

dt
= (a− b2

r
Π)z +

b2γ

r

∫ ∞

t

eβ2(t−τ)z(τ)dτ +
b2γη

rβ2
. (6.43)

For bounded z on [0,∞), the integral in (6.43) is well defined since β2 > 0.

Theorem 6.1. Under Assumption (H6.1), the integral-differential equation (6.43)

subject to any initial condition z0 and the terminal condition limt→∞ z(t) = z∞ ad-

mits a unique solution.

PROOF. By (6.42) we have

(a− b2

r
Π)z∞ +

b2γz∞
rβ2

+
b2γη

rβ2

= (a− b2

r
Π)z∞ − b2

r
s∞ = 0. (6.44)
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Taking z̃ = z − z∞ we rewrite (6.43) in the equivalent form

dz̃

dt
= (a− b2

r
Π)z̃ +

b2γ

r

∫ ∞

t

eβ2(t−τ)z̃(τ)dτ + (a− b2

r
Π)z∞ +

b2γz∞
rβ2

+
b2γη

rβ2

= −β1z̃ +M

∫ ∞

t

eβ2(t−τ)z̃(τ)dτ. (6.45)

where β1 = −a + b2

r
Π, β2 = −a + b2

r
Π + ρ, M = b2γ

r
and z̃(t) satisfies the terminal

condition limt→∞ z̃(t) = 0.

We write z̃ = e−β1tẑ and use a change of variable to obtain from (6.45)

dẑ

dt
= M

∫ ∞

t

e(β1+β2)(t−τ)ẑ(τ)dτ, (6.46)

where ẑ(t) satisfies the growth condition ẑ(t) = o(eβ1t). It is easily seen that the

initial condition is ẑ(0) = z(0) − z∞. We write (6.46) in the equivalent form of a

double integral equation

ẑ(t) = ẑ(0) +M

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)ẑ(τ)dτds. (6.47)

For analyzing existence and uniqueness of the solution to (6.47) we introduce the func-

tion class C = {x ∈ C[0,∞), limt→∞e−β1tx(t) = 0}, and set ‖x‖ 4
= supt∈[0,∞) e

−β1t|x(t)|.
Then it is straightforward to verify that under the norm ‖ · ‖, C is a Banach space.

Define the map

F (x) = z(0) − z∞ +M

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)x(τ)dτds, (6.48)

for x ∈ C. It is obvious F (x) ∈ C[0,∞) for x ∈ C. We verify that we also have

limt→∞ e−β1tF (x) = 0. For any fixed ε > 0 and x ∈ C, there exists T > 0 such that
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e−β1t|x(t)| < ε for all t ≥ T . We denote c = supt∈[0,∞) e
−β1t|x(t)|. For t > T , we have

|e−β1t

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)x(τ)dτds|

=|e−β1t

∫ T

0

∫ ∞

s

e(β1+β2)(s−τ)x(τ)dτds+ e−β1t

∫ t

T

∫ ∞

s

e(β1+β2)(s−τ)x(τ)dτds|

≤e−β1t

∫ T

0

∫ ∞

s

e(β1+β2)se−β2τe−β1τ |x(τ)|dτds+ e−β1t

∫ t

T

∫ ∞

s

e(β1+β2)(s−τ)εeβ1τdτds

≤e−β1t

∫ T

0

∫ ∞

s

e(β1+β2)se−β2τcdτds+ e−β1t

∫ t

T

∫ ∞

s

e(β1+β2)(s−τ)εeβ1τdτds

≤ce
β1T − 1

β1β2

e−β1t +
ε

β1β2

(1 − eβ1(T−t)). (6.49)

It follows from (6.48)-(6.49) that for sufficiently large t we have e−β1t|F (x)| ≤ 2Mε
β1β2

.

Since ε > 0 is arbitrary, we have limt→∞ e−β1tF (x) = 0 and hence F (x) ∈ C. Next we

establish a contractive property for F . For x1, x2 ∈ C, we have

|e−β1t[F (x1) − F (x2)]| = M |e−β1t

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)[x1(τ) − x2(τ)]dτds|

=M |e−β1t

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)eβ1τe−β1τ [x1(τ) − x2(τ)]dτds|

≤M‖x1 − x2‖ · e−β1t

∫ t

0

∫ ∞

s

e(β1+β2)(s−τ)eβ1τdτds

=
M

β1β2
(1 − e−β1t)‖x1 − x2‖, (6.50)

and therefore

‖F (x1) − F (x2)‖ ≤ M

β1β2
‖x1 − x2‖. (6.51)

Since M
β1β2

< 1, F is a contraction on C so that (6.48) has a unique solution in

C. Hence the integral-differential equation (6.43) has a unique solution satisfying

limt→∞ z(t) = z∞. This completes the proof.

6.5.1. An Analytic Solution to the Equation System. We sketch com-

puting analytic expressions for z and s as follows: The calculation will first be stated

in terms of z̃ and s̃, where z̃(t) = z(t) − z∞ and s̃(t) = s(t) − s∞.
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Taking differentiation on both sides of (6.45) gives

d2z̃

dt2
= −β1

dz̃

dt
+ β2M

∫ ∞

t

eβ2(t−τ)z̃(τ)dτ −Mz̃(t)

which combined again with (6.45) yields

d2z̃

dt2
− ρ

dz̃

dt
+ (M − β1β2)z̃ = 0. (6.52)

The characteristic equation of (6.52) is λ2 − ρλ+(M −β1β2) with two distinct eigen-

values:

λ1 =
ρ−

√
ρ2 + 4(β1β2 −M)

2
< 0, λ2 =

ρ +
√
ρ2 + 4(β1β2 −M)

2
> 0.

Recalling the growth condition for z (i.e., we are interested only in bounded z) and

hence for z̃, we have

z̃ = z̃(0)eλ1t = (z(0) − z∞)eλ1t, (6.53)

and it is readily verified that z̃ is a solution to (6.45).

On the other hand, from (6.22) and (6.41) we get

ds̃

dt
= β2s̃+ γz̃. (6.54)

Assuming initial condition s̃(0) = s(0) − s∞, we obtain

s̃(t) = s̃(0)eβ2t + eβ2t

∫ t

0

e−β2τγ[z(0) − z∞]eλ1τdτ

= s̃(0)eβ2t + eβ2t

∫ ∞

0

e−β2τγ[z(0) − z∞]eλ1τdτ

− eβ2t

∫ ∞

t

e−β2τγ[z(0) − z∞]eλ1τdτ (6.55)

Setting the initial condition in (6.55) as

s̃(0) = −
∫ ∞

0

e−β2τγ[z(0) − z∞]eλ1τdτ, (6.56)
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we get

s̃(t) =
γ

β2 − λ1
(z∞ − z(0))eλ1t. (6.57)

Notice that any initial condition s̃|t=0 other than (6.56) yields s̃ and s with a growth

rate of eβ2t which is excluded here.

We summarize the above calculation to get the following proposition:

Proposition 6.4. If (H6.1) holds, the unique asymptotically convergent solution

(z, s) determined by (6.22), (6.40) and (6.41), is given by

z(t) = z∞ + (z(0) − z∞)eλ1t,

s(t) = s∞ +
γ

β2 − λ1
(z∞ − z(0))eλ1t,

where β2 = −a + b2

r
Π + ρ, and λ1 =

ρ−
√

ρ2+4(β1β2−M)

2
< 0.

6.5.2. The Decentralized ε-Nash Equilibrium. In the current context we

give the definition of Nash equilibrium.

Definition 6.1. [6] A set of controls uk ∈ Uk, 1 ≤ k ≤ n, for n players where

Uk is a specified class of measurable functions of the state processes z1(·), · · · , zn(·),
such that the resulting vk is adapted to some subfiltration of the underlying Brownian

motion, is called a Nash equilibrium with respect to the costs Jk(uk, vk), 1 ≤ k ≤ n,

if for any fixed 1 ≤ i ≤ n, we have

Ji(ui, vi(u1, · · · , ui−1, ui+1 · · · , un)) ≤ Ji(u
′
i, vi(u1, · · · , ui−1, ui+1, · · · , un)),

when any alternative control u′i ∈ Ui is applied by the i-th player.

Definition 6.2. A set of controls uk ∈ Uk, 1 ≤ k ≤ n, for n players is called an

ε-Nash equilibrium with respect to the costs Jk, 1 ≤ k ≤ n, if there exists ε > 0 such

that for any fixed 1 ≤ i ≤ n, we have

Ji(ui, vi(u1, · · · , ui−1, ui+1 · · · , un)) ≤ Ji(u
′
i, vi(u1, · · · , ui−1, ui+1, · · · , un)) + ε,
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when any alternative control u′i ∈ Uk is applied by the i-th player.

In the following we use Ji(ui, vi(u1, · · · , ui−1, · · · , ui+1, · · · , un)) to denote the

individual cost with respect to the coupled reference trajectory vi = γ( 1
n

∑n
k 6=i zk(uk)+

η) for the i-th player when player k applies control uk, 1 ≤ k ≤ n, and n is the

population size. Let

Ji(ui, vi(u
0
1, · · · , u0

i−1, u
0
i+1 · · · , u0

n))

4
=E

∫ ∞

0

e−ρt{[zi(ui) − γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)]2 + ru2

i }dt, (6.58)

where zk(u
0
k) = zk(u

0
k(z

∗, zk)). Here we use u0
i to denote the optimal tracking based

control law for the i-th player, i.e.,

u0
i = − b

r
(Πzi + s), (6.59)

where s and the associated z∗ are derived from (6.22), (6.40) and (6.41). In particular,

Ji(u
0
i , vi(u

0
1, · · · , u0

i−1, u
0
i+1 · · · , u0

n)) = Ji(ui, vi(u
0
1, · · · , u0

i−1, u
0
i+1 · · · , u0

n))|ui=u0
i
.

Notice that the initial condition of z is take as 1
n

∑n
k=1Ezk(0), which further

induces the initial condition of z∗(t) = γ(z(t) + η).

Denote σ2
0 = sup1≤i≤nE[zi(0) − Ezi(0)]2, σ0 ≥ 0. In the case all zi(0) become

deterministic, we simply have σ0 = 0.

Lemma 6.1. Under (H6.1)-(H6.2), for z∗ determined by (6.22), (6.40) and

(6.41), we have

E

∫ ∞

0

e−ρt[z∗ − γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)]2dt = O(

σ2 + σ2
0

n
+

1

n2
),

where the state zk(u
0
k) of player k, k 6= i, is generated by the optimal tracking based

control law u0
k given by (6.59) for the k-th player.
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PROOF. By equations (6.39), (6.40) and their initial conditions z i|t=0 = Ezi(0),

z|t=0 = 1
n

∑n
i=1Ezi(0), it follows that

z∗ − γ(
1

n

n∑

k 6=i

zk + η) = γ(
1

n

n∑

k=1

Ezk + η) − γ(
1

n

n∑

k 6=i

zk + η)

=
γ

n
Ezi −

γ

n

n∑

k 6=i

(zk − Ezk), (6.60)

where we simply write zk(u
0
k) as zk. Writing z̃n,i

4
= 1

n

∑n
k 6=i(zk − Ezk), we have

dz̃n,i = −β1z̃n,idt+
σ

n

n∑

k 6=i

dwk, t ≥ 0. (6.61)

By directly solving (6.61) and recalling Assumptions (H6.1)-(H6.2), it follows that

there exists a constant C1 independent of i and n such that supt≥0 Ez̃
2
n,i(t) ≤ C1 · σ2+σ2

0

n

and moreover, supt≥0 |Ezi(t)| ≤ C1. Consequently, from (6.60) we get

E[z∗ − γ(
1

n

n∑

k 6=i

zk + η)]2 = O(
σ2 + σ2

0

n
+

1

n2
), (6.62)

and the lemma follows.

Theorem 6.2. Under (H6.1)-(H6.2), we have

|Ji(u
0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)) − Ji(u

0
i , z

∗)| = O(
σ + σ0√

n
+

1

n
), (6.63)

where Ji(u
0
i , z

∗) is the individual cost with respect to z∗, and u0
i is given by (6.59).

The proof is postponed until after Theorem 6.3.

Theorem 6.3. Under (H6.1)-(H6.2), the set of controls u0
i , 1 ≤ i ≤ n, for the

n players is an ε-Nash equilibrium with respect to the costs Ji(ui, γ(
1
n

∑n
k 6=i zk(uk) +
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η)), 1 ≤ i ≤ n, with ε = O(σ+σ0√
n

+ 1
n
), i.e., for any i, we have

Ji(u
0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)) − O(

σ + σ0√
n

+
1

n
) (6.64)

≤ inf
ui

Ji(ui, γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)) (6.65)

≤Ji(u
0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)), (6.66)

where u0
k is the optimal tracking based control law given by (6.59) for the k-th player,

and ui is any alternative control which depends on (t, z1, · · · , zn).

PROOF. The inequality (6.66) is obviously true. We prove the inequality (6.65).

For any full state dependent ui satisfying

Ji(ui, γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)) ≤ Ji(u

0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)) (6.67)

we can find a fixed constant C independent of n such that

Ji(ui, γ(
1

n

n∑

k 6=i

zk(u
0
k) + η))

=E

∫ ∞

0

e−ρt{[zi(ui) − γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)]2 + ru2

i }dt ≤ C. (6.68)

Here and hereafter in the proof, (zi(ui), ui), (zk(u
0
k), u

0
k), k 6= i, denote the correspond-

ing state-control pairs. For notational brevity in the following we omit the associated

control in zi(ui), zk(u
0
k), k 6= i and simply write zi, zk without causing confusion.

Since all zk, k 6= i, are fixed after the control u0
k is selected, for (ui, zi) satisfying

(6.68) there exists C > 0 independent of n such that

E

∫ ∞

0

e−ρtz2
i dt ≤ C, E

∫ ∞

0

e−ρt(zi − z∗(t))2dt ≤ C. (6.69)
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On the other hand we have

E

∫ ∞

0

e−ρt{[zi − γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)]2 + ru2

i }dt

=E

∫ ∞

0

e−ρt{[(zi − z∗) + (z∗ − γ(
1

n

n∑

k 6=i

zk + η))]2 + ru2
i }dt

=E

∫ ∞

0

e−ρt[(zi − z∗)2 + ru2
i ]dt+ E

∫ ∞

0

e−ρt[z∗ − γ(
1

n

n∑

k 6=i

zk + η)]2dt

+ 2E

∫ ∞

0

e−ρt(zi − z∗)[z∗ − γ(
1

n

n∑

k 6=i

zk + η)]dt
4
= I1 + I2 + I3. (6.70)

Then we have

I1 = J(ui, z
∗) ≥ Ji(u

0
i , z

∗)

≥ Ji(u
0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)) − O(

σ + σ0√
n

+
1

n
), (6.71)

I2 = O(
σ2 + σ2

0

n
+

1

n2
) (6.72)

where (6.71) follows from Theorem 6.2 and (6.72) follows from Lemma 6.1. Moreover

|I3| ≤ 2

∫ ∞

0

e−ρt[E(zi − z∗)2]
1
2{E[z∗ − γ(

1

n

n∑

k 6=i

zk + η)]2} 1
2dt

≤ 2[

∫ ∞

0

e−ρtE(zi − z∗)2dt]
1
2 {

∫ ∞

0

e−ρt[z∗ − γ(
1

n

n∑

k 6=i

zk + η)]2dt} 1
2

= O(
√
I2) = O(

√
σ2 + σ2

0

n
+

1

n2
) = O(

σ + σ0√
n

+
1

n
). (6.73)

Hence it follows from the above estimates that there exists c > 0 such that

Ji(ui, γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)) ≥ Ji(u

0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)) − c(

σ + σ0√
n

+
1

n
), (6.74)

where c is independent of σ2 and n. This completes the proof.
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In other words, when all the players k = 1, · · · i − 1, i + 1, · · · , n, retain their

decentralized controls u0
k and the i-th player is allowed to use a full state based

control ui, it can reduce its cost at most by O(σ+σ0√
n

+ 1
n
).

Proof of Theorem 6.2. Similar to (6.70) we have

Ji(u
0
i , γ(

1

n

n∑

k 6=i

zk(u
0
k) + η))

=E

∫ ∞

0

e−ρt{[zi(u
0
i ) − γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)]2 + r(u0

i )
2}dt

=E

∫ ∞

0

e−ρt{[(zi(u
0
i ) − z∗) + (z∗ − γ(

1

n

n∑

k 6=i

zk(u
0
k) + η))]2 + r(u0

i )
2}dt

=Ji(u
0
i , z

∗) + E

∫ ∞

0

e−ρt[z∗ − γ(
1

n

n∑

k 6=i

zk(u
0
k) + η)]2dt

+ 2E

∫ ∞

0

e−ρt(zi(u
0
i ) − z∗)[z∗ − γ(

1

n

n∑

k 6=i

zk(u
0
k) + η)]dt

4
=Ji(u

0
i , z

∗) + I ′2 + I ′3. (6.75)

Finally, similar to (6.72) and (6.73), we have

|I ′2 + I ′3| = O(
σ + σ0√

n
+

1

n
), (6.76)

and this completes the proof.

6.5.3. The Virtual Agent, Policy Iteration and Attraction to Mass Be-

haviour. In this subsection we investigate certain asymptotic properties on the

interaction between the individual and the mass, and the formulation shall be inter-

preted in the large population limit (i.e., an infinite population) context.

Assume each agent is assigned a cost according to (6.19), i.e.,

Ji(ui, z
∗) = E

∫ ∞

0

e−ρt{[zi − z∗(t)]2 + ru2
i}ds, i ≥ 1. (6.77)
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We now introduce a virtual central agent (or simply virtual agent) (VA) to represent

the mass effect and use the function z∗ to describe the behaviour of the virtual agent.

Here the virtual agent acts as a passive player in the game in the sense that it does

not have the freedom to change z∗ by its own will. Instead, after each selection of

the individual control laws, a new z∗ will be induced as specified below; subsequently,

the individual shall consider its optimal policy to respond to this new z∗. Thus, the

interplay between a given individual and the virtual agent may be described in terms

of a series of asynchronous plays. In the following policy iteration analysis, we take

the virtual agent as a passive leader and the individual agents as active followers.

Suppose that there is a priori z∗(k) ∈ Cb[0,∞)
4
= {x ∈ C[0,∞), supt∈[0,∞) |x(t)| <

∞}, k ≥ 0; then by Proposition 6.2 the optimal control for the i-th agent with respect

to z∗(k) is given as

u
(k+1)
i = − b

r
(Πzi + s(k+1)) (6.78)

where

ρs(k+1) =
ds(k+1)

dt
+ as(k+1) − b2

r
Πs(k+1) − z∗(k), s(k+1)(t) ∈ Cb[0,∞). (6.79)

The unique solution s(k+1) ∈ Cb[0,∞) to (6.79) can be represented by the map

s(k+1) = −eβ2t

∫ ∞

t

e−β2τz∗(k)(τ)dτ. (6.80)

Subsequently, by the control law u
(k+1)
i the corresponding population mean is

described by

dz(k+1)

dt
= (a− b2

r
Π)z(k+1) − b2

r
s(k+1), (6.81)

where the initial condition is z(k+1)|t=0 = z0 for all k, and z0 is the initial value of the

population mean. (6.81) shall be interpreted as the limiting version of (6.40) in the

infinite population case.
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Then the virtual agent’s state z∗ corresponding to u
(k+1)
i is determined as

z∗(k+1) = γ(z(k+1) + η) (6.82)

which is a recursive version of (6.41). From (6.81)-(6.82) we have

dz∗(k+1)

dt
= −β1z

∗(k+1) − γb2

r
s(k+1) + β1γη. (6.83)

Combining (6.80) and (6.83) gives

dz∗(k+1)

dt
= −β1z

∗(k+1) +
γb2

r
eβ2t

∫ ∞

t

e−β2τz∗(k)(τ)dτ + β1γη, (6.84)

where the initial condition is z∗(k+1) = z∗0 for all k. In addition, z∗0 = γ(z0 + η).

For x ∈ Cb[0,∞), define the norm ‖x‖b = supt∈[0,∞) |x(t)|.
We now suppose Assumption (H6.1) holds; then β1 > 0. Obviously, for any

z∗(k) ∈ Cb[0,∞) there exists a unique solution z∗(k+1) to (6.84) which is also in

Cb[0,∞). From (6.84) we induce a map L0 : Cb[0,∞) → Cb[0,∞) such that the

unique solution can be represented by

z∗(k+1) 4
= L0z

∗(k). (6.85)

Theorem 6.4. If (H6.1) holds, the map L0 is a contraction on Cb[0,∞).

PROOF. We take z∗(k), y∗(k) ∈ Cb[0,∞) and set

z∗(k+1) = L0z
∗(k) (6.86)

y∗(k+1) = L0y
∗(k) (6.87)

Denote ∆1 = z∗(k+1) − y∗(k+1), ∆0 = z∗(k) − y∗(k). We have

d∆1

dt
= −β1∆1 +

γb2

r
eβ2t

∫ ∞

t

e−β2τ∆0(τ)dτ (6.88)
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Since ∆1|t=0 = z∗(k+1)|t=0 − y∗(k+1)|t=0 = z∗0 − z∗0 = 0, it follows that

|∆1(t)| = |
∫ t

0

e−β1(t−s)γb
2

r
eβ2s

(∫ ∞

s

e−β2τ∆0(τ)dτ

)
ds|

≤ γb2

r
‖∆0‖b

∫ t

0

e−β1(t−s)eβ2s

(∫ ∞

s

e−β2τdτ

)
ds ≤ γb2

rβ1β2
‖∆0‖b, (6.89)

so that

‖∆1‖b ≤
γb2

rβ1β2

‖∆0‖b (6.90)

where γb2

rβ1β2
< 1 by Assumption (H6.1), and therefore L0 is a contraction.

By the asynchronous updation of the individual strategies against the virtual

agent, we induce the mass behaviour by a sequence of functions z∗(k) = L0z
∗(k−1) =

Lk
0z

∗(0). We have the proposition.

Proposition 6.5. Under (H6.1), limk→∞ z∗(k) = z∗ where z∗ is determined by

(6.22), (6.40) and (6.41).

PROOF. This follows from Theorem 6.4.

The above proposition reveals certain stability and attraction feature of the evo-

lution of the individual and mass behaviour.

6.6. A Cost Gap between the Centralized Optimal Control

and Decentralized Tracking

As shown by the analysis in the foregoing Sections of this Chapter, for the un-

derlying large population system the global cost based optimal control (6.17) and the

individual cost based control (tracking) (6.59) have very different nature, which may

be further illustrated by means of the resulting costs and the state trajectories in the

two cases.

For a comparison of the costs associated with the two different methods, we

assume the initial state zi(0) of all agents is 0 in the two cases. Let n be the cardinality

of the population. We scale the global optimal cost (with 0 initial state for all players)
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v(0)
4
= inf J |zi=0,1≤i≤n = inf(

∑n
i=1 Ji)|zi(0)=0,1≤i≤n in Section 6.3 by n to get vn(0) =

v(0)
n

, and set v(0) = limn→∞ vn(0). Here v(0) may be interpreted as the optimal cost

incurred per agent with identically 0 initial state. By (6.18), we have

v(0) =
γ2η2

ρ


1 − b

2
(γ − 1)2

(ρ
2

+

√
a2 + (1 − γ)2b

2
)2


 +

σ2(a+

√
a2 + b

2
)

ρb
2 . (6.91)

We now consider the case of the LQG game. In the large population limit, when

each agent applies the optimal tracking based control law u0
i = − b

r
(Πzi + s), let vi(0)

be the resulting individual cost, where again we assume the initial state is 0 for all

agents. Write vind(0) = vi(0) for any i since all agents have 0 initial state.

With s and z∗ determined from Proposition 6.4, one can get from (6.31) a solution

q ∈ Cb[0,∞) if and only if the initial condition is given by

q(0) =

{
(β2

2 − b
2
)
1

ρ
+

2b
2
γ

(ρ− λ1)β1
(

b
2

β1 + λ2
− β2) +

γ2b
4

(ρ− 2λ1)β2
1

[1 − b
2

(β1 + λ2)2
]

}
s2
∞

+
Πσ2

ρ
(6.92)

and it is clear vind(0) = q(0) by Proposition 6.3.

By the fact Π = a+
√

a2+b
2

b
2 and s∞ = − β1β2η

β1β2−b
2
γ
γ given by (6.42), we derive from

(6.91) and (6.92) that

|v(0) − vind(0)| = O(γ2).

The gap between v(0) and vind(0) is demonstrated in Figure 6.1.
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gamma takes values from 0 to 0.6. See the defn of the costs

Indiv. cost by tracking
Limit of Centralized cost per agent: lim

n
 (V/n)

Optimality Gap

Figure 6.1. Top: Individual tracking based cost vind(0); Middle: Scaled
global cost v(0); Bottom: The cost gap |v(0) − vind(0)|.
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We have the following observations: If each agent applies the global cost based

optimal control (6.17), all of them will be in a better situation compared to the

case of everyone applying the optimal tracking based control law (6.59). However

this universal well-being requires a strong coordination between all the agents, and

greedy attempts from individuals easily destroy the global optimality. This means

that when all agents are applying the global cost based control law, any individual

player should be restrained from taking advantage of the other agents’ presumably

fixed control strategies by selfishly moving to a new strategy for reducing its own

cost. In contrast, the individual cost based control is robust under greedy individual

strategies as indicated by its ε-Nash equilibrium property.

Subsequently, we examine the state trajectories of the two control designs.

Suppose in a large population system S, the dynamics for the agents is given

by: a = b = 1, σ = 0.05, ρ = 0.5, γ = 0.6, r = 0.1, η = 0.25. The population

mean 1
n

∑n
i=1Ezi(0) = 0.1 (this will be used to set the initial condition z|t=0 =

1
n

∑n
i=1Ezi(0) = 0.1 for the mass).

Figure 6.2 shows the behaviour of two agents, labelled by 1 and 2. Both agents

1 and 2 are sampled from the above system S and apply the tracking control law

(6.59). Both agents have different initial conditions but eventually their trajectories

merge together.
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0.1

0.2
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0.9

1

x
1
: state for player 1

noise−free state trajectory for player 1
x

2
: state for player 2

noise−free state trajectory for player 2

Figure 6.2. Trajectories of players 1 and 2

Now we analyze the optimal control. Recalling (6.17), in the global cost based

control law (i.e., the centralized information optimal control law) the i-th agent’s
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control is

ui = − b
r
pzi −

b

r
q

n∑

k 6=i

zk −
b

r
si, (6.93)

where p, q and si depend on n which is the population cardinality. We analyze the

asymptotic behaviour of the closed-loop system as n → ∞. Set zn = 1
n

∑n
i=1 zi, and

z̃n = 1
n

∑n
i=1(zi − Ezi). Then we have

dz̃n = [a− b
2
p(n) − b

2
q(n)]z̃ndt+

σ

n

n∑

i=1

dwi. (6.94)

We assume that in the increasing population context the initial state of all agents is

deterministic and limn→∞
1
n

∑n
i=1 zi(0) has a finite limit. Then using (6.94) it is easy

to verify that for any T > 0

sup
0≤t≤T

|z̃n(t)| = sup
0≤t≤T

|zn − Ezn| P.−→ 0, (6.95)

as n→ ∞, where
P.−→ means convergence in probability.

Thus in the control of agent 1, with (6.95) in mind we approximate 1
n

∑
k 6=1 zk by

the limit z
4
= limn→∞ zn which satisfies

dz

dt
= (

ρ

2
−

√
a2 + (1 − γ)2b

2
)z − b

2
γη(γ − 1)

ρ
2

+

√
a2 + (1 − γ)2b

2
. (6.96)

Here (6.96) is derived from the closed-loop equation for zi, 1 ≤ i ≤ n, by first summing

over zi to write the equation for
∑n

i=1 zi and then taking limn→∞
1
n

∑n
i=1 zi.

We combine (6.93) with (6.96) and take a large population limit with the n

agent based optimal control law to write the closed-loop dynamics for player 1 in the

following form.

dz1 =(
ρ

2
−

√
a2 + b

2
)z1dt+

[√
a2 + b

2 −
√
a2 + (1 − γ)2b

2
]
zdt

+
b
2
γη(1 − γ)

ρ
2

+

√
a2 + (1 − γ)2b

2
+ σdw1. (6.97)
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Figure 6.3 compares typical trajectories for two control laws, where the lower

state trajectory is generated by the dynamics (6.97). It is seen that when the large

population limit version of the global cost based optimal control law (6.93) is applied,

the resulting state trajectory is generally below the one generated from the optimal

tracking based control law (6.59).
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Figure 6.3. Trajectories of player 1 generated by two control laws
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CHAPTER 7

Individual and Mass Behaviour in Large

Population Wireless Systems: Centralized

and Nash Equilibrium Solutions

7.1. Introduction

In Chapters 2, 3 and 5, we have analyzed power control for lognormal fading

channels by a stochastic control approach. This leads to determining the control

law of the users by dynamic programming equations, i.e., HJB equations. To obtain

implementable control laws, we developed approximation techniques and numerical

methods for computing various suboptimal versions of the control law. However, for

systems with large populations, there exists the basic limitation of computational

complexity associated with this approach. Hence it is desirable to develop new tech-

niques for obtaining simplified yet efficient control laws.

Based on the work in the previous Chapters, in this Chapter we make an attempt

at analyzing the properties of systems operating in large population conditions. The

system includes the lognormal fading channel and a rate based uplink power control

model associated with each user. Our interest is in investigating the feasibility of

localized or decentralized control under fading channels since this would potentially

reduce the system complexity for practical implementation of the control laws. We
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analyze the effect of large population sizes on the controller structure. As a first step,

we examine the structure of the optimal control law. The feedback control is affine in

the system power with a random gain matrix (called the Riccati matrix) which carries

the channel information. Under the assumptions of i.i.d. channel dynamics and equal

Quality of Service (QoS) requirements, it turns out that the Riccati matrix exhibits

a certain symmetry; furthermore, the power adjustment rate for any given individual

mobile is determined by its own channel state, power level and an average of the

impact of all other mobiles. Intuitively, when the population size is big, the network

interference should exhibit a statistically stable behaviour whereby the impact of a

single specific mobile becomes negligible. Based on the above facts, it is possible to

develop a system configuration for network optimization which is less complex than

the full state system.

In reality, for a system as complex as a large-scale mobile communication network,

a centralized optimization approach may face fundamental limitation in implementa-

tion since it generally requires efficient coordination and huge amount of information

exchange between different parts of the system. Hence, in contrast to the highly com-

plex centralized optimal control, in the next step we consider simplified but efficient

control design utilizing new optimization criteria. For the control determination of

a fixed individual user, we group the effect of all other users into a single term and

consider its approximation. This is reasonable due to the particular structure of the

cost function reflecting the QoS measurement. By this means we can capture the

interaction between the behaviour of any single user and the statistical behaviour of

the overall system.

Subsequently we introduce the individual cost based optimization approach to

the power control problem and give a game theoretic formulation. Concerning game

theoretic approach for power control of lognormal fading channels, some initial inves-

tigation was presented in [34, 37]. In practical systems, it is important to implement

control strategy in a decentralized manner, i.e., each mobile user adjusts its power

based on its local information concerning the network. This can significantly reduce
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information exchange efforts among users and base stations and thus reduce system

running costs. And based on these aspects, it makes sense to place emphasis on de-

centralized games. The interested reader is referred to [58, 77, 70, 21] and references

therein for the game theoretic approach to rate allocation, power control, and other

network service allocation for various static models on wired or wireless networks.

The method developed for the LQG problem in Chapter 6, combined with some

reasonable hypotheses, enables us in the power control problem to get an approxima-

tion for the collective effect of all the other individuals on a given individual mobile.

The procedure has connections with the single user based control design in Section

5.5, Chapter 5 (also see [40, 41]) where we appropriately scaled the total interference

generated by all the other mobiles and treated this scaled quantity as a slowly time-

varying process. In this Chapter, a particular form of the loss function is used which

leads to a separation of the control law into a sum of two terms where the first term

involves the given individual’s channel and power state, and the second is a function

of the its channel attenuation and time. Here the time dependence of the second term

reflects the average effect of all other individuals, particularly during the transient

phase of the power adjustment. In this framework, due to the specific decentralized

information structure for individual’s power adjustment, we may feel free to call the

resulting control by distributed control.

We emphasize that the above state aggregation technique leads to highly localized

control configurations in contrast to the full state based optimal control. Specifically,

the control of of a particular individual mobile can be formulated in terms of its own

channel dynamics, its own state, the aggregated system dynamics and the average of

the interference the mobile receives from a mass or collective representing all other

users.

7.2. The Problem Statement

In this Section we reformulate the stochastic power control problem in the large

population context. Let xi(t), 1 ≤ i ≤ n, denote the attenuation (expressed in dBs
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and scaled to the natural logarithm basis) at the instant t of the power of the i-th

mobile of a network and let αi(t) = exi(t) denote the actual attenuation. The power

attenuation dynamics of n mobile users are given by

dxi = −ai(xi + bi)dt+ σidwi, 1 ≤ i ≤ n, t ≥ 0, (7.1)

where {wi, 1 ≤ i ≤ n} are n independent standard Wiener processes, and the initial

states xi(0), 1 ≤ i ≤ n are mutually independent Gaussian random variables which

are also independent of the Wiener processes. In (7.1) ai > 0, bi > 0, σi > 0,

1 ≤ i ≤ n.

As in Chapter 5, We model the step-wise adjustments [62] of the transmitted

power pi (i.e., the uplink power control for the i-th mobile) by the so-called rate

adjustment model

dpi = uidt, 1 ≤ i ≤ n. (7.2)

We write x = [x1, · · · , xn]τ , p = [p1, · · · , pn]
τ , u = [u1, · · · , un]

τ .

In a CDMA context, the signal to interference ratio (SIR) for the users achieved

after matched filtering is given by

Γi =
p̂i∑

k 6=i βk,ip̂k + η
, 1 ≤ i ≤ n, (7.3)

where p̂i denotes the received power at the based station for user i, βk,i = (sτ
ksi)

2,

k 6= i, is the crosscorrelation between the (normalized) signature sequences sk, si of

users k, i, respectively, and η is the constant background noise intensity. We denote

the dimension (i.e., the spreading gain) of si by ns. In the uplink, these signature

sequences are assumed being not strictly orthogonal to each other.

Following [72, 74, 80], we consider the mobile system in the context of a large

number of users and make the standard assumption that n
ns

→ α > 0 as n →
∞, i.e., the signature length ns increases in proportion to the system population,

which is necessary in order to suppress the inter-user interference (i.e., reduce the

crosscorrelation) such that the system can accommodate an increasing number of

users. Here α is called the number of users per degree of freedom. By appropriately
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choosing random signature sequences of length ns, one can have βk,i ≈ 1
ns

[72, 80],

and hence βk,i ≈ α
n
. For simplicity, here we take βk,i = 1

n
for all 1 ≤ k 6= i ≤ n.

Moreover, we wish Γi to be staying around a target SIR level γi ∈ (0, 1), i.e.,

Γi =
p̂i

1
n

∑
k 6=i p̂k + η

≈ γi, 1 ≤ i ≤ n. (7.4)

under the condition of lognormal fading we have p̂i = exipi, 1 ≤ i ≤ n, where the

power attenuation xi is described by (7.1).

Following Chapter 5 and taking into account the SIR requirement (7.4), we in-

troduce the following modified loss function:

E

∫ ∞

0

e−ρt{
n∑

i=1

[exipi − γi(
1

n

n∑

k 6=i

exkpk + η)]2 + uτRu}dt. (7.5)

where ρ > 0 is the discount factor and R is a positive definite weight matrix, and

η > 0 is the constant system background noise intensity. For simplicity we take a

diagonal weight matrix R = Diag(ri)
n
i=1 > 0. In the above integral, the first term

is based on the SIR requirements (7.4) and the second term is added to penalize

abrupt change of powers since in practical systems there are basic limits for power

adjustment rate. In practice, avoiding rapid change of power levels has more to do

with caution in an environment where channel characteristics are estimated and are

possibly time-varying. After subtracting the constant component from the integrand

in (7.5) we get the cost function to be employed:

J(u) = E

∫ ∞

0

e−ρt[pτC(x)p + 2Dτ(x)p + uτRu]dt, (7.6)

where C(x), D(x) are n×n positive definite matrix, n× 1 vector, respectively, which

are determined from (7.5).

To facilitate further analysis, we set fi(x) = −ai(xi + bi), 1 ≤ i ≤ n, H =

Diag (σi)
n
i=1 and zτ = (xτ , pτ ), ψτ = (f τ , uτ), Gτ = (H, 0n×n). We write (7.1) and

(7.2) in the vector form

dz = ψdt+Gdw, t ≥ 0, (7.7)
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We take the admissible control set

U = {u|u is adapted to σ(xs, ps, s ≤ t), and E
∫ ∞
0
e−ρt|ut|2dt <∞}.

Assume that p has a deterministic initial value p(0) at s = 0; then clearly σ(xs, ps, s ≤
t) = σ(x0, ws, s ≤ t). Let Φ(x, p, u) = pτC(x)p+2Dτ (x)p+uτRu. The cost associated

with (7.7) and a control u is J(x, p, u) = E[
∫ ∞
0
e−ρtΦ(xt, pt, ut)dt|xt=0 = x, pt=0 = p],

where (x, p) is taken as the initial state; further we set the value function v(x, p) =

infu∈U J(x, p, u).

7.3. The Value Function and HJB Equation

In this Section we restate some of the results in Section 5.3, Chapter 5 in the

current large population context. We write the HJB equation for the value function

v as follows:

ρv = f τ ∂v

∂x
+

1

2
tr(
∂2v

∂z2
GGτ ) + inf

u∈IRn
{uτ ∂v

∂p
+ uτRu} + pτC(x)p+ 2Dτ (x)p,

= −
n∑

i=1

ai(xi + bi)
∂v

∂xi
+

1

2

n∑

i=1

σ2
i

∂2v

∂xi
2
− 1

4
vτ

pR
−1vp + pτC(x)p+ 2Dτ (x)p. (7.8)

Proposition 7.1. The value function v is a classical solution to the HJB equation

(7.8) and can be written as

v(x, p) = pτK(x)p+ 2pτS(x) + q(x) (7.9)

where K(x) = Kτ (x), S(x), q(x) are continuous in x, and are all of order O(1 +
∑

n

i=1
e2xi ).

We note that elliptic HJB equations such as (7.8) may admit multiple classical

solutions when there is no boundary condition. In general, additional growth condi-

tions are required in order to determine the value function by the HJB equation. See

[24] for a general discussion.
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Substituting (7.9) into the HJB equation (7.8) and comparing powers of p, we

obtain the partial differential equation system

ρK =
1

2

n∑

k=1

σ2
k

∂2K

∂xk
2

+

n∑

k=1

fk
∂K

∂xk
−KR−1K + C, (7.10)

ρS =
1

2

n∑

k=1

σ2
k

∂2S

∂xk
2

+
n∑

k=1

fk
∂S

∂xk

−KR−1S +D, (7.11)

ρq =
1

2

n∑

k=1

σ2
k

∂2q

∂xk
2

+ f τ ∂q

∂x
− SτR−1S, (7.12)

where we shall refer to (7.10) as the Riccati equation of the system. Finally the

optimal control law for the n users is given by

u = [u1, · · · , un]
τ = −R−1[K(x)p + S(x)], (7.13)

and for user i the control is

ui = − 1

ri
Kii(x)pi −

1

ri

n∑

k 6=i

Kik(x)pk −
1

ri
Si(x). (7.14)

It is seen from (7.14) that for user i, the control mainly relies on its own current power

level and a weighted sum of other users’ powers. Since all the coefficients involved

in this individual control law depend on the attenuations of all users, this optimal

control law in highly centralized. A practical implementation of the optimal control

law systems with large populations is unfeasible due to its high complexity concerning

channel conditions. To simplify our analysis, we make the following assumptions:

(H7.1) All users have i.i.d. dynamics, i.e., ai = a, bi = b, σi = σ, 1 ≤ i ≤ n.

(H7.2) All users have equal QoS requirements, i.e., γi = γ, 1 ≤ i ≤ n, and in

addition, R = rIn.

To analyze the control law in a large population situation, we first consider the case

of a static channel, i.e., σi = σ = 0, ai = a = 0 for all i, and assume 0 < γ < 1;

denote the corresponding constant solution to (7.10) by K0. Using the method of

Section 6.3, it can be verified that K0
ii = O(1), as n→ ∞, and K0

ik = O( 1
n
), for i 6= k,
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as n→ ∞. It is an interesting issue to estimate the magnitude of Kii(x) and Kik(x),

i 6= k, in the general case with a > 0, σ > 0.

If the magnitude of all Kik(x), i 6= k, is significantly smaller than that of Kii(x)

in a certain sense, the randomness associated with the second term in (7.14) should

be small due to the scaling effect of Kik(x), i 6= k, and hence the actual interference

from all the other users to a given user is in the form of an averaged effect.

7.4. Game Theoretic Approach and State Aggregation

In this Section we assume that (H7.1)-(H7.2) hold. The notation used in this

Section is consistent with that in Sections 7.2-7.3, and some notion of Sections 6.2-6.4

will be extended to the power control context. The ε-Nash equilibrium can also be

defined here in an obvious way.

We will generalize the method of Chapter 6 to the current nonlinear case by

a heuristic argument. Specifically, under certain assumptions we approximate the

power control problem for large population systems by a tracking problem with an

exogenous random process associated with each player. We set the individual cost

for the i-th player with respect to the mass as

Ji(ui, γ(
1

n

n∑

k 6=i

exkpk + η))
4
=

∫ ∞

0

e−ρt{[exipi − γ(
1

n

n∑

k 6=i

exkpk + η)]2 + ru2
i }dt, (7.15)

i.e., the i-th component in the centralized cost function (7.5) in Section 7.2. We also

define the i-th individual cost with respect to a deterministic process z∗ as

Ji(ui, z
∗) =

∫ ∞

0

e−ρt{[exipi − z∗(t)]2 + ru2
i }dt, (7.16)

where z∗(t) ∈ Cb[0,∞)
4
= {x|x ∈ C[0,∞), and supt∈[0,∞) |x(t)| < ∞}. When the

individual cost Ji(ui, z
∗) is applied, assuming sufficient differentiability of the optimal
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cost function we can write the equation system

ρK(xi) =
σ2

2

∂2K

∂xi
2
− a(xi + b)

∂K

∂xi
− 1

r
K2 + e2xi , (7.17)

ρs(t, xi) =
ds

dt
+
σ2

2

∂2s

∂xi
2
− a(xi + b)

∂s

∂xi
− 1

r
Ks− z∗exi. (7.18)

We assume K(xi) = O(1 + e2xi), and s(t, xi) = O(1 + exi) uniformly with respect to

t. Here K(xi) is a function of a single variable in contrast to the centralized optimal

control case. By an argument using the verification theorem one can show that the

control law minimizing (7.16) for the i-th user is determined as

ui = −1

r
[K(xi)pi + s(t, xi)], (7.19)

and hence we have the closed-loop equation for pi in the form

dpi = uidt = −1

r
[K(xi)pi + s(t, xi)]dt. (7.20)

As in the linear quadratic case analyzed in Section 6.4, here we also have the issue

of determining the function z∗ which is to be tracked by individual players. With the

original SIR based cost function (7.15) in mind, we consider taking

z∗ ≈ γ(
1

n

n∑

k 6=i

exkpk + η), (7.21)

for large n. To further simplify our analysis, in addition to independence between any

pair of processes xi, xk, i 6= k, we assume that each xi has initial condition xi|t=0 such

that xi is a stationary Gaussian process. We also assume that powers of all mobile

users have identical deterministic initial conditions p0. The generalization to more

general initial conditions for the attenuations and powers will present no technical

difficulty. For large n, the scaled sum in (7.21) may be approximated by the the mean

of a single term under mild conditions for pi(t), i ≥ 1. Thus we write

z∗(t) = γ(Eexipi + η), (7.22)
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where the right hand side depends only on time t and the initial power p0 after the

feedback is determined by (7.19) for all individuals. We make the Hypothesis:

(H7.3) The equation system (7.17), (7.18) and (7.22) has a solution (K(xi), s(xi), z
∗(t))

where z∗ ∈ Cb[0,∞), K ∈ C2(R), S ∈ C1,2(R+ × R); in addition K(xi) =

O(1 + e2xi), and s(t, xi) = O(1 + exi) uniformly with respect to t.

Proposition 7.2. Under (H7.3), the control law determined by (7.19) is an

ε-Nash equilibrium for the costs (7.15) subject to full information for individual con-

trols, where ε = O( 1√
n
).

PROOF. The proof is similar to that of Theorem 6.3 and the details are omitted

here.

It is of significant interest to study the dynamic behaviour of z∗. A possible

approach is to introduce a controlled Fokker-Planck equation for the joint distribution

or density of (xi, pi) and then describe z∗ in terms of the Fokker-Planck equation. The

challenging issue of existence of a solution to the resulting equation system will be

investigated in future work.

7.5. Concluding Remarks

In this Chapter we have investigated stochastic power control subject to lognormal

fading in a large population context. Two different methods are considered: the global

cost based centralized information control and the individual cost based decentralized

control.

In general, the global cost based approach emphasizes a certain coordination be-

tween individuals to achieve global optimality; in this approach for large population

systems, assuming that the feedback gain satisfies a certain condition on its mag-

nitude, the information used by a given individual exhibits a certain separation in

that its control law mainly depends its own channel-power condition and another

quantity reflecting the average effect of the collective of other users which is close to
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a deterministic process (for a large population). It should be noted that in this cen-

tralized framework, each individual does not make direct efforts to optimize against

this roughly deterministic process, which differs from the dynamic game theoretic

scenario.

On the other hand, noticing the scaling nature involved in the cost function,

we consider approximation and splitting of the global cost function which naturally

induces individual costs. This leads to a game theoretic framework. In such an

individual cost based optimization framework, there is also a roughly deterministic

process generated by the mass or collective. In contrast to the global cost case, here

each individual determines its control law by optimizing against the mass. Thus there

is an intrinsic clash of interest between different users. But individual and the mass

can still reach a certain stable behaviour under certain conditions.
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CHAPTER 8

Future Research

Suggested Research on Adaptation with Channel Dynamics

• In the current stochastic control framework for the power adjustment, it is

assumed that the dynamics for lognormal fading are known. In a more re-

alistic setup, one may assume that the parameters of the fading channel are

unknown and consider adaptive implementation of the control. In practice

when the channel attenuation is measured, for instance, by means of pilot

signals, one can identify the parameters of the fading channel model by well

established identification algorithms for linear stochastic models as shown

in Chapter 5. Then the estimated parameters may be combined with the

stochastic control approach to give adaptive versions of the control laws.

• An even more challenging issue is to develop a stochastic adaptive control

scheme for power adjustment by assuming that only indirect measurements

for the channel state are available.

Relaxation of the Dynamics Assumption in the LQG Game

• In the large-scale LQG game of Chapter 6, all agents essentially have the

same dynamics which is a strong assumption. A possible generalization is
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to consider randomized coefficients in the dynamic which can be described

by a certain distribution.

Suggested Research on Modelling Mass Behaviour

• To solve the large population power control problem in Chapter 7, a cru-

cial step is to develop an efficient modelling methodology for the mass

behaviour. For any given agent in the system, it is useful to further inves-

tigate the evolution of the joint distribution of its own state and the mass

subject to any fixed control law.

Indiscipline of Sub-Population

• We have solved the large-scale LQG problem in the noncooperative game

theoretic context where a state aggregation technique is applied to construct

ε-Nash equilibria. In this setup, each agent has the task to determine

the behaviour of other individuals and estimate the mass influence it may

receives. Thus the feasibility of the resulting localized strategy relies heavily

on certain universal rationality of the population.

• In further generalization of the state aggregation technique it is appealing

to consider tolerating misbehaviour of a sub-population. In reality, it is

possibly for some agents to take irrational actions due to their own way of

reasoning or because of receiving unreliable information from the system.

We term this situation as indiscipline of sub-population.

• Important issues concerning indiscipline of sub-population include what is a

tolerable size of this sub-population with misbehaviour and to what extent

they are allowed to act on their own will. The two aspects may be related

to each other.
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Systems with Varying Populations

• In the methodology proposed for power control in this thesis, the population

size is assumed to be constant. In a real system, over time new users

will join the user population while others may leave upon completion of

their service. Taken into account this fact, we may model the population

variation by a birth-death process, i.e., the population is modelled as a

jumping Markov process. The main issue then would be to design localized

control configuration allowing population variation.
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[39] M. Huang, R.P. Malhamé, and P.E. Caines. Stochastic power control in wire-

less communication systems with an infinite horizon discounted cost. Proc. of

the American Control Conference, Denver, Colorado, pp.963-968, June, 2003.
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[74] S. Verdú and S. Shamai. Spectral efficiency of CDMA with random spreading.

IEEE Trans. Inform. Theory, vol.45, no.2, pp.622-640, 1999.

[75] H. Viswanathan. Capacity of Markov channels with receiver CSI and delayed

feedback. IEEE Trans. Inform. Theory. vol.45, no.2, pp.761-771, 1999.

[76] A.M. Viterbi and A.J. Viterbi. Erlang capacity of a power-controlled CDMA

system. IEEE Selected Areas in Communications, pp.892-900, August, 1993.

[77] H. Yaiche, R.R. Mazumdar, and C. Rosenberg. A game theoretic framework for

bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans.

Network., vol.8, pp.667-678, 2000.

[78] J. Yong and X.Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB

Equations, Springer, 1999.

162



REFERENCES

[79] K. Yosida. Functional Analysis, 6th Ed., Springer-Verlag, 1980.

[80] J. Zhang and E.K.P. Chong. CDMA systems in fading channels: admissibility,

network capacity and power control. IEEE Trans. Inform. Theory, vol.46, no.3,

pp.962-981, 2000.

[81] J. Zhang, E.K.P. Chong, and I. Kontoyianis. Unified spatial diversity com-

bining and power allocation for CDMA systems in multiple time-scale fading

channels. IEEE J. Selected Areas in Communications, vol.19, no.7, pp.1276-

1288, 2001.

[82] H. Zhang, W.S. Wong, W. Ge, and P.E. Caines. A stochastic approximation

approach to the robust power control problem, preprint, 2003.

163



Document Log:

Manuscript Version 1—30 May 2003

Typeset by AMS-LATEX—29 April 2005

Minyi Huang

Center for Intelligent Machines, McGill University, 3480 University Street,
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